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As with the six regulated asbestos minerals (chrysotile, amosite, crocidolite,

anthophyllite, tremolite, and actinolite), the zeolite mineral, erionite, can exhibit

a fibrous morphology. When fibrous erionite is aerosolized and inhaled, it has

been linked to cases of lung cancers, such as malignant mesothelioma.

Importantly, fibrous erionite appears to be more carcinogenic than the six

regulated asbestos minerals. The first health issues regarding erionite exposure

were reported in Cappadocia (Turkey), and more recently, occupational

exposure issues have emerged in the United States. Erionite is now classified

as a Group 1 carcinogen. Thus, identifying the geological occurrence of erionite

is a prudent step in determining possible exposure pathways, but a global review

of the geological occurrence of erionite is currently lacking. Here, we provide a

reviewof the >100 global locationswhere erionite has been reported, including:

1) geological setting of host rocks; 2) paragenetic sequence of erionite

formation, including associated zeolite minerals; 3) fiber morphological

properties and erionite mineral series (i.e., Ca, K, Na); and 4) a brief overview

of the techniques that have been used to identify and characterize erionite.

Accordingly, erionite has been found to commonly occur within twomajor rock

types: felsic and mafic. Within felsic rocks (in particular, tuffaceous layers within

lacustrine paleoenvironments), erionite is disseminated through the layer as a

cementing matrix. In contrast, within mafic (i.e., basaltic) rocks, erionite is

typically found within vesicles. Nevertheless, aside from detailed studies in

Italy and the United States, there is a paucity of specific information on

erionite geological provenance or fiber morphology. The latter issue is a

significant drawback given its impact on erionite toxicity. Future erionite

studies should aim to provide more detailed information, including variables

such as rock type and lithological properties, quantitative geochemistry, and

fiber morphology.
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1 Introduction

Zeolites are volcanic in origin and are formed by the action of

alkaline water or seawater on volcanic glass in sediments and

clays. Of the more than 40 known zeolites, clinoptilolite is the

most abundant in nature, followed by analcime, chabazite,

heulandite, natrolite, phillipsite, mordenite, stilbite, and

erionite (Reid et al., 2021). Zeolites have a very large internal

surface area resulting from the particular configuration of their

crystalline lattice. They can lose or gain water molecules and

exchange cations without significant changes to their crystalline

structure and have a catalytic activity (Dumortier et al., 2001).

Erionite was first described by Eakle (1898) in its woolly form in

Durkee, Oregon (United States). Erionite crystals can occur

individually or as “radiating clusters,” “bundles,” or a “woolly

mass” (Dogan and Dogan, 2008; Van Gosen et al., 2013).

Occasionally erionite is found intergrowing with levyne, where

it appears as short fibers growing in-between plates of levyne, and

with offretite, where it forms stacking faults (Wise and

Tschernich, 1976; Schlenker et al., 1977; Cametti and

Churakov, 2020).

The morphology of erionite is the primary reason the

mineral is toxic, and it is now known to exhibit three

different compositions: calcium (erionite-Ca), sodium

(erionite-Na), or potassium (erionite-K), as determined by

the predominant element (Coombs et al., 1997; Dogan and

Dogan, 2008). When aerosolized and inhaled, erionite fibers

have been associated with health effects similar to those

typically seen with exposure to asbestos, including malignant

mesothelioma (Beaucham et al., 2018). In particular, the

inhalation and respiration of erionite fibers were

unequivocally linked to the malignant mesothelioma (MM)

epidemic in the Cappadocia region of Turkey in the 1970s

(Bariş et al., 1979, 1978; Artvinli and Bariş, 1979; Mumpton,

1979). The erionite was identified within the local soft, powdery

surface rocks and led to the deaths of >50% in one village,

Karain (Carbone et al., 2007). MM is a disease typically

associated with environmental and occupational exposure to

asbestos fibers (Hillerdal, 1983; Bianchi and Bianchi, 2007;

Lacourt et al., 2014; Attanoos et al., 2018). However, in vivo

studies conducted following the MM epidemic in Turkey

suggested that erionite may be even more carcinogenic than

crocidolite and chrysotile asbestos (Wagner et al., 1985; Coffin

et al., 1992). Indeed, Coffin et al. (1992) proposed that erionite

might be 500–800 times more tumorigenic than chrysotile

asbestos, while Wagner et al. (1985) reported that 100% of

rats inoculated with erionite died from MM. Subsequently,

erionite has been recognized as a Group 1 Carcinogen by the

International Agency for Research on Cancer (IARC, 2012,

1987).

Presently, cases of MM related to erionite exposure are

restricted to Turkey (Bariş et al., 1979, 1978) and Mexico

(Ortega-Guerrero et al., 2015), but due to its carcinogenic

potential, there are concerns regarding the occupational and

environmental exposure to erionite in other countries such as

New Zealand (Patel and Brook, 2021), United States (Carbone

et al., 2011; Beaucham et al., 2018), Iran (Ilgren et al., 2015) and

Italy (Giordani et al., 2016). Indeed, erionite has been identified

in various geological formations globally (Figure 1), and due to

health concerns, significant research has been undertaken in the

United States to identify the geological occurrences of erionite

(e.g., Sheppard, 1996; Van Gosen et al., 2013) and in Italy (e.g.,

Giordani et al., 2017, 2016), although the latter study only

focused on one region of Italy (the Lessini Mountains). Despite

Giordani et al. (2017) listing some global erionite occurrences, a

comprehensive review and synthesis of literature about the

worldwide geologic occurrences of erionite is lacking.

Indeed, the erionite literature mainly focuses on mineral

chemistry (e.g., Gualtieri et al., 1998; Passaglia et al., 1998;

Dogan and Dogan, 2008) and erionite toxicology (e.g., Wagner

et al., 1985; Coffin et al., 1992; Dogan et al., 2006). For a mineral

as toxic as erionite, delineation of the likely geological

occurrence and geographic distribution can help inform

exposure, while characterization of the mineral properties

(habit, morphology) can be used to determine toxicity

(WHO, 1986; Dogan et al., 2008; Beaucham et al., 2018).

Both exposure and toxicity are essential for future risk

assessments of erionite (Carbone et al., 2011; Giordani et al.,

2017). Some examples of erionite from the Waitemata Group

volcaniclastic sediments in Auckland, New Zealand, are shown

in Figure 2, using a range of analytical approaches (discussed

below).

Thus, given the interest in erionite relating to public and

occupational health over the last 4 decades and the concomitant

growth in journal publications, a review of the geological

occurrence of erionite, including details on geological

formation, rock type, and age, along with accompanying

zeolite minerals, is pertinent and timely. The present study

aims to review the global geological occurrence of erionite,

including: 1) determining the principal rock types and

environments in which erionite forms, 2) characterizing the

properties of the reported erionite species, and 3) identifying

the other zeolite minerals that erionite is commonly found

alongside. To this end, the present study identified reports of

erionite in 139 locations spanning 26 countries globally

(Figure 1). Key aspects of the erionite reports are

summarized in the accompanying figures and the

Supplementary Material (Supplementary Table S1). The vast

majority of published studies to date regarding erionite are not

focused on geological aspects of the mineral occurrence, so the

information in Supplementary Table S1 is somewhat

fragmentary. Indeed, for locations where erionite was

reported, only 95 out of the 139 studies described the basic

morphology (e.g., acicular, woolly, or fibrous), while only

37 studies reported fiber size. The latter is critically

important for any risk assessment (WHO, 1997).
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2 The erionite mineral series

Erionite is a hexagonal-shaped tectosilicate belonging to the

ABC-6 family of zeolites and consists of (Si, Al)O4 framework

tetrahedra linked together to form single six rings and double six-

rings, which create fibrousmorphologies (Gottardi andGalli, 1985;

Alberti et al., 1997; Gualtieri et al., 1998; Cametti et al., 2013;

Giordani et al., 2016; Kshirsagar et al., 2021). Erionite consists of

three types of cages: 1) an empty six-membered double ring, 2) a

cancrinite cage preferred by K, and 3) an erionite cage with

dispersed Ca, Na, and Mg cations (Gottardi and Galli, 1985;

Gualtieri et al., 1998; Armbruster and Gunter, 2001; Ballirano

et al., 2009; Giordani et al., 2016; Kshirsagar et al., 2021). In the

early literature (e.g., Eberly, 1964; Sheppard and Gude, 1969; Gude

and Sheppard, 1981), erionite was described as a single mineral,

but subsequently, erionite was redefined as a series of minerals

belonging to the erionite group (Coombs et al., 1997; Dogan and

Dogan, 2008). The minerals within the erionite series are erionite-

Ca (calcium), erionite-K (potassium), and erionite-Na (sodium),

which are named based on the most abundant extra-framework

cation within the mineral (Coombs et al., 1997; Dogan and Dogan,

2008; Dogan et al., 2008; Beaucham et al., 2018). Prior to 1997, the

term erionite was used without a modifier, and even post-1997,

many publications mention erionite without indicating which

mineral within the erionite series is being referred to (e.g.,

Campbell et al., 2001; Ivanova et al., 2001; Anthony et al., 2003;

Rodgers et al., 2004; Ilgren et al., 2015; Bernhart Owen et al., 2019;

Kshirsagar et al., 2021). Therefore, unless referring to specific

occurrences of erionite where chemistry is known, the term

“erionite” will be used within this review paper without a modifier.

The general chemical formula for the erionite series, as

defined by Coombs et al. (1997), is:

K2(Na,Ca0.5)8[Al10Si26O72].30H2O

While Coombs et al. (1997) defined erionite into three minerals

based on type localities for each mineral, Dogan and Dogan (2008)

proposed a new general chemical formula for each erionite mineral

based on the mean elemental values of erionite found in various

areas. The formulae are as follows (Dogan and Dogan, 2008):

Erionite − Ca: (Ca2+3.56K+
1.95Na

+
0.27Mg2+0.30)(Si25.78Al10.28Fe3+0.01)O72

Erionite − Na: (Na+4.00K+
2.40Ca

2+
1.13Mg2+0.24)(Si26.69Al9.11Fe3+0.22)O72

Erionite − K: (K+
2.80Na

+
1.66Ca

2+
1.03Mg2+0.51)(Si28.21Al7.39Fe3+0.41)O72

Furthermore, Dogan and Dogan (2008) have also stated that

for a zeolite mineral to be classified as erionite, it must pass both

the balance error and Mg content tests. The balance error

formula is:

E � [(Al + Fe3+) − (Na + K) + 2(Ca +Mg)][(Na + K) + 2(Ca +Mg)] × 100

From this formula, a mineral can only be classified as

erionite if the balance error (E%) is less than or equal to

FIGURE 1
Global geological occurrence of erionite, with western North America, a particular focus of studies, shown in the inset map; sites are coded by
geology. Details on the studies related to each location can be found in Supplementary Material S1.
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10% (Passaglia, 1970; Dogan, 2003; Dogan and Dogan, 2008).

The Mg2+ content must also not exceed 0.80 atoms per cell, and

if it does, then the mineral will also not be characterized as

erionite (Gualtieri et al., 1998; Dogan and Dogan, 2008). In

addition to the E balance error andMg content tests outlined by

Dogan and Dogan (2008), Cametti et al. (2013) have also drawn

attention to extra framework cations, including K. Cametti et al.

(2013) suggest that if the K atom, which lies at the K1 site

located at the center of the cancrinite cage has a value of less

than 2K apfu, then this indicates a partly vacant K1 site, or more

plausibly, an incorrect analysis. Thus, the content of K could

also be used, in addition to the E balance error and Mg content,

in order to assess the quality of analytical results. Chemically

classifying erionite is prudent as the morphology of erionite is

similar to other fibrous zeolites, such as offretite. The corollary

is that morphology alone should not be used to determine if a

zeolite is actually erionite and that the chemistry is

fundamentally important (Passaglia et al., 1998; Dogan and

Dogan, 2008; Cametti et al., 2013).

Of the 139 locations shown in Figure 1 (and reported in

Supplementary Table S1) where erionite has been reported, only

38 reported the chemical composition of the erionite minerals in

any detail. This erionite chemistry data is summarized in

Figure 3, using the three end-members (K, Ca, Na) and Mg.

The cations Sr and Ba were omitted as they are minor

components of erionite (e.g., Passaglia et al., 1998; Dogan and

Dogan, 2008; Carbone et al., 2011). Figure 3 displays the

chemistry of erionite from the various published locations

around the world, as shown in Figure 1, with the majority of

the chemical data coming from Dogan and Dogan (2008).

Figure 3A is a conventional K-Mg-(Ca+Na) ternary diagram,

following Carbone et al. (2011), who attempted to use such a

ternary diagram to infer that there was only a small difference

between the chemical characteristics of Turkish and North

Dakota (ND) erionite. In Figure 3A, differences seem

apparent between the composition of Ca, Na, and K erionite

reported globally, with erionite-K dispersed on the ternary plot

away from Ca and Na erionite, which are more clustered. For

FIGURE 2
Example erionite-K from the Waitemata Group volcaniclastic sediments, Auckland, New Zealand (modified from Patel and Brook, 2021): (A)
X-ray diffraction (XRD) plots showing erionite and other zeolites, including chabazite and clinoptilolite; (B) Scanning Electron Microscopy (SEM)
image of example erionite fibers (yellow boxes), the fibers have formed hexagonal bundles with an acicular habit and formed within the pore spaces
of siltstone undergoing weathering; (C,D) cryogenic Transmission Electron Microscopy (TEM) of example fibers to determine morphology.
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FIGURE 3
Erionite chemistry. (A) Ternary diagram comparing erionite global geological occurrence to erionite fromN. Dakota and Old Sarihidir (following
Carbone et al., 2011); (B) ternary diagram of Na-C-K; (C) Mg and K composition of different erionite species; (D) comparison of (Na + Ca) values
against K; (E) comparison of (Na + Ca) against Mg; (F) frequency of Si/(Si + Al) ratios.
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comparison, the global dataset is shown in a somewhat simpler

K-Ca-Na ternary plot in Figure 3B, and the Ca, N, and K erionite

differences are more equivocal than in Figure 3A. Carbone et al.

(2011, p. 13619), compared the chemistry of erionite from ND

and Old Sarihidir and concluded that “in summary, our data

show that the. . ..chemical characteristics of Turkish and ND

erionite are very similar.” However, while the ND and old

Sarihidir datasets do overlap in Figure 3A, there is

considerable dispersion, which is also suggested by their

accompanying bar chart (their Figure 2). Carbone et al. (2011,

p. 13621) disclosed that their “analyses have been adjusted for

calculated Na loss and thus appear closer to the vertex relative to

K” without detailing the nature of their adjustments. Carbone

et al. (2011, p.13261) then go on to state that “there is no a priori

reason. . ..to suggest that this small difference [in chemistry] will

affect the carcinogenicity of the erionite.” This is despite their

ternary plot and bar chart (their Figure 2), implying that the

difference in Old Sarihidir and ND erionite chemistry is not

minor. This (apparently) overlooked difference in erionite

chemistry is important because Carbone et al. (2011) then

undertook biological activity (foci development via cell

coculture testing) testing of the ND and Old Sarihidir

erionite, applying the Student’s t-test (e.g., Bland, 1995). From

the coculture testing, Carbone et al. (2011, p. 13621) then

concluded, “our data show that ND erionite was more potent

than Cappadocian erionite in inducing foci formation.” Indeed,

the Cappadocian erionite showed 3× the number of foci after

3 months than the ND erionite (Carbone et al., 2011, p. 13622).

The corollary is that the differences in chemistry may be an

important influence on carcinogenicity, yet appears to have been

discounted by the authors. Moreover, erionite chemistry datasets

reported from global erionite occurrences (see Supplementary

Table S1) are also superimposed on Figure 3A, and appear to

reveal that the two datasets reported by Carbone et al. (2011) are

enriched in K and Mg relative to global data. Thus, it would

appear that Carbone et al. (2011) may also have (unwittingly)

introduced a statistical bias into the plotting of their data,

rendering the applicability of their use of a ternary diagram to

infer similarities between the ND and Old Sarihidir datasets,

questionable. Such issues of using ternary diagrams have long

been debated in the geochemistry literature. For example, Butler’s

(1979) analysis of 114 igneous rocks in Texas showed that re-

casting variables into percentages within a ternary diagram

format dramatically changed the statistical properties of the

data in that the variable with the smallest variance in the

initial set-up had the largest variance in the ternary data set-

up. Indeed, the formation of ternary diagram percentages

induces closure into the data, so that an unknown amount of

the depicted variability is actually an artifact of the closure

(Butler, 1979). Thus, bivariate scatterplots (e.g., Figures 3C–E)

or simple frequency histograms (Figure 3F) alongside

discriminant functions may be more appropriate approaches

to displaying erionite chemistry and inferring genetic trends

of different erionite minerals. Indeed, globally the Si content

varied across many locations but commonly was in the range of

0.68–0.72 and 0.76–0.80 (Figure 3F). These are very similar value

ranges to the Si content for North Dakota and Old Sarihidir, as

reported by Carbone et al. (2011).

3 Geology

3.1 Global occurrence

Erionite has been found worldwide in many different

countries, as shown in Figure 1, yet often in publications,

much of the key geological data useful in characterizing

erionite (e.g., rock units, paleoenvironment, apparent mode of

formation) is missing or incomplete. Notwithstanding these

limitations, Italy, Turkey, and the United States are three

countries where in-depth analyses into the geological

occurrence and characterization of erionite has occurred

(Artvinli and Bariş, 1979; Sheppard, 1996; Giordani et al.,

2017). In the United States, Sheppard’s (1996) widely-cited

work focused only on one geological environment

(sedimentary rocks). Subsequently, a more detailed USA-

focused geological review of erionite was published by Van

Gosen et al. (2013) from the standpoint of an emerging

national public health concern for respiratory disease.

Elsewhere, global data on erionite is less abundant, but

locations, where erionite has been reported include Antarctica

(Vezzalini et al., 1994), Australia (England and Ostwald, 1979;

Birch, 1987), Fiji (Ram et al., 2019), Finland (Lehtinen, 1976),

Georgia (Batiashvili and Gvakharia, 1968), Crimea (Suprychev

and Prokhorov, 1986), Scotland (Macpherson and Livingstone,

1982), Northern Ireland (Passaglia et al., 1998), Japan (Harada

et al., 1967; Kawahara, 1967; Shimazu and Kawakami, 1967),

Kenya (Surdam and Eugster, 1976; Bernhart Owen et al., 2019),

Austria (Zirkl et al., 1962; Waltinger and Zirkl, 1974), and

New Zealand (Sameshima, 1978; Irwin, 2016; Patel and Brook,

2021). Erionite has been found within rocks used for road

aggregates in the United States (Van Gosen et al., 2013), and

in the rock used to construct houses in Turkey (Carbone et al.,

2007). Hence understanding the geological occurrence,

formation processes, and geographic distribution of erionite-

bearing rock is important.

3.2 Geological settings of erionite

As with other zeolites, erionite is usually identified within

volcanic and volcanically-derived rocks (Figures 1, 4A), where

the minerals typically form via diagenesis or hydrothermal

alteration (Mumpton, 1979; Coombs et al., 1997).

Nevertheless, erionite has also been identified in sedimentary

and metamorphic rocks (Lehtinen, 1976; Sheppard, 1996;
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Schmieder and Jourdan, 2013). The characteristic host rocks that

erionite typically occurs in are basalt and tuffs, but for this review,

the volcanic rocks have been classified based on their wt% SiO2

composition. The classification via SiO2 is because when

describing certain rock types, such as tuff, the definitions can

vary according to the author. For example, the erionite in

Cappadocia (Turkey) was from, per se loquendo, rhyolitic

pyroclastic deposits, yet these same deposits have been

referred to as both welded tuff (e.g., Wagner et al., 1985;

Topal and Doyuran, 1998) and ignimbrite (Temel and

Gündoğdu, 1996). Moreover, the use of the terms “felsic”

(silica-rich) and “mafic” (Mg and Fe-rich) are consequently

more useful from a geological standpoint (e.g., Marshak,

2019). Unfortunately, however, many erionite-related

publications are not focused on geology, but rather on health

and toxicity, so even rudimentary geological information is often

absent. Thus, as the majority of publications reviewed did not

specify host rock composition, these rocks were classified as

FIGURE 4
Properties of erionite bearing rock. (A) Rock types erionite has been found in (often tuff type is not differentiated within the literature); (B)where
erionite is found within the rocks; (C) overall proportions of erionite reported from vesicles, fractures, and disseminated within the rock mass (note:
vesicles refer to vesicles, vugs, and amygdules; disseminated refers to matrix; fractures includes both veins and fractures).
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“undifferentiated volcanics” (Figure 1), with the majority of these

undifferentiated volcanics assumed to be “tuff” (Figure 4A).

Nevertheless, the host rock type is important, as it can

indicate possible erionite fiber size. Indeed, larger well-formed

erionite crystals are frequently found within the cavities and

veins of volcanic rocks, while fine-grained crystals are more often

homogenously distributed within volcanoclastic or sedimentary

rocks (Rakovan, 2004; Marantos et al., 2012). Indeed, most larger

fibers (>1 mm) are reported from mafic rocks, typically

crystallizing within vesicles (e.g., Kamb and Oke, 1960;

Tschernich and Wise, 1982; Passaglia and Tagliavini, 1995).

Fiber size is discussed in more detail in Section 4.1 below.

From the available literature, within mafic rocks, erionite

tends to form within vesicles (e.g., Hey, 1959; Wise and

Tschernich, 1976; England and Ostwald, 1979; Rychly et al.,

1982; Bargar and Keith, 1984; Noh and Kim, 1986; Birch, 1987;

Vezzalini et al., 1994). In contrast, for felsic rocks, most erionite

was reported within the matrix of the rock (Figure 4B; e.g.,

Cochemé et al., 1996; Donoghue et al., 2008; Eyde and Irvin,

1979; Hay, 1964; Mumpton, 1979), but can also be found to form

within vesicles (e.g., Barrows, 1980). Most reported erionite

occurrences are in vesicles or disseminated within a

sedimentary layer, and only very rarely was erionite reported

in a vein (Figure 4C). According to Marantos et al. (2012),

zeolites forming within sediments typically form the

cementing matrix, crystallizing within pore spaces, and this

can lead to a harder zeolitized horizon layer, relative to the

underlying and overlying sedimentary layers (Davidson and

Black, 1994), and therefore are more resistant to erosion. A

further intriguing geological factor is the age of the host rock

(Figure 5). Most erionite globally is reported from rock units

formed during the Miocene epoch (23–5.3 Ma), but erionite has

been reported from rocks across a range of geological timescales.

However, although the timing of zeolitization must post-date the

rock unit age, the exact timing or duration is unknown in most

cases. For example, erionite is found within Pleistocene-age

(<2.58 Ma) rocks in New Zealand (Rodgers et al., 2004), as

well as Precambrian age rocks (1.90–1.87 Ga), such as at Lake

Lappajärvi, Finland (Lehtinen, 1976). At Lake Lappajärvi,

zeolitization probably occurred much more recently during

the late Cretaceous, following the meteorite impact event at

~77.9 Ma (Kenny et al., 2019).

3.3 Paleoenvironments and formation
processes

Erionite (and zeolites more broadly) typically form from

diagenesis or hydrothermal alteration, crystalizing from fluids

present within the host rock (Giordani et al., 2017; Patel et al.,

2022). When hydrothermal alteration causes zeolitization, the

conditions include low pressure and temperatures (<110°C).
Examples of such locations where this process has occurred

include Cairns Bay, Australia (Birch, 1988) and Eastern

Rhodopes, Bulgaria (Ivanova et al., 2001; Kirov et al., 2011).

Another typical mechanism of zeolite formation is dissolution

FIGURE 5
Age of erionite host rocks, classified by geological era, geological period, and geological epoch. The majority of rocks that erionite has
crystallized in are younger rocks formed in the Cenozoic Era, primarily within the Miocene (i.e., 23–5.3 Ma).
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via diagenesis, which has occurred in a variety of locations

globally, including Guanajuato, Mexico (Ortega-Guerrero and

Carrasco-Núñez, 2014; Ortega-Guerrero et al., 2015), Reese

River, United States (Gude and Sheppard, 1981) and

Chojabaru, Japan (Shimazu and Mizota, 1972). Note that for

many published studies, the erionite formation processes were

not reported by the authors, which, again, limits the possibility of

accurate geospatial mapping of potentially hazardous erionite-

bearing units. Notwithstanding this, from the literature

summarized in Supplementary Table S1, six characteristic

geological settings can be recognized for erionite formation,

outlined below.

(1) Hydrothermal alteration of silica-rich volcanic

deposits—heated hydrothermal fluids alter the

surrounding host rock and cause the precipitation of

erionite and other minerals (Bargar and Beeson, 1981;

Van Gosen et al., 2013). Primarily the fluids are heated

from below, and typically the temperature to crystallize

erionite is low at around <110°C and can be found within

vesicles and fractures of volcanic rocks (Bargar and Beeson,

1981). Examples include sinters such as at Otamakokore,

New Zealand (Rodgers et al., 2004), and geysers at

Yellowstone, United States (Honda and Muffler, 1970;

Bargar and Beeson, 1981). Typically, such host rocks are

young and of Pleistocene age (~2.58 Ma; Bargar and Beeson,

1981; Rodgers et al., 2004).

(2) Diagenesis within lacustrine paleoenvironments—volcanic

ash settled into lakes of a primarily alkaline composition

(Temel and Gündoğdu, 1996; Van Gosen et al., 2013;

Karakaya et al., 2015). Diagenesis occurred within this

environment, with zeolites crystalizing from the

dissolution of volcanic glass in the ash beds (Cochemé

et al., 1996; Giordani et al., 2017). Some zeolite

crystallization occurred within a closed system, primarily

from ash layers interbedded between mudstone and

claystone, or from shallow burial (Gude and Sheppard,

1988; Sheppard, 1991). Examples of lacustrine

paleoenvironments which led to the crystallization of

erionite include Mud Hills, California, United States

(Sheppard and Gude, 1969; Sheppard, 1996; Van Gosen

et al., 2013), Cappadocia, Turkey (Temel and Gündoğdu,

1996; Giordani et al., 2017), and Agua Prieta, Mexico

(Cochemé et al., 1996; García-Sosa and Solache Ríos, 1997).

(3) Diagenesis within mafic rocks—primarily within these

locations, erionite formed as lining within vesicles and

fractures in basalt (Bennett and Grose, 1978; Noh and

Kim, 1986). Diagenesis occurred due to groundwater

percolation through the host rock, causing the alteration

and crystallization of zeolites (Bennett and Grose, 1978).

Examples of locations are Yeongil, South Korea (Noh and

Kim, 1986), Chojabaru, Japan (Shimazu and Mizota, 1972),

and Beech Creek, United States (Sheppard et al., 1974;

Bennett and Grose, 1978). These host rocks are from the

Cenozoic Era (<66 Ma).

(4) Hydrothermal alteration of intermediate to mafic

rocks—leads to zeolitization within cavities and veins

(Vezzalini et al., 1994; Giordani et al., 2017). Within this

type of geological setting, hydrothermal fluids have caused

the precipitation of zeolites, with rock ages ranging from

Jurassic (201–145 Ma) to Cenozoic (<66 Ma) Era (Birch,

1988; Vezzalini et al., 1994). Examples of locations

include dolerites from Mount Adamson, Antarctica

(Vezzalini et al., 1994), basalt from Cairns Bay, Australia

(Birch, 1988), and basalt from Lessini Mounts, Italy (Mattioli

et al., 2016; Giordani et al., 2017).

In addition, two further modes of formation are occasionally

reported within the literature and include 5) diagenesis in a

marine environment such as in Auckland, New Zealand (e.g.,

Davidson and Black, 1994), and 6) hydrothermal alteration via

meteorite impact metamorphism (e.g., Lake Lappajärvi, Finland;

Lehtinen, 1976; Schmieder and Jourdan, 2013).

Occasionally, there is discord within the literature about how

erionite minerals (and associated zeolites) have formed. For

example, two contrasting formation processes have been

proposed for erionite formed within the Miocene Waitemata

Group in Auckland, New Zealand (Sameshima, 1978; Davidson

and Black, 1994). According to Sameshima (1978), zeolites

formed within a bathyal submarine environment via hot

spring activity, accompanied by hydrothermal alteration at a

shallow burial depth. In contrast, Davidson and Black (1994)

proposed that zeolites formed due to diagenesis within a closed

hydrologic system, based on the premise that zeolitization was

confined to very specific lithological layers. Thus, because zeolites

appeared restricted to specific sedimentary layers, rather than

being disseminated throughout the surrounding units, the hot

spring theory by Sameshima (1978) was deemed to be incorrect.

A further example of conjecture within the literature

concerns erionite found in southern Bulgaria, which Ivanova

et al. (2001) proposed was formed from low-temperature

hydrothermal solutions, heated by hot pyroclastic material

(i.e., hydrothermal alteration). In contrast, Kirov et al. (2011)

more recently proposed that zeolitization occurred from

diagenesis within a closed system. Both hypotheses may be

valid as Kirov et al. (2011) explained that temperatures may

have risen due to later volcanism, causing hydrothermal fluids to

alter host rocks.

3.4 Erionite paragenesis

The paragenetic sequence of zeolite crystallization within a

rock mass can provide insights into the environment that the

zeolites formed in because the sequence of zeolite mineral

formation is indicative of both the fluid chemistry and host
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rock chemistry present within the system (Hay, 1963; Surdam

and Eugster, 1976; Davidson and Black, 1994; Kirov et al., 2011;

Mattioli et al., 2016). The most common zeolites forming

alongside erionite are clinoptilolite, chabazite, phillipsite,

analcime, and mordenite (Figure 6). Observations from

Surdam and Eugster (1976) at Lake Magadi, Kenya, found

that erionite was formed in environments that are silica and

sodium-rich, but which are low in calcium. Indeed, the most

common mineral assemblages within the High Magadi beds are

erionite + analcime ± quartz ± magadiite and erionite +

analcime + chabazite + quartz. Therefore, the first zeolite to

form is erionite, which forms straight from trachytic glass with

the addition of H2O. Furthermore, analcime indicates a sodium-

rich environment (Surdam and Eugster, 1976; Davidson and

Black, 1994). However, as erionite-Ca is a mineral within the

erionite series, the observations by Surdam and Eugster (1976)

are specific for that area, given that to form a calcium end-

member, calcium would need to be abundant within the host

rock and/or fluid.

In contrast, Birsoy (2002) provided a broader definition for

erionite occurrence, suggesting that erionite forms in alkaline

environments. In particular, three locations specifically reported

high pH (≥7) levels, including Kandovan, Iran (Ilgren et al.,

2015), Tierra Blanca, Mexico (Ortega-Guerrero and Carrasco-

Núñez, 2014), and Tuzgölü Basin, Turkey (Karakaya et al., 2015).

Moreover, many other studies have simply referred to an alkaline

environment, such as Ashio Tochigi, Japan (Matsubara et al.,

1978), Olduvai Gorge, Tanzania (Hay, 1963; McHenry et al.,

2020), and the studies from the United States in Durkee, Rome

(Staples and Gard, 1959), Eastgate, Nevada (Papke, 1972;

Sheppard, 1996), Kildeer Mountain, North Dakota (Goodman

and Pierson, 2010; Saini-Eidukat and Triplett, 2014), and Reese

River, Nevada (Deffeyes, 1959; Gude and Sheppard, 1981). Taken

together, the reports indicate that erionite will likely form within

an alkaline-rich environment. Such environments tend to be

lacustrine, rather than marine, with alkaline lakes usually found

in quiescent or recently extinct volcanic areas where neither

water vapor nor acidic magmatic gases can reach surface waters

(Stumm, 2004). The occurrence depends on peculiar climatic and

geological conditions that allow evaporative concentration of the

water (often evaporation much higher than water inputs and in

endorheic basins), and on geochemical factors that favor

chemical evolution towards an alkaline environment (Jones

and Deocampo, 2003).

Such an example has been reported from Auckland,

New Zealand, where Davidson and Black (1994) proposed that

lithology strongly controlled zeolite paragenesis, with different

units having different mineral assemblages. For the

volcaniclastic sandstones of the Waitemata Group’s East Coast

Bays Formation (ECBF), the paragenetic sequence was

clinoptilolite + (mordenite) → chabazite + erionite. This

sequence is low in Si and is associated with a closed hydrologic

system such as a lacustrine environment, which is more alkaline

thanmarine environments (which are more neutral; Davidson and

Black, 1994). This indicates that the sandstone was likely sealed in-

between layers of mudstone within the turbidite sequence, creating

a closed hydrologic system. The crystallization of zeolites occurred

as pore fluid flowed within the rock mass, liberating Si and alkali

cations from the volcanic glass within the sandstone (Davidson

and Black, 1994). Over time, the fluid composition changed as the

alteration of the minerals continued, with the varying cation

contents of the zeolite assemblages attributed to changes within

the pore fluid chemistry (Davidson and Black, 1994; McHenry

et al., 2020). In contrast, within conglomerate beds of the

Waitemata Group, pore fluid was less restricted, and the system

was an open hydrologic system while also highly permeable,

allowing analcime to crystallize from Na-saturated fluids

(Davidson and Black, 1994).

4 Characterization and toxicity

4.1 Fibrous zeolites

Most naturally occurring zeolites are non-fibrous, whereas

zeolites such as clinoptilolite, edingtonite, erionite, ferrierite,

FIGURE 6
Frequency chart of other zeolites reported to occur
alongside erionite, with clinoptilolite and chabazite being themost
prevalent.
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gonnardite, dachiardite, kalborsite, mesolite, mordenite,

natrolite, offretite, paranatrolite, scolecite and thomsonite can

be fibrous (Nishido and Otsuka, 1981; Belitsky et al., 1992;

Thomas and Ballantyne, 1992; Artioli and Galli, 1999;

Armbruster and Gunter, 2001; Betti et al., 2022; Finocchiaro

et al., 2022). In particular, epidemiological (Bariş et al., 1979;

Carbone et al., 2011) and experimental data (Wagner et al., 1985;

Coffin et al., 1992) show that erionite fibers have the highest

carcinogenic potency among any other fibers so far studied,

including fibers regulated as asbestos. Erionite fibers also have

strong fibrogenic potential (Fraire et al., 1997) and biopersistence

(Sanchez et al., 2009). Malignant mesothelioma (MM) is a cancer

caused by a malignant transformation of the mesothelial cells

which are found in the tissue lining the lungs, abdomen, and

heart (Carbone et al., 2011; Carbone and Yang, 2012; Attanoos

et al., 2018). Pleural MM (cancer of the tissue that lines the lungs)

is the most common cancer of the three and is caused by the

inhalation of fibrous material such as asbestos or erionite (Bariş

et al., 1979; Robinson et al., 2005). In addition, there are also non-

cancerous health issues known to be caused by inhaling erionite,

such as pleural fibrosis and promoting the production of

autoantibodies (Fach et al., 2003; Zebedeo et al., 2014; Ray, 2020).

4.2 Particle size and morphology

Particle size is one of the most critical factors determining

the toxicity of a fiber. Depending on the size and morphology,

the inhaled particles can be deposited in various parts of the

respiratory system with very different in situ biochemical

conditions (Giordani et al., 2019). In terms of morphology,

elongated particles typically pose a higher risk to human health

in comparison to spherical particles, as they are more likely to

be inhaled and deposited within the lung airway surfaces

(Asgharian et al., 2018). For elongated particles, NIOSH has

established exposure limit guidelines for asbestos and other

fibrous mineral particulates that satisfy the following size

requirements: length (L) ≥5 μm and a ≥3:1 aspect ratio of

length to diameter (NIOSH, 1994; Beaucham et al., 2018).

The World Health Organization (WHO, 1997) also specifies

a diameter (w) of <3 μm for particles to be inhalable, and fiber

diameter is a critical dimension as the smaller the diameter, the

higher the particulate number per unit mass of dust, which will

increase the inhalation potential of the fibers (WHO, 1997). The

diameter also influences the ability of phagocytes to clear fibers

from the respiratory tract, and the density of the fiber aids in

determining its aerodynamic diameter (dae), which influences

the depositional depth of fibers within the respiratory tract

(WHO, 1986, 1984; James et al., 1994; Brown, 2015; DeWitt

et al., 2016; Belluso et al., 2017; Gualtieri et al., 2017; Di

Giuseppe, 2020). The aerodynamic diameter, as defined by

Gonda and Abd El Khalik (1985) and modified by Di

Giuseppe (2020), is:

dae � d

����������������������������
1

2
9 ( 1(ln 2β−0.5) + 8

9( 1
ln 2β+0.5)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠( ρ

ρ0
)

√√√
where d = fiber diameter, β = aspect ratio (L/w), ρ = particle

density, and ρ0 = unit density (1 g/cm3; Di Giuseppe, 2020;

Gualtieri et al., 2017).

The aerodynamic diameter is critical as not only can it

determine where in the respiratory tract a fiber is likely to be

deposited, but it also assists in determining the inhalability of a

fiber (Millage et al., 2010; Gualtieri et al., 2017; Di Giuseppe,

2020). The inhalability of fibers is important as it determines if a

particle may be able to enter the body (Millage et al., 2010). In

terms of erionite inhalability, there is a paucity of research, with

most published work focused on asbestos and other fibers (e.g.,

Millage et al., 2010; Shang et al., 2015; Asgharian et al., 2018;

Militello et al., 2021; Vigliaturo et al., 2021; Zanko et al., 2022).

Nevertheless, from these studies, the maximum inhalable

dimensions of a fibrous particle have been determined. For

most particulate fibers, a dae < 100 μm is considered to be

inhalable, and while there exists a lack of studies of ultra-large

(dae > 100 μm) particles, such particles do not pose a significant

health risk due to the limited range while airborne (Millage et al.,

2010; Vigliaturo et al., 2021).

Out of the 139 locations of erionite found within the

literature, only 37 included information on the morphometry

of the erionite fibers, and 95 provided information on the crystal

habit (Supplementary Table S1), data necessary for hazard

assessment. In the literature, erionite is commonly described

as being elongated; however, it is not always fibrous, which is

apparent by the number of varying terms used to describe the

crystal habit (Van Gosen et al., 2013; Giordani et al., 2016).

Terms that have been used to describe erionite include; acicular

bundles (Bargar and Keith, 1984), divergent acicular aggregates

(Belitskiy and Bukin, 1968), thick fibrous minerals (de Pablo-

Galán and de Chávez-García, 1996), radiating clusters

(Donoghue et al., 2008), hexagonal rods (Golden et al., 1993),

woolly aggregates (Matassa et al., 2015), needlelike (Metropolis,

1986), compact fibrous erionite (Passaglia et al., 1974), tiny

needles (Reed, 1937), lamellae in radiating aggregates

(Vezzalini et al., 1994), fibrous (Hey, 1959; England and

Ostwald, 1979; Birch, 1987; Van Gosen et al., 2013),

hexagonal prisms (Tschernich and Wise, 1982), radiating

bundles (Passaglia and Tagliavini, 1995; Saini-Eidukat and

Triplett, 2014), felted masses (Surdam and Eugster, 1976),

bundles of needles (Surdam and Eugster, 1976; Karakaya

et al., 2015), bundles of fibrils (Dogan et al., 2006), thick

bundles which cleave into blocky rods (Mumpton, 1979),

acicular crystals (Deffeyes, 1959; Matsubara et al., 1978; Van

Gosen et al., 2013; Giordani et al., 2016) and woolly fibers

(Deffeyes, 1959; Staples and Gard, 1959; Shimazu and Mizota,

1972). Detailed descriptions of the erionite habit can be found in

Supplementary Table S1.
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The fiber morphometric data that has also been reported in

the literature is summarized in Figure 7, and a wide range of

lengths (Figure 7A) have been reported, ranging from <5 μm
(e.g., at Lessini Mounts, Italy Giordani et al., 2016) and at Tierra

Blanca de Abajo, Mexico (Ortega-Guerrero and Carrasco-Núñez,

2014) and up to 15 mm at Cape Lookout, Oregon, United States

(Wise and Tschernich, 1976; Van Gosen et al., 2013). Fiber

diameters show less marked variability, with most <1 μm,

irrespective of erionite series (Figure 7B). A bivariate

scatterplot of length (L) and diameter (w) is shown in

Figure 7C, with a moderately strong positive, linear

relationship evident between the two variables. Thus,

following the WHO (1997) guidelines, the data indicates that

erionite could potentially be a hazard in at least 15 of the reported

locations (i.e., L ≥ 5 μm, w < 3 μm, ≥3:1 aspect ratio). The rather
limited morphometric dataset should be treated with caution

(Figure 7C), but erionite-K may be the most likely erionite series

to exhibit an inhalable morphometry.

Notwithstanding the above, potential issues exist in the

reporting of erionite morphometric data (Figure 7) that may

hinder inter-site comparisons. First, occasionally, the diameter of

fiber bundles is reported by authors, as opposed to a single fibril,

FIGURE 7
Morphometric data for erionite, coded by erionite species, where data is available: (A) Length of erionite fibers and location, with mean and
value range (note different y-axes); (B) diameter of erionite and location, with mean and value range (note different y-axes); (C) scatterplot of length
vs. diameter, coded by erionite type.
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an example being the erionite morphometric data from Yaquina

Head and Cape Lookout in Oregon, United States (Wise and

Tschernich, 1976; Van Gosen et al., 2013). The same potential

reporting issue occurs for Rock Island Dam, Washington,

United States (Altaner and Grim, 1990), with uncertainty as

to whether the authors measured either a single fibril or a bundle

of fibrils. A second potential limitation in some of the erionite

morphometric data is hinted at by the frequency distributions of

fiber length. For example, the population distribution of fiber

length from a single location may be bimodal rather than

unimodal, and this may indicate fracturing due to handling,

as at Lessini Mounts, Italy (Giordani et al., 2016). At that site, the

primary mode for fiber length ranged from ~40 to ~60 μm, yet a

secondary mode ranged from ~10 to ~25 μm. The secondary

mode is likely linked to the fracturing of fibers, which may have

occurred when collecting and preparing the samples, and

therefore, incorrect natural fiber lengths may then be reported

by authors. A compounding issue is then using the sample mean

to represent a bimodal distribution (Riffenburgh, 2012), when

the means and standard deviations of each mode, along with a

mixing parameter, should usually apply (e.g., Ashman et al.,

1994).

4.3 Biopersistence

Biopersistence is the amount of time the mineral fibers

reside within the human body following inhalation, and fibers

that cannot be cleared from the respiratory tract are considered

biopersistent and can therefore accumulate during chronic

exposure (e.g., Bernstein et al., 2005). Erionite fibers exhibit

biopersistence, and erionite-induced mesotheliomas have

similar histology and long latency to those originating from

asbestos, though there are still uncertainties in their respective

mechanisms of carcinogenicity (Reid et al., 2021). Two key

components of erionite biopersistence are 1) biodurability and

2) dissolution in surfactant or physiological fluids

(Moolgavkar et al., 2001). Regarding biodurability, longer,

asbestiform fibers tend to exhibit high tensile strength and

elasticity (Giordani et al., 2017). In addition, in vitro acellular

dissolution studies have demonstrated that while chrysotile

dissolves faster than amphibole asbestos, Scholze and Conradt

(1987) showed that erionite is much more biopersistent than

both crocidolite and chrysotile. This is consistent with the

reported mineral fiber dissolution rates reported by Gualtieri

et al. (2018). For a 0.25 μm thick fiber, the calculated

dissolution time of chrysotile is ~94–177 days, very short if

compared to that of amphibole fibers (49–245 years) and

fibrous erionite (181 years). Thus, the biopersistence of

erionite is important because the fiber can induce

carcinogenicity only if it is durable enough to remain

physically and chemically intact within lung tissue (Sanchez

et al., 2009).

4.4 Iron and erionite

In addition to needle-like particle morphology and

biopersistence, a key factor contributing to the toxicity

potential of erionite has historically been deemed to be the

presence of iron (e.g., Fubini and Mollo, 1995). Indeed, it is

believed that the toxicity of erionite is linked to both its fibrous

properties and its association with iron in natural deposits (Fach

et al., 2003; Sanchez et al., 2009; Reid et al., 2021). One theory is

that the toxicity of erionite is associated with iron that

accumulates on the surface of the fibers and generates

cytotoxic hydroxyl radicals (Fach et al., 2003; Waris and

Ahsan, 2006; Pacella et al., 2018). Fraire et al. (1997) reported

that erionite from Rome, Oregon, and Pine Valley, Nevada,

shows contrasting effects in vivo. The sample from Rome is

Fe-rich, whereas the sample from Pine Valley is Fe-poor, and

results showed that Rome erionite, with Fe in some form, is more

potent than Fe-poor erionite (Fraire et al., 1997). It is thought

that iron in mineral fibers may be responsible for carcinogenic

activity, namely via reactive oxygen species (ROS) or reactive

nitrogen species (RNS) production (Roggli et al., 2010; Pacella

et al., 2018). Active iron present at the surface of the fibers

promotes the formation of reactive hydroxy species by the

surface Fenton reaction chain (Gualtieri et al., 2018).

However, the presence of iron in fibrous erionite is currently

debated, and experiments by Gualtieri et al. (2018) concluded

that erionite fibers may not in fact, contain structural Fe3+, but

contain Fe3+ associated iron-rich impurities. Indeed, Gualtieri

et al. (2016) showed that Fe found in some erionite analyses was

actually coming from iron-bearing nano-particles on the surface

of the erionite fibers. The fact that iron is not found in the erionite

crystal structure of natural samples also has a sound geological

basis. This is because, during the zeolitization process, iron

typically present as Fe2+ in the host tuffs is leached, oxidized,

and precipitated later as secondary iron-bearing phases like iron

hydroxides (Gualtieri et al., 2018).

5 Erionite analysis and identification

As highlighted above, erionite pathogenicity can be related to

a number of physico-chemical properties (Pacella et al., 2017;

Gualtieri et al., 2018; Carbone et al., 2019). Therefore, delineating

the chemistry as well as the surface characterization of the

involved particle is important (Giordani et al., 2022).

However, since erionite was first discovered, a multitude of

studies have been conducted globally that involve classifying

erionite, yet the precise identification of erionite has been

somewhat hampered by its physico-chemical similarities to

other fibrous zeolites such as offretite (Passaglia et al., 1998;

Dogan and Dogan, 2008; Ray, 2020). Erionite has not been mined

for commercial use since the late 1980s (Ray, 2020), and so many

commercial laboratories focusing on asbestos in bulk building
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materials are inexperienced in identifying erionite. A related issue

is that in contrast to the regulated asbestos minerals, erionite

mineral fibers do not have established occupational exposure

limits (OELs), so specific analytical methods and approaches are

somewhat lacking.

5.1 Sample preparation

A range of techniques have been used over the decades to

study erionite (Figures 2, 8). These can be generally grouped into

techniques used for 1) bulk mineral analysis or 2) techniques for

analyses of single mineral fibers (Dogan and Dogan, 2008). Bulk

mineral analysis techniques that have typically been applied to

the study of erionite include X-Ray Diffraction (XRD),

Inductively Coupled Plasma Mass Spectrometry (ICP-MS),

and X-ray fluorescence (XRF). Single mineral fiber analysis

approaches include Polarized Light Microscopy (PLM), Phase

Contrast Microscopy (PCM), Scanning Electron Microscopy

with Energy Dispersive Spectroscopy (SEM-EDS),

Transmission Electron Microscopy with Energy Dispersive

Spectroscopy (TEM-EDS), and Electron Micro Probe Analysis

(EMPA). Some example methods and case studies are discussed

in the following sections. Screening level analysis of erionite,

using PLM is occasionally used but requires high-dispersion

refractive index liquids with the appropriate refractive index

range (n = 1.460 to 1.480; Berry et al., 2019). PCM has also

been used infrequently for screening of soils for erionite. An

example is the work of Farcas et al. (2017), who recently reported

the use of PCM analysis for detecting erionite from soils sampled

in eastern Montana and western South Dakota. Farcas et al.

(2017) compared the PCM analysis to PLM analysis of erionite in

soils and found the PCMmethod to be more sensitive than PLM.

Binocular microscopy, PLM, and PCM are unreliable when

discriminating amongst different fibrous minerals, such as

erionite, offretite, or asbestos fibers, but may be helpful to

determine if fibrous minerals are present within a sample

(e.g., Berry et al., 2019). However, irrespective of the

techniques utilized, Ray (2020) cautioned that erionite is more

delicate to handle than asbestos minerals when preparing

samples for analysis. For example, rock and soil material must

be reduced to a fine powder for analysis by optical microscopy

(OM), and based on the preparation of erionite samples from

Pine Valley, Nevada, Ray (2020) reported that erionite is fragile

and extremely susceptible to over grinding. Indeed, samples were

milled to two nominal sizes, 250 μm and 75 μm, and once over-

milled, bundles and fibers were destroyed and broken into non-

fibrous particles (Ray, 2020). Thus, such fragments would no

longer be countable by an analyst during a microscopic

examination, which could misrepresent the potential toxicity

of in situ erionite material. For the detection of erionite fibers in

soils, the fluidized bed asbestos segregator (FBAS) preparation

method is often used for both asbestos and erionite fibers (e.g.,

Berry et al., 2019). In particular, previous research has

demonstrated that using an FBAS, even very low levels

(0.002%–0.005% by weight) of fibers in soils can be readily

detected when followed by TEM (Januch et al., 2013).

5.2 X-ray diffraction

X-ray powder diffraction (XRD) is a convenient technique

that can reveal detailed structural and chemical information

about the crystallography of the material. The information

XRD provides is especially advantageous as XRD can analyze

the constituents of a bulk sample of heterogeneous rock. The

likely minerals present within the sample can potentially be

identified from the XRD diffraction patterns using online

databases and software developed for XRD. The presence of

erionite within bulk rock samples has been identified, which

makes it a particularly valuable tool (Beaucham et al., 2018). Bulk

XRD will not only provide detailed mineralogy of the

composition of rock samples but also identify the different

zeolites in a given specimen via their XRD pattern. However,

there are fundamental issues in applying XRD on its own. For

example, erionite and offretite can occur together and exhibit

very similar XRD patterns, and second, low concentrations of

erionite may be masked by diffractions from other minerals

(Dogan and Dogan, 2008). Thus, XRD should be applied in

FIGURE 8
Frequency of each method used to identify and characterize
erionite. XRD is the most frequent, followed by SEM and EMPA.
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combination with other methods, such as SEM-EDS, where

individual fibers or fiber bundles can also be imaged. A

further limitation of XRD is that the minimum amount of

mineral needed to be present within the sample is 1%–2%, as

any concentrations below this threshold will not be detected

(Meeker, 2008; Eylands et al., 2009).

5.3 X-ray fluorescence

X-ray fluorescence (XRF) spectroscopy is a technique also

used to analyze samples to determine their chemical

composition. It is similar to EMPA, however, it is not as

precise and is typically used for bulk rock analysis (Dogan

and Dogan, 2008; Stocker et al., 2017; Oyedotun, 2018). XRF

works by using X-rays to excite atoms, which causes electrons to

be dislodged from the inner orbital, producing fluorescent

radiation (Oyedotun, 2018). The energy of the photons

emitted is distinct for the transition between specific electron

orbitals within an element, and it can be measured and used to

determine the abundance of the elements present within the

sample being studied (Oyedotun, 2018).

5.4 Inductively coupled plasma mass
spectrometry

As outlined above, computing the balance error (E%), the

K-content, and the Mg-content is fundamentally important for

accurate characterization of erionite, and ICP-MS is routinely

used for this purpose (e.g., Dogan and Dogan, 2008). ICP-MS is

also used to verify putative erionite detected that has been tentatively

identified using other methods, such as SEM-EDS (e.g., Dogan and

Dogan, 2008). ICP-MS has also been used to identify trace elements

present on erionite fibers that may also play a role in fiber toxicity

(e.g., Bloise et al., 2016), as well as studying the possible uptake of

arsenite and arsenate (H2AsO4) species from aqueous solution in

zeolites including erionite (Elizalde-González et al., 2001).

5.5 Scanning electron microscopy-energy
dispersive spectroscopy

Given the limitations of some of the bulk analysis approaches

outlined above, SEM-EDS can provide improved delineation of

single minerals within a sample. SEM involves scanning an

electron beam over a sample to create an image. The images

of rock specimens can provide detailed information on the

morphology of minerals, which is an advantageous technique

when looking specifically for fibrous zeolites such as erionite

(Giordani et al., 2017). Numerous studies have utilized SEM to

identify erionite (Pacella et al., 2016; Giordani et al., 2017;

Rinaudo and Croce, 2019). These authors used SEM primarily

due to the ease at which fibers can be identified within the

analyzed samples. For minerals that may look similar, EDS can be

used to distinguish the minerals from one another. Additionally,

SEM can image the minerals in their natural habitat for freshly

fractured samples. Thus, not only can the zeolites themselves be

observed, but so can the minerals that surround them. The

images can provide details of the zeolite facies mineral

assemblage, aiding a better understanding of the zeolites.

Energy Dispersive Spectroscopy (EDS) is a technique used in

conjunction with electron microscopy (SEM or TEM). When the

beam of electrons hits a sample, it generates X-rays, which are

characteristic of each element (Ray, 2020). The EDS detects the

X-ray energy andmeasures the rate at which the X-ray is emitted,

producing an EDS spectrum of X-ray energy vs. counts. The

spectrum gives the elemental composition of the selected sample.

In this way, EDS works to quantify and identify every element

within the periodic table except H, Li, and He (Newbury and

Ritchie, 2013). Aside from being unable to identify every element

within the periodic table, there are other areas where EDS will be

imprecise. One of these areas is using EDS to measure an object

where the geometry varies, as this can introduce a geometric

error that can alter the quantitative results to the point that they

become useless (Newbury and Ritchie, 2013). Another limitation

is that during EDS analysis, the electron beam has been found to

replace cations in prior mineral studies, causing the fibers to

become unstable, especially if their diameter is <0.5 μm (Carbone

et al., 2011; Pacella et al., 2016; Ray, 2020). This is the case for

both SEM and TEM-EDS (Carbone et al., 2011; Pacella et al.,

2016; Ray, 2020). Precautions to minimize the error as discussed

by Pacella et al. (2016) should be taken into account. For

example, when determining the chemical composition,

calculating the correction factor for each oxide as a function

of its particle size is useful. This will reduce size-dependent errors

from arising, especially for smaller particles.

5.6 Transmission electron microscopy

Transmission electron microscopy (TEM) accelerates a beam

of electrons through a sample prepared on a small grid to observe

small specimens’ morphology and structure. According to Van

Gosen et al. (2013) and Ray (2020), some techniques using

electron beams, such as TEM, can be less effective on zeolites,

as the beam can influence the chemistry and crystal structure of

the mineral. While asbestos fibers tend to be thermally stable

(Martin et al., 2016), most zeolites are quite sensitive to the

electron beam (Ray, 2020). Once the energy of the electron beam

collides with the erionite fibers, they deform (Ray, 2020). This

degradation caused by the electron beam also influences the

chemistry and crystal structure. Indeed in standard TEM

analyses of erionite, the selected area electron diffraction

(SAED) pattern does not last long enough to be documented

and measured to an appropriate standard (Van Gosen et al.,
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2013; Ray, 2020). As mentioned above electron beams have been

found to replace some cations in prior studies of zeolites,

especially during EDS analysis and the key to overcoming

these problems is stabilization using cryogenic electron

microscopy holders (Carbone et al., 2011; Ray, 2020). The

cryogenic holders aid in stabilizing zeolite fibers during TEM,

protecting them from the energy of the electron beam (Gualtieri

et al., 1998; Ray, 2020). The cryogenic holder is simply the

addition of cooling by liquid nitrogen. In addition, Ray (2020)

has also drawn attention to the issue of over-milling with regard

to TEM, which could degrade the natural morphology of the

erionite mineral prior to analysis.

5.7 Electron micro probe analyzer

Similar to TEM and SEM, EMPA utilizes an electron beam to

bombard a solidmaterial and determine the sample chemistry, and

can be used on geological materials in situ to acquire data which is

quantitative and precise (~1 μm; Reed, 2005). However, unlike

SEM, EMPA requires a smooth polished flat surface for analysis to

prevent the imperfections on the surface from interfering with the

sample and electron beam interactions (Richter and Mayer, 2012).

Limitations of EMPA include the fact that lighter elements cannot

be detected, such as hydrogen and helium (Bennell, 2015).

Furthermore, similar to EDS, the electron beam may cause the

migration of cations away from the beam. Indeed, the movement

of alkalis (especially Na) can also cause the concentration of Si + Al

to increase, affecting the quantitative determination of the mineral

composition (Kearns and Buse, 2012; Campbell et al., 2016). To

decrease these effects, Campbell et al. (2016) have recommended

operating protocols to determine zeolite compositions, including

using a smaller defocused beam with a diameter of 20 μm, as well

as prioritizing detection of elements such as Na, K, and Al with the

spectrometer configuration first. The chemical data should also be

obtained from several individual point analyses on each sample, to

determine the homogeneity of the mineral and account for

possible cation migration (Campbell et al., 2016). Additionally,

as EMPA reports chemical data as oxides of the different elements,

further calculations need to take place to determine the mineral

formulae (Kearns and Wade, 2021). When the mineral

composition has been determined, the results should be

evaluated against the charge balance error formula (E%; Dogan

and Dogan, 2008; Passaglia, 1970), Mg content test (Dogan and

Dogan, 2008), and the K content test (Cametti et al., 2013).

5.8 Raman spectroscopy

Raman spectroscopy is a qualitative and quantitative

technique involving shining a monochromatic laser beam on a

sample (Bumbrah and Sharma, 2016), and several erionite

studies have utilized the method (e.g., Croce et al., 2013).

Typically, for different mineral species, spectral ranges of

4,000–100 cm−1 are recorded (Rinaudo and Croce, 2019). The

resulting interaction between the laser and the atoms within the

specimen causes the light to scatter, and a fraction of the scattered

light changes color (Bumbrah and Sharma, 2016). The changing

color is due to a change in frequency caused by energy interacting

with molecular vibrations. Raman spectroscopy studies the

vibration of atoms to provide information on the chemical

structure, phase, crystallinity, and the material’s composition,

as each mineral has a unique Raman frequency (Lancelot, 2010).

Minimal sample preparation is required for Raman spectroscopy,

reducing the chances of sample loss and helping to ensure the

original shape of the minerals remains intact (Croce et al., 2015).

In micro-Raman spectroscopy, the laser beam is focused

through a microscope. This allows the diameter of the sample

being analyzed to be as small as ~200 nm, and it thus increases

the precision when determining where in a sample the laser

should be directed for analysis (Kattumenu et al., 2012; Piccardo

et al., 2013). Micro-Raman spectroscopy has been applied to

samples of erionite from different localities in Oregon and North

Dakota (United States) and Cappadocia (Turkey) by Rinaudo

and Croce (2019). Rinaudo and Croce (2019) also reported that

the technique can be used to observe material lying on top of the

mineral structure, which cannot be observed with other

analytical techniques. Micro-Raman has also been applied to

the study of erionite within various organs (pancreas, spleen, and

liver) of mice injected with erionite (Croce et al., 2013). Indeed,

Croce et al. (2013) showed that micro-Raman spectroscopy

permits the recording of distinct Raman patterns of both

crocidolite and erionite fibers in animal tissues and human

biopsies, so it is useful in determining fiber exposure of MM

patients (i.e., erionite, crocidolite, etc.).

5.9 Misidentification of erionite

Dogan and Dogan, (2008) provided a seminal review on

putative erionite, and reported the probability of erionite being

wrongly identified by several authors in the past. This was based

on re-analysis, particularly using ICP-MS, to determine if the

erionite balance error (E%) is ≤ 10% (Passaglia, 1970; Dogan and

Dogan, 2008). The Mg2+ content must also not exceed 0.80 atoms

per cell, and if it does, the mineral should not be characterized as

erionite (e.g., Gualtieri et al., 1998; Dogan and Dogan, 2008).

Indeed, Dogan and Dogan, (2008) reported ambiguous

definitions, incorrect identifications, and inaccurate reporting

of clinical investigations in their review. Moreover, Dogan and

Dogan (2008, p. 355) concluded that “if data did not pass either

the E% or Mg content test, then we propose that reference to

them in the literature be disregarded.”

Given the above stringent reporting caveats stated by Dogan

and Dogan, (2008), prior to 2008, the typical erionite

identification issues were threefold: 1) erionite was sometimes
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often confused with offretite (e.g., Birch, 1988); 2) the exact

erionite species was not reported (Sheppard and Gude, 1969); or

3), the erionite species was reported, but was incorrect (e.g.,

Dogan and Dogan, 2008). For example, Sheppard et al. (1974)

utilized XRD to originally identify a zeolite overgrowth on levyne

as offretite at Beech Creek, United States. Subsequent analysis by

Passaglia et al. (1998) found the sample was erionite, based on

XRD and EMPA, as well as other techniques. The frequent

misidentifications of erionite as offretite have been due to the

similar morphologies and crystal structure of these two zeolites.

In some cases, despite the reporting of the chemical formula,

confusion can still occur, such as the zeolite from Araules, Loire,

France. This was initially identified as offretite by Pongiluppi

(1976) and subsequently re-identified as erionite by Passaglia

et al. (1998). However, Gualtieri et al. (1998) then determined

that the mineral belonged on the erionite-offretite border, with

no explicit characterization of what it could be. Finally, Dogan

and Dogan (2008) classified the mineral as not being erionite

because the zeolite sample had an Mg content of 0.83, which did

not meet the requirement of Mg < 0.80 to be classified as erionite.

6 Future research directions and
conclusion

This review has determined that erionite is found globally in a

host of different geological environments. From the morphological

data reported, it would appear that all end-member species of

erionite (Ca, K, Na) can potentially be inhalable. Erionite is most

commonly found in rocks from the Miocene epoch (23–5.3 Ma),

although it is also present in some 1.90–1.87 Ga rock units formed

during the Pre-Cambrian, to the Pleistocene (<2.58Ma).

Nevertheless, the exact age of zeolitization within the host rocks

is usually unknown, but obviously, post-dates rock formation. The

typical host rocks for erionite are mafic and felsic, primarily basalt

and tuff, respectively. Within tuff/felsic rocks, erionite commonly

is within the matrix, and within basalt/mafic rocks, erionite is

found in vesicles.

A clear goal in the future is to determine which analytical

techniques are the most suited to delineate erionite from other

zeolites in order to prevent future misidentification of erionite.

Previous work has recommended techniques for both bulk

sample analysis and singular mineral analysis (Dogan and

Dogan, 2008; Ray, 2020). Given that erionite has two key

characteristics of interest regarding toxicity, namely 1)

chemistry and 2) morphology, it is important that whatever

analytical approaches are implemented, quantitative chemistry

and accurate particle morphology can be reported. While SEM-

EDS is a key technique in analyzing zeolite fibers, most recently,

cryogenic TEM-EDS in conjunction with ICP-MS have been

shown to have the potential to be the most accurate.

Fundamentally, after the chemical composition is determined,

it is prudent to calculate the Mg content, K content and the

balance error (E%) to reliably establish if the mineral is actually

erionite, or not. Future research could focus on several areas.

First, accurate dating of when the host rocks were zeolitized may

help in delineating the geographic distribution of erionite-

bearing units. Second, analysis of associated zeolites would

assist in determining the paragenetic sequence of formation,

which is useful for geological studies. Third, the effects of

preparation methods on the morphology of erionite fibers

should be explored, and optimum milling protocols could be

identified to enhance the replicability of results. Finally, major

differences between erionites from magmatic vesicles and those

that have crystallized in volcaniclastic sedimentary rocks need to

be fully explored in terms of toxicity and hazard. A better

understanding of where erionite forms and occurs is a key to

robust risk assessments, and the establishment of effective

mitigative measures to prevent future exposure to erionite.
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