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Abstract: Artificial intelligence (AI) is achieved by optimizing the cost function constructed from
learning data. Changing the parameters in the cost function is an AI learning process (or AI learning
for convenience). If AI learning is well performed, then the value of the cost function is the global
minimum. In order to obtain the well-learned AI learning, the parameter should be no change in the
value of the cost function at the global minimum. One useful optimization method is the momentum
method; however, the momentum method has difficulty stopping the parameter when the value of
the cost function satisfies the global minimum (non-stop problem). The proposed method is based
on the momentum method. In order to solve the non-stop problem of the momentum method, we
use the value of the cost function to our method. Therefore, as the learning method processes, the
mechanism in our method reduces the amount of change in the parameter by the effect of the value of
the cost function. We verified the method through proof of convergence and numerical experiments
with existing methods to ensure that the learning works well.

Keywords: stochastic gradient methods; optimization; convergence; machine learning

1. Introduction

Artificial intelligence (AI) is completed by defining the cost function constructed
through an artificial neural network (ANN) from given learning data, and by determining
the parameters that minimize this cost function. In other words, AI learning is the cost
function optimization process. Therefore, AI learning has two problems to solve—the
definition and the optimization of the cost function. The first problem, the definition of the
cost function, is the more data and the more complicated the structure of the ANN. For this
reason, the cost function is increased the complexity [1–5]. The complexity here means that
the number of local minimums of the cost function increases. The local minimum of the cost
function is the part that makes the first order derivative of the cost function zero. Therefore,
if AI learning is continued as a learning method based on the first order derivative of the
cost function, the learning is not performed at this local minimum. Therefore, as the local
minimum part of the cost function increases, AI learning does not proceed smoothly. In
order to take advantage of more applications and AI, the amount of data increases and the
structure of the ANN becomes more complicated. AI learning should be conducted using
the cost function containing many local minimums. That is, the second problem arises
in which the optimization problem is solved for the cost function containing many local
minimums [6–10].

The main purpose of this paper is to solve the second problem, that is, we want to
complete AI learning based on the first derivative of the cost function in a cost function that
contains many local minimums. In order to complete AI learning, we introduce the method
of adding the first order derivative of the cost function to the cost function so that the
learning is carried out using the global minimum. Therefore, the mathematical Lagrangian
method is used [11,12]. Additionally, the most powerful of the existing methods based on
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the first derivative of the cost function is the momentum method [13,14]. The momentum
method consists of adding the first derivative of the cost function by multiplying it by a
certain ratio, that is, the learning of the parameters is accomplished by the added values of
the first derivative [15–20]. Therefore, even if the first derivative of the cost function is zero
at a local minimum, learning can continue based on the previously added first derivative of
the cost function. The problem with this method is that, even when we are well educated
(situations where we need to stop learning), learning continues based on the previously
added first derivative of the cost function. As learning continues, learning does not stop,
and when learning is completed, optimal learning may not have been achieved. In order to
solve this problem, methods using the change of the learning rate (step size) and adding an
adaptive property to the momentum method have been developed [21–24]. This paper is
based on the momentum method and adds an adaptive property, which constitutes a step
size change with the degree of the cost function. It maintains the power of the momentum
method, adds adaptive properties to it to make a certain percentage of learning, and finally
constructs a step size according to the amount of the cost function, making it as close as
possible to the minimum value of the cost function. More specific ideas and methods are
discussed in detail in the text. This paper also proves that the parameters defined in our
method converge. In this paper, we use the usual notations found in mathematics for
convenience.

This paper is organized as follows—Section 2 introduces the cost function and the
momentum method; Section 3 explains our proposed method; Section 4 confirms our claim
through numerical experiments; and the conclusions are presented in Section 5.

2. The Optimization Problem and the Momentum Method

From the learning data, we defined the cost function. The learning data were divided
into the input data {xj} and the output data {yj}. From the input data {xj} and using
an ANN, we defined yh,j = yh(w, xj), where w is a learning parameter. AI learning was
completed with the definition of the learning parameter w that satisfies yh,j = yj.

2.1. The Optimization Problem

In order to satisfy yh,j = yj, we constructed the cost function as:

C(w) =
1
l

l

∑
j=1

(
yj − yh,j

)2
, (1)

where l is an integer (number of learning data), and we solved the following the optimiza-
tion problem:

argminw{C(w)}. (2)

To solve the optimization problem (2), gradient-based methods are generally used [1,3].
Gradient-based methods are used to find parameter w, such that the gradient of the cost
function is zero. However, the cost function C(w) is not convex in general. If the cost
function C(w) is not convex, the idea of zeroing the gradient may not work well. Therefore,
in order to increase the efficiency of learning, we applied the Lagrange multiplier method
to define F(w) as follows, and to find the parameter w that makes F(w) zero.

F(w) :=
∂C(w)

∂w
+ µC(w), (3)

where µ is a small constant. In order to obtain w that satisfies Equation (3) by resulting in
zero, we used an iterative parameter change rule:

wi+1 = wi − λF(wi), (4)
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where λ is a constant and is called the learning rate. Equation (4) is similar to the momentum
method.

2.2. The Momentum Method

In order to solve F(w) = 0, the momentum method is:

wi+1 = wi −mi,

where mi = ∑i
k=1 βk−1

1 F(wi−k+1) and β1 < 1. The momentum method multiplies the ratio
of β1, and thus has the problem that w changes continuously even when F(w) becomes
zero. Therefore, the momentum method needs a way to stop learning.

3. Our Proposed Method

Our method is based on the momentum method that stops the learning at the moment
when it meets the global minimum value of the cost function, which is the moment when
learning is well executed. By changing the learning rate, the following is obtained:

wi+1 = wi − ηimi, (5)

where:

ηi = η0
C(wi)√

vi + ε
, (6)

where η0 is a constant, and:

vi =
i

∑
k=1

βk−1
2 (F(wi−k+1))

2.

In particular, ε is a constant introduced to prevent division by zero.

Lemma 1. The relationship between mi and vi is:

(mi)
2 ≤


1−

(
β2

1
β2

)i

1−
(

β2
1

β2

)
vi.

Proof. The proof can be found in [19].

Using the relationship between mi and vi, from Equation (5), we have:

=⇒ |wi+1 −wi| ≤ η0C(wi)


1−

(
β2

1
β2

)i

1−
(

β2
1

β2

)


1/2

. (7)

Here, since ε is to prevent division by zero, it can be considered as zero in the calcula-
tion. Therefore, the sequence {wi} also converges when the sequence {ηi} converges to
zero.

Theorem 1. We need to find the parameter that minimizes the cost function C. The limit value of
our constructed sequence {wi} is a sequence that gives the value of the cost function C as zero. The
closer the cost function C is to zero, the closer the relationship between yh,j and yj (the value of yh,j
made through the ANN approaches the output value yj).
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Proof. After a sufficiently large number τ, a sufficiently small value ηi, and using the
Taylor’s theorem, the following calculation is performed:

C(wi+1) = C(wi) +
∂C
∂w

(wi)(wi+1 −wi) + O
(
(wi+1 −wi)

2
)

, (8)

where part of O
(
(wi+1 −wi)

2
)

represents the second order and is ignored. From Equations (5)
and (8), we have:

C(wi+1) = C(wi) +
∂C
∂w

(wi)(wi+1 −wi)

= C(wi)− η0C(wi)
∂C
∂w

(wi)

(
mi

(vi + ε)1/2

)

= C(wi)

(
1− η0

∂C
∂w

(wi)

(
mi

(vi + ε)1/2

))

= C(wi)

1− η0


(

∂C
∂w (wi)

)2
+ µC(wi)

∂C
∂w (wi) + β1

∂C
∂w (wi)mi−1

(vi + ε)1/2


.

Since β1 < 1, ε 6= 0, and adjusting η0 and µ:

0 < η0


(

∂C
∂w (wi)

)2
+ µC(wi)

∂C
∂w (wi) + β1

∂C
∂w (wi)mi−1

(vi + ε)1/2

 < 1

Therefore, the following is obtained:

C(wi) ≤ δi−τC(wτ),

where:

δ = supremumi>τ

1− η0


(

∂C
∂w (wi)

)2
+ µC(wi)

∂C
∂w (wi) + β1

∂C
∂w (wi)mi−1

(vi + ε)1/2




and limi→∞ C(wi) = 0.

In Theorem (1), it is possible that δ is less than 1. Therefore, we explain in more detail
that δ is less than 1 in the following corollary.

Corollary 1. δ defined in Theorem (1) is less than 1.

Proof. First of all, i is assumed to be from a number after a sufficiently large number τ.
Under the condition of sufficiently small values ηi and µ, the equation:

η0


(

∂C
∂w (wi)

)2
+ µC(wi)

∂C
∂w (wi) + β1

∂C
∂w (wi)mi−1

(vi + ε)1/2

,

is divided into three parts and is computed as:

0 <


(

∂C
∂w (wi)

)2

(vi + ε)1/2

 < 1, (9)
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0 <

∣∣∣∣∣µC(wi)
∂C
∂w (wi)

(vi + ε)1/2

∣∣∣∣∣ < 1, (10)

and (
β1

∂C
∂w (wi)mi−1

(vi + ε)1/2

)
. (11)

Equations (9) and (10) are obtained by easy calculation, by condition of the cost
function (C < 1), and by µ. We should show that Equation (11) is less than 1. Under
the assumption in this corollary and from the definition of mi, the result is sign(mi) =
sign(∂C(wi)/∂w) because β1 < 1, and the sign does not change dramatically, since
∂C(w)/∂w is a continuous function. Therefore, sign(∂C(wi)/∂w mi−1) > 0. From
Equation (11), the following is obtained:

β1
∂C
∂w

(wi)
mi−1

(vi + ε)1/2 = β1
∂C
∂w

(wi)
mi−1

(vi−1 + ε)1/2

(
(vi−1 + ε)1/2

(vi + ε)1/2

)

≤ β1

∣∣∣∣ ∂C
∂w

(wi)

∣∣∣∣


1−
(

β2
1

β2

)i−1

1−
(

β2
1

β2

)


1/2(
(vi−1 + ε)1/2

(vi + ε)1/2

)

≤ β1

∣∣∣∣ ∂C
∂w

(wi)

∣∣∣∣
 1

1−
(

β2
1

β2

)


1/2

< β1.

If sign(∂C(wi)/∂w mi−1) < 0, then there is a ζ ∈ [wi, wi−1] or [wi−1, wi], such
that ∂C(ζ)/∂w ≈ 0. Therefore, ∂C(wi)/∂w ≈ 0. Equation (11) is a small value less
than 1. By this process, we set η0 constant to a small value, resulting in the following:

δ = supremumi>τ

{
1− η0

(
( ∂C

∂w (wi))
2
+µC(wi)

∂C
∂w (wi)+β1

∂C
∂w (wi)mi−1

(vi+ε)1/2

)}
< 1.

4. Numerical Tests

Since our method is based on the momentum method and includes the effect of said
momentum method, this paper compared GD, Adam, Adagrad, and our proposed method.
In Sections 4.1 and 4.2, the performance of each method was compared by assuming a
two-variable function as the cost function. This is a visualization to easily show how each
method changes the parameters. In Section 4.3, we experimented with the problem of
classifying the numbers from 0 to 9 written by humans. This is the most basic dataset
to compare the performance of machine learning. This dataset called Modified National
Institute of Standard and Technology (MNIST, see : http://yann.lecun.com/exdb/mnist/).
This experiment was performed by combining the MNIST dataset and the convolution
neural network (CNN) method, which is widely used for image classification. This method
is a well-known method that is typically used as a method of classifying images [6].

4.1. Three-Dimensional Surface with One Local Minimum: Weber’s Function

This section visualizes how each method changes parameters using the two-variable
function. The two-variable function (i.e., Weber’s function) used in this experiment is
generally defined as follows:

C(w) =
κ

∑
i=1

µi

√
(w1 − νi,1)

2 + (w2 − νi,2)
2,

http://yann.lecun.com/exdb/mnist/
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where ∑κ
i=1 µi > 0, κ is an integer, and µi ∈ R. For convenience, ν = (ν1, ν2, ν3, ν4) and νi

is a column vector in R2. For experiments of local minimums in existing cases, we used
the following hyperparameters: κ = 4, µ = (2,−4, 2, 1), ν1 = (−10,−10), ν2 = (0, 0),
ν3 = (5, 8), and ν4 = (25, 30). This Weber’s function has a local minimum of (−10,−10)
and a global minimum of (25, 30).

Figure 1a shows Weber’s function determined by the given µ and ν. This function has
a global minimum of (25, 30) and a local minimum of (−10,−10), which are represented
by the red and blue points in Figure 1a, respectively. In order to express the change of
the parameters more easily, Figure 1b connects the given Weber’s function with the same
function value as the contour line used on the map. In this experiment, the initial value of
the parameter was set to (−10,−40) and the learning rate was 5× 10−1, in order to check
whether any of the methods has an effect of escaping the local minimum.

(a) Three-dimensional surface of the given Weber’s function, with
the global minimum presented by the red point and the local
minimum presented by the blue point.

(b) Level set of the given Weber’s function, with the global mini-
mum presented by the red star and the local minimum presented
by the blue star.

Figure 1. Weber’s function for the given µ and ν.

Figure 2 shows the change of the parameters by each method. GD, Adagrad, and
Adam moved in the direction of the local minimum near the initial value and were no
longer minimized; however, our proposed method avoided the local minimum to reach
the global minimum.

Figure 2. Visualization of the changing parameters by each method.
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4.2. Three-Dimensional Surface with Three Local Minimums: The Styblinski–Tang Function

In this experiment, the performance of each method was compared using the Styblinski–
Tang function with three local minimums as the cost function. The Styblinski–Tang function
with three local minima is defined by:

C(w1, w2) =

(
w4

1 − 16w2
1 + 5w1

)
+
(
w4

2 − 16w2
2 + 5w2

)
2

,

and has a global minimum of (−2.903,−2.903). Figure 3 is expressed in the same way as
in the previous section.

(a) Surface of the Styblinski–Tang function.
(b) Level set of the Styblinski–Tang function, where the red star is
the global minimum.

Figure 3. Styblinski–Tang function.

The initial value of the parameter is (6, 0), the learning rate is 1× 10−2, and learning
has been conducted 300 times. Figure 4 shows the change in the parameters learned
by each method. In this experiment, GD, Adagrad, and Adam also moved toward the
local minimum near the initial value; however, our proposed method avoided the local
minimum to reach the global minimum.

Figure 4. Visualization of the changing parameters by each method.

4.3. MNIST with CNN

MNIST dataset are popular for machine learning and consist of a 10-class gray-scale
image with a size of 28 × 28. Figure 5 shows part of the MNIST data.
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Figure 5. Examples of the Modified National Institute of Standard and Technology (MNIST) dataset.

For a performance comparison of each method, a simple structured CNN consisting
of two convolution layers and one hidden layer was used. For the convolution, a 5× 5× 32
sized filter and 5× 5× 32× 64 sized filter were used, the batch size was set to 64, and a
dropout of 50% was performed. Learning was conducted 8800 times, and the learning rate
was 0.001. Figure 6 shows the results of the experiment.

(a) Training cost (b) Training accuracy

(c) Validation accuracy

Figure 6. Results of MNIST with a convolutional neural network (CNN).

Figure 6a shows the change in cost according to the learning using each method, and
shows that all of the methods minimized the cost. Figure 6b shows the accuracy using the
learning data as the learning progresses, and Figure 6c shows the validation accuracy using
the test data as the learning progresses to check if it is over-fitting. For a more detailed
comparison, Figure 7 shows the accuracy after a certain iteration.
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(a) Training accuracy after 1000 iterations (b) Validation accuracy after 2000 iterations

Figure 7. Accuracy of MNIST with a CNN.

Figure 7a shows the training accuracy after conducting 1000 iterations, while Figure 7b
shows the validation accuracy after conducting 2000 iterations. The training accuracy was
high for all methods; however, Adam and our proposed method were particularly high.
The order of validation accuracy from high to low is: our proposed method > Adam >
Adagrad > GD.

4.4. CIFAR-10

In this section, the Canadian Institute For Advanced Research-10 (CIFAR-10) dataset
was trained with a residual network (RESNET) model to check the performance of each
method in a more deep model. The CIFAR-10 dataset had 60,000 images. The image of the
CIFAR-10 dataset used were in color (size 32× 32) with 10 different classes (i.e., airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks). The RESNET 44 model was
used for the learning; the batch size was 128, the learning rate was 0.001, and the number
of iterations was 80,000. Figure 8 shows the results of each method used in this experiment.

(a) Training cost (b) Validation accuracy

Figure 8. Results of the Canadian Institute For Advanced Research-10 (CIFAR-10) dataset with a residual network (RESNET).

Figure 8a shows the training cost of each method, while Figure 8b shows the verifi-
cation accuracy of each method per 10,000 steps. In Figure 8a, Adam and the proposed
method had the lowest costs, and the proposed method experienced little vibration. There-
fore, it seems to be a stable learning method. In Figure 8b, the proposed method achieved
the best performance, followed by the Adam method.

5. Conclusions

For AI learning, we introduced a method based on the existing momentum method,
using the first derivative of the cost function and the cost function at the same time. In
addition, our proposed method was introduced to stop learning in an optimal situation
by adjusting the learning rate in a way that responds to changes in the cost function. Our
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proposed method was verified not only through mathematical proofs, but also through
the results of numerical experiments. It was confirmed through numerical experiments
that learning through this process is superior to the existing GD, momentum, and Adam
methods. In particular, through experiments, we confirmed that the stopping of learning
is also important in terms of effective learning, because it results in better accuracy than
other methods in terms of learning accuracy. In other words, in order for machine learning
to work well, it is important to stop learning at the right moment and at the same time, as
there are many changes in variables.

In the future, not only will learning stop at a useful moment in machine learning, but
the problem of stopping learning will be achieved at the same time as effective learning in
an ANN with a deeper structure.
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