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We consider the phenomenon of spontaneous pair production in the presence of an external electric field for noncommutative
Yang-Mills theories. Using Maldacena’s holographic conjecture, the threshold electric field for pair production is computed
from the quark/antiquark potential for noncommutative theories. As an effect of noncommutativity, the threshold electric field
is seen to be smaller than its commutative counterpart. We also estimate the correction to the production rate of
quark/antiquark pairs to the first order of the noncommutative deformation parameter. Our result bears resemblance with an
earlier related work (based on field-theoretic methods).

1. Introduction

Quantum field theory is primarily studied in its perturbative
regime. However, there exist quite some novel nonperturba-
tive features of quantum field theories amongst which the
Schwinger effect [1] stands its ground (for a recent review,
see [2]). The vacuum of quantum electrodynamics is a bath
of e+e− virtual pairs which gets created and annihilated
instantaneously. However, in the presence of an external
electric field, the e+e− pairs spontaneously become real and
their production rate in the weak-coupling weak field
approximation is given by [1].

Γ =
eEð Þ3
2πð Þ3 e

−πm2/eE: ð1Þ

This expression holds for weak coupling and weak elec-
tric fields only. The exponential suppression hints that the
pair production process can be modeled as quantum
mechanical tunneling in a certain potential barrier. For the
electron-positron pairs to become real, they should gain at
least an energy equal to sum of their rest masses (2m). How-
ever, in the presence of an external electric field, the virtual
particles gather an energy of eEx via electromagnetic interac-

tions, x being their separation distance. To understand the
situation better, let us assume that the positron is located at
distance −1/2x and the electron at distance 1/2x from the ori-
gin along the direction parallel to the electric field. To become
physical particles, the electron has to climb through a potential
barrier of height m (same for the positron) by gaining energy
from the external electric field. If the virtual pairs are separated
by a distance x∗ such that 1/2eEx∗ =m then the electron (and
the positron) becomes a real particle as it now has the required
rest mass energy. This value x∗ = 2m/eE is the width of the
potential barrier. Thus, the transmission coefficient is approx-
imately exp ð−x∗

ffiffiffiffiffiffiffiffiffiffiffiffi
2m:m
p Þ ~ e−4m

2/eE. This is exactly the con-
tent of the Schwinger formula (1).

Motivated by this analogy, let us look from the perspec-
tive of a “virtual” q�q dipole. When the “virtual” q�q dipole
has a separation x, the total effective potential barrier they
encounter can be estimated to be of the form

V total xð Þ = 2m −
α

x
− eEx: ð2Þ

In this picture, the virtual particles become real by
tunneling through the above said potential barrier. The first
two terms indicate the self-energy including the Coulombic
interaction between q�q pairs. For small separation, the
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Coulomb term dominates the expression and the potential is
negative. At large values of x, the effect of electric field takes
dominance making the potential negative too. For small elec-
tric field, i.e., E <m2/eα, there exist two zero points of the
potential profile and the potential is positive in intermediate
regimes of separation x. In this case, the particles become real
by tunneling through this barrier and the production rate is
exponentially suppressed as described by the Schwinger for-
mula. However, for electric fields E >m2/eα, the potential
becomes negative all along and ceases to put up a barrier,
indicating a catastrophic instability of vacuum where the q�q
are spontaneously produced. The value of electric field for
which the potential changes its character is called the
“threshold electric field” ET .

The idea of noncommutative quantum field theories [3,
4] where spacetime position viewed as operators itself ceases
to commute was originally proposed to curb the UV diver-
gences appearing in interacting quantum field theories. The
idea received revival when some noncommutative field theo-
ries were found to be effective low energy limit of open string
theories on a Dp brane with a constant NS-NS two-form Bμν,
the noncommutative feature being a dynamical consequence
of quantization [5, 6]. However, the low energy limit of these
string theories turns out to be quantum field theories defined
on a “noncommutative” spacetime. There exist noncommu-
tative generalizations of Riemannian geometry [7] on which
the standard model can be defined, wherein the parameters
of the theory are interpreted as geometric invariants. Mathe-
matically, this amounts to abandoning the smooth structure
of spacetime in favor of a space equipped with a noncommu-
tative algebra of real-valued functions much like the transi-
tion from classical to quantum physics via phase-space
methods. The transition from commutative theories to its
noncommutative counterpart along the lines stated above is
achieved via replacing the ordinary product between func-
tions by the Moyal/star product ð★Þ.

F xð ÞG xð Þ→ F xð Þ★G xð Þ = exp
i
2
θμν∂μ∂ν′

� �
F xð ÞG x′

� �����
x=x ′

:

ð3Þ

The above equation implies ½xμ, xν�★ = xμ★xν − xν★xμ
= iθμν, signifying nonvanishing commutation relations
between spacetime coordinates (viewed as operators) itself.
Noncommutative quantum field theories are generically
Lorentz violating (due to the presence of a noncommutative
parameter θμν), the effects of which are small to be detected
in practical experiments with current experimental bound
on the noncommutative parameter to be around ð∣θμν∣≲
ð10TeVÞ−2Þ by conservative estimates [8].

The Schwinger effect in noncommutative QED has been
calculated in [9] where a correction to the pair production
rate has been found leading to a decrement in the threshold
electric field as a consequence of noncommutativity. How-
ever, to carry on the same kind of analysis for strong coupling
in general becomes an uphill task and the presence of non-
commutativity makes matters worse. The gauge/gravity

(holographic) correspondence [10] which links a strongly
coupled gauge theory to classical gravity is an important tool
in these kinds of scenarios. The Schwinger mechanism has
been argued in the holographic setting in [11]. It has also
been shown via holographic methods [12] that the Schwinger
effect in a large N confining gauge theory admits a “new
kind” of critical electric field (apart from the usual threshold
value). If the external electric field is less than the confining
string tension σstr , the pair production is prohibited as the
effective potential barrier remains positive instead of dump-
ing out at large q�q separation. However, when the electric
field is larger than σstr , pair production is allowed as a tunnel-
ing process. Thus, at this value (σstr) of electric field, a confi-
nement/deconfinement transition happens.

In this paper, we like to study the holographic Schwinger
effect for “quarks” coupled to a large N noncommutative
gauge theory in the presence of external Uð1Þ gauge field.
The large N noncommutative gauge theory (NCYM) is real-
ized by its relevant holographic dual geometry (to be men-
tioned later) while the quark is modeled as massive strings
extending from the interior to a large but finite position in
the holographic direction so that the mass of the quarks is
not infinite. We evaluate the interquark potential (both
numerically and analytically when possible) for the large N
NCYM from the rectangular Wilson loop by calculating the
extremal area of a string worldsheet ending along a rectangu-
lar contour at the boundary. The effective potential for
describing the Schwinger effect is then calculated by intro-
ducing an external electric field. We analytically find out
the value of the external electric field for which the effective
potential puts up a tunneling behavior, i.e., the threshold
electric field. We repeat the same calculation for finite tem-
perature NCYM and observe that the thermal contribution
to the threshold electric field does not mix up the noncom-
mutative ones. We proceed to find out the decay rate by find-
ing out the on-shell value of the Polyakov action coupled to
an external electric field for a string with a circular contour
at the boundary. We use perturbations over the known result
of circular holographic Wilson loop of ordinary YM and
hence find out the correction of the Schwinger decay rate
[11] up to the first order of the noncommutative deformation
parameter.

This paper is organized as follows. In Section 2, we review
the derivation of the Schwinger effect in a superconformal S
UðNÞ gauge theory by relating the same to the expectation
value of the circular Wilson loop. Also, in the same section,
the basics of noncommutativity in string theory are reviewed
for the sake of clarity. Section 3 is devoted to the analysis of
effective potential for virtual particles in NCYM plasma,
from where the explicit form of the threshold electric field
is found out by analytical means. In Section 4, we compute
the first order noncommutative correction to the pair pro-
duction rate of Schwinger particles. We close this paper by
conclusions in Section 5.

2. Pair Production and Noncommutativity

2.1. Pair Production in SYM and the Wilson Loop. In its most
prominent avatar [10, 13], the holographic duality relates
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N = 4 super Yang-Mills theory to type IIB string theory in
AdS5S

5. To study the Schwinger effect, one has to account
for “massive” matter (corresponding to a probe brane) in
fundamental representation and a Uð1Þ gauge field. The
way to do so is to break the symmetry group of the problem
from SUðN + 1Þ to SUðNÞUð1Þwith the Higgs mechanism.
Such methods were first introduced in [14]; the following
closely follows [15, 16]. For more sophisticated treatment,
refer to [17, 18]. The bosonic part of N = 4 SYM for the SU
ðN + 1Þ theory in Euclidean signature reads as

S∧SU N+1ð Þ =
1

g2YM

ð
d4x

1
4
F̂
2
μν +

1
2

D∧μΦ∧i

� 	2 − 1
4

Φ∧i,Φ∧j


 �2� �
,

ð4Þ

where F̂μν is the field strength of the SUðN + 1Þ gauge field
Âμ. bΦ i ði = 1,⋯, 6Þ collectively denotes six scalars in the
adjoint representation of SUðN + 1Þ. The gauge group is bro-
ken as

Âμ ⟶
Aμ ωμ

ω†
μ aμ

 !
,

bΦ i ⟶
Φi ωi

ω†
i mϕi

 !
:

ð5Þ

The nondiagonal parts ωμ and ωi transform in the funda-
mental representation of SUðNÞ and form the so-called W
-boson multiplet. The VEV of the SUðN + 1Þ scalar fields is
supposed to be of the form

bΦ i = diag 0,⋯, 0,mϕið Þ ;

〠
6

i=1
ϕ2i = 1:

ð6Þ

As a result of the decomposition (5), the SUðN + 1Þ
action (4) breaks up into three parts of the following form
[14]:

S∧SU N+1ð Þ⟶ SSU Nð Þ + SU 1ð Þ + SW , ð7Þ

where SUð1Þ is basically the free QED action constructed out
of the gauge field aμ. SW governs the dynamics of the W
bosons and its coupling to the gauge fields. Disregarding
the ωμ’s (The ωμ

’s start coupling to the ωi via ωμDμωi. The
effect of these couplings to the vacuum energy density of
the ωi is damped by 1/N at least. Thus, in the large N limit,
the ωμ are neglected for the present study.) and higher-
order terms the W boson action reads

SW =
1

g2
YM

ð
d4x Dμωi

�� ��2 + ω†
i Φ j −mϕj

� �2
ωi −m2ω†

i ϕiϕjωj+⋯
� 


,

ð8Þ

where Dμ is equipped both with the SUðNÞ gauge field Aμ

and also with the Uð1Þ gauge field aμ, i.e., Dμ = ∂μ − iAμ − i
aμ. By expanding the action SW and choosing ϕi = ð0, 0, 0, 0
, 0, 1Þ, the mass term for ω6 vanishes while those for ωi, i =
1,⋯, 5, remain. For the present scenario, the SUðNÞ gauge
field Aμ is a dynamical field and the Uð1Þ gauge field aμ is a

“fixed external” field of the form aμ = aðEÞμ = −Ex0δμ1. The
external gauge field contributes to the vacuum energy density
via the covariant derivative in SW as mentioned above. The
pair production rate is given by the imaginary part of vacuum
energy density [19].

Γ = −2 im ln
ð
DADΦDω e−S

SU Nð Þ−SW

≈ 5N im
ð
DADΦ e−S

SU Nð Þ trSU Nð Þ t̂r ln −D2
μ + Φi −mϕið Þ2

� �
:

ð9Þ

The factor of N comes from the number of ωi’s. By using
Schwinger’s parametrization and worldline techniques [20],
one can express the pair production rate (9) as a path integral
for a particle subject to an appropriate Hamiltonian under
boundary conditions, xðτ = 0Þ = xðτ = TÞ

Γ = −5N im trSU Nð ÞP
ð∞
0

dT
T

ð
Dx τð Þe−

Ð T
0
dτ 1

4 _x
2+iAμ _xμ+ia

Eð Þ
μ _xμ+ Φ j−mϕ jð Þ2


 �� �
:

ð10Þ

Using saddle point approximations as in [15, 16] and
assuming the mass to be heavy, i.e., m2 > >E, (10) becomes
proportional to the path integral of the particle subjected to

the “external” gauge field aðEÞμ times a phase factor, namely,
the SUðNÞWilson loop.

Γ ~ −5N
ð
Dx exp −m

ð1
0
dτ

ffiffiffiffiffi
_x2
p

+ i
ð1
0
dτ a Eð Þ

μ _xμ

� �
W x½ �h i,

ð11Þ

W x½ �h i = trSU Nð ÞP exp
ð1
0
dτ iAμ _xμ +Φjϕj

ffiffiffiffiffi
_x2
p� �� �� �

SU Nð Þ
:

ð12Þ
In the above, P indicates the path ordering of the time

parameter τ and the SUðNÞ nonabelian index is handled with
matrix trace, trSUðNÞ. Evaluating (11) by the method of stee-
pest descent, the “classical” trajectory becomes a circle. So
the production rate is proportional to the expectation value
of the circular Wilson loop and can be computed via holo-
graphic conjecture in the large N limit.

From expression (11), it naively seems that the pair pro-
duction rate is nonzero in general implying the vacuum
energy (of an SUðNÞ gauge theory) density to have an imag-
inary part even in the absence of an external electric field.
However, this is not the case. The expression in front of the
Wilson loop in (11) can be evaluated by steepest descent
methods and leads to a multiplicative factor of E2/ð2πÞ3.
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Thus, the pair production rate (and the imaginary part of
vacuum energy density) indeed goes to zero when the exter-
nal electric field vanishes. A detailed calculation of the same
is presented in [15, 17].

2.2. Noncommutativity from String Theory. The effective
worldsheet action in the presence of Bμν field is given by

S =
1

4πα′

ð
Σ

d2s ∂aX
μ∂aXνημν + εab∂aX

μ∂bX
νBμν

h i
: ð13Þ

The equations of motions along with the boundary con-
ditions when dB = 0 are

∂2t − ∂2s
� 	

Xμ t, sð Þ = 0, ð14Þ

∂sX
μ t, sð Þ + Bμ

ν · ∂tXν t, sð Þjs=0,π = 0: ð15Þ
The boundary conditions (15) are neither Neumann nor

Dirichlet; one can indeed try to diagonalize (15) to be
Neumann-like by redefining the fundamental variables lead-
ing to the so-called “open string metric” [6]. However, a
more direct attack along the lines of [21] is to solve the equa-
tion of motion (14) first and constrain the solution by (15).
For B = B23 dX

2 ∧ dX3, the solution of (15) compatible with
(14) is

X2 t, sð Þ = q20ð Þ + a20ð Þt + a30ð ÞB23 s
� �

+ 〠
n≠0

e−int

n
ia2nð Þ cos ns + a3nð ÞB23 sin ns
� �

:

ð16Þ

A similar solution accompanies X3ðt, sÞ, the forms of
which encode the nontrivial boundary conditions. The solu-
tions for the other coordinates are the usual ones [22]. The
canonical momentum of the action (14) is by the virtue of
mode expansion (16)

Π2 t, sð Þ = 1
2πα′

∂tX
2 t, sð Þ − B23 ∂sX

3 t, sð Þ� 	
=

1
2πα′

a20ð Þ + 〠
n≠0

a2nð Þ e
−int cos ns

 !
1 + B23ð Þ2� 	

:

ð17Þ

The fact that the current scenario leads to noncommuta-
tivity was first recognized in [23, 24] as the canonical
momentum at the ends of the string becomes functions of
the spatial derivatives of the string coordinates as per (15)
and (17). From the symplectic 2-form, the canonical commu-
tation relation of the modes is

q20ð Þ, q
3
0ð Þ

h i
= i

2πα′B23

1 + B23ð Þ2 ,
ð18Þ

q20ð Þ, a
2
0ð Þ

h i
= q30ð Þ, a

3
0ð Þ

h i
= i

2α′
1 + B23ð Þ2 ,

ð19Þ

a2−nð Þ, a
2
nð Þ

h i
= a3−nð Þ, a

3
nð Þ

h i
=

2nα′
1 + B23ð Þ2 :

ð20Þ

From the mode expansion (16) and the relations
(18)–(20), one has

X2 t, sð Þ, X3 t, s′
� �h i

= i
2α′B23

1 + B23ð Þ2 π − s − s′
� �

− 〠
n≠0

1
n
sin n s + s′

� �" #
:

ð21Þ

The second term in (21) sums up to zero when s + s′ =
0, 2π. Therefore, the end points of the string become non-
commutative. The nontrivial part of the normal ordered Vir-
asoro constraints and the total momentum which
accompanies (13) are given by

Ln =
1
4α′

: 〠
m

1 + B23ð Þ2� 	
a2n−mð Þa

2
mð Þ + a3n−mð Þa

3
mð Þ

� �
+ 〠

i,j≠2,3
ηija

i
n−mð Þa

j
mð Þ

" #
:

P2
total =

1
2α′

a20ð Þ 1 + B23ð Þ2� 	
;

P3
total =

1
2α′

a30ð Þ 1 + B23ð Þ2� 	
:

ð22Þ

It is clear from the above that the mass of the particle
becomes dependent on the value of the Bμν field. However,
the noncommutative field theories constructed out of Moyal
product leave the mass of the particle (quadratic part of the
Lagrangian) unchanged. Since the string equations of motion
and boundary conditions are linear equations, one can rede-
fine the operators to be in terms of which the mass of the the-
ory remains unaltered [25].

q̂2,30ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + B23ð Þ2

q
q2,30ð Þ ;

â2,3nð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + B23ð Þ2

q
a2,3nð Þ:

ð23Þ

It terms of which the only nontrivial commutation rela-
tion becomes

q̂20ð Þ, q̂
3
0ð Þ

h i
= 2πiα′B23 ≡ iθ: ð24Þ

It has been checked that perturbative string theory in the
present backdrop corresponds to noncommutative Yang-
Mills at one loop. For further details, see [25] and references
there-within.

3. Potential Analysis of the Noncommutative
Schwinger Effect

We start with a brief description of the holographic dual of
noncommutative Yang-Mills (NCYM) [26, 27]. In the spirit
of AdS/CFT correspondence, one looks for supergravity solu-
tions with a nonzero asymptotic value of the B field. Such a
solution is the D1-D3 solution which in the string frame
looks like
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ds2str =
1ffiffiffi
F
p −dx20 + dx21 +H dx22 + dx23

� 	
 �
+

ffiffiffi
F
p

dr2 + r2dΩ2
5


 �
;

F = 1 + α′2 R
4

r4
;

H =
sin2ψ
F

+ cos2ψ ;

B =
H tan ψ

F
dx2 ∧ dx3 ;

e2ϕ = g2
s H:

ð25Þ

The solution (25) is asymptotically flat and represents
Nð1Þ D1 branes dissolved per unit covolume of N D3 branes.
The information of the D1 branes is stored in the relation
tan ψ =Nð1Þ/N . It can also be seen that the asymptotic value
of the B field is B∞

23 = tan ψ while R is related to the other
parameters via R4 = 4πgsN cos ψ.

The proper decoupling limit of the above-stated solution
resembles the field-theoretic limit of the noncommutative
open string [6, 25], for which the asymptotic value of B23
has to be scaled to infinity in a certain way.

tan ψ⟶
θ

α′
;

x 2,3ð Þ⟶
α′
θ
x 2,3ð Þ ;

r⟶ α′R2u ;

gs ⟶
α′
θ
ĝ ;

α′ ⟶ 0:

ð26Þ

With the above scaling and keeping xð2,3Þ, u, ĝ, θ fixed the
resulting metric and field configurations are given by

ds2str = α′
ffiffiffi
λ
p

u2 −dx20 + dx21 + h dx22 + dx23
� 	
 �

+ α′
ffiffiffi
λ
p du2

u2
+ α′

ffiffiffi
λ
p

dΩ2
5 ;

h =
1

1 + λθ2u4
;

B23 =
α′λθu4
1 + λθ2u4

;

e2ϕ = ĝh ;

λ ≡ R4 = 4πĝN:

ð27Þ

The above is the holographic dual to NCYM with gauge
group SUðNÞ and Yang-Mills coupling constant gNCYM =ffiffiffiffiffiffiffiffi

4πĝ
p

which captures the dynamics of NCYM. As the holo-
graphic direction u tends to infinity, the first two directions
x0, x1 scale as u2 and the x2, x3 directions develop a 1/u2
dependence in the metric. Due to the noncommutativity,
the symmetry group of the theory becomes SOð1, 1Þ ⊗ SOð2
Þ as can be clearly seen from the isometry of (27) [28]. The

gravity dual to NCYM at finite temperature T is found from
the near horizon limit of the black D1-D3 solution and reads

 ds2str = α′
ffiffiffi
λ
p

u2 − 1 −
π4T4

u4

� �
dx20 + dx21 +

1
1 + λθ2u4

dx22 + dx23
� 	� 


+
α′

ffiffiffi
λ
p

1 − π4T4/u4
� 	� 	 du2

u2
,

B23 =
α′λθu4
1 + λθ2u4

: ð28Þ

The most rigorous approach to study the Schwinger
effect in the holographic setting is to find the expectation
value of the circular Wilson loop and relate it to the pair pro-
duction rate as in [11]. However, one may think of the vac-
uum to be made of q�q pairs bound under an attractive
potential and study how an external electric field modifies
this potential. This is the essence of potential analysis which
was first put forward in [29]. To compute the interquark
potential, one needs to look at the expectation value of the
rectangular Wilson loop when the loop contour is regarded
as the trajectory of particles under consideration in the x0
− x3 plane where x3 is the direction of q�q orientation. As
pointed out in [11, 30], one places a probe D brane at a finite
position instead of the boundary to get a W boson of finite
mass. A string with Dirichlet conditions at both ends has
the following canonical Hamiltonian [22], where the first
term indicates the potential energy of the stretched string
and is the analogue of mass created due to symmetry breaking.

H =
qμa − qμb
� 	2

4πα′
+ 〠

n≠0
α −nð Þα nð Þ: ð29Þ

As per the holographic procedure, the VeV of the Wilson
loop of a gauge theory is given by the partition function of a
fundamental string in the background of the holographic dual
with the ends of the string anchored on the probe D brane
along the contour of the Wilson loop C (12), i.e.,

W C½ �h i = 1
Vol

ð
∂X=C

DXDhabe
−S X,h½ �, ð30Þ

where S½X, h� indicates the action of the fundamental string
(The boundary conditions are given by the trajectory of the
string at the probe brane, ∂X =C . Stated more explicitly, D
X =Dξ where Xμðs, tÞ = cμðtÞ + ξμðt, sÞ. The functions ξμðt, s
Þ vanishes at the boundary which is given by a specific value
s = s0, c

μðtÞ being the parametric representation of the contour
C of theWilson loop.) which has beenWick rotated to Euclid-
ean signature, as is usually done in string theory [22]. In the
classical limit which is realized when the string length α′ is
small (or the ‘t Hooft coupling is big), the above expression
is dominated by the on shell value of the Polyakov/Nambu-
Goto action. Thus, the prescription of computing Wilson
loops is reduced to computing the area of the world sheet of
the fundamental string which ends on the specified profile at
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the probe D brane [14, 31, 32], situated at a finite radial posi-
tion in the dual geometry for the present case.

3.1. Potential Analysis at Zero Temperature. In this section,
we will study the properties of the modified potential of
NCYM in the presence on a constant external electric field
for quark/antiquark pairs along one of the noncommutative
directions (x3). The appropriate holographic dual as pointed
above is given by (27). To calculate the extremal area of the
string configuration ending of the probe brane, we take the
string world sheet to be parametrized by sa ≡ ðs, tÞ. The
Nambu-Goto action reads

SNG =
1

2πα′

ð
dtds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det G inð Þ

ab

q
,

G inð Þ
ab ≡Gμν

∂xμ

∂sa
∂xν

∂sb
:

ð31Þ

In the above, GðinÞab is the induced metric on the world-
sheet and Gμν is the metric of the target spacetime/holo-
graphic dual (27) and (28). The above action exhibits two
diffeomorphism symmetries with the help of which one can
set two of the embedding functions to arbitrary values pro-
vided that the resulting profile matches with the contour of
our choosing on the probe brane. One usually chooses the
so-called static gauge for which the profile reads (Strictly
speaking, the embedding function which extremizes the
Nambu-Goto function may not respect such a gauge choice
globally and may lead us to a local minimum of the
Nambu-Goto action. One can hope the results found will
converge to the true value if perturbations are added.)

x0 s, tð Þ = t ;

x3 s, tð Þ = s ;

u s, tð Þ = u sð Þ ;
x1,2 = 0 ;

Θi s, tð Þ = constant:

ð32Þ

In the above, the extremization of the Nambu-Goto
action is given by the functional form of uðsÞ. The Θi are
the coordinates of S5. For present purposes, x3 ≡ s is assumed
to range between ½−L, L�, when 2L indicates the interquark
separation on the probe brane with the boundary condition
uð±LÞ = uB where uB indicates the position of the probe
brane along the holographic direction. Again, the temporal
direction is assumed to range from ½−T ,T � with the further
assumption that T ≫ L, meaning time scale of the problem
(within which the quarks/antiquark pairs remain separated)
to be much larger than the length scale. This is because the
rectangular Wilson loop gives the interquark potential when
one assumes the interaction between dipole is adiabatically
switched on and off as illustrated in Figure 1 (Intuitively,
one thinks, two quarks to be separated at distant past and
then reunite at distant future. Thus, the worldline becomes

a rectangular closed contour whose area can be identified
with the interquark potential W½C � ~ e−TUðLÞ.).

Before proceeding further, let us address the issue of the B
field. For noncommutative gauge theories, the B field is
excited (27) and (28) and is present in the string action via
the Wess-Zumino term

Ð
dtdsBμν∂txμ∂sxν along with the

usual Polyakov/Nambu-Goto part. However, the gauge
choice given above (32) cancels the contribution of the
Wess-Zumino part of the action. It is possible to consider
the q�q pairs at a velocity in the x2 direction and take into
account the contribution of the Bμν term as in [33]. However,
in the present case where the virtual particles in vacuum are
modeled as q�q dipoles, such a configuration seems hardly
sensible.

As per the above gauge choice, the induced metric/line
element on the world sheet reads

G inð Þ
ab dsadsb = −α′

ffiffiffi
λ
p

u2dt2 +
α′

ffiffiffi
λ
p

u2
du
ds

� �2
+

u4

1 + λθ2u4

" #
ds2:

ð33Þ

Using the above form of the induced metric in the action
(31), we get

SNG =
T

2πα′

ðL
−L
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du
ds

� �2
+

u4

1 + λθ2u4

s
: ð34Þ

Extremization of the above Lagrangian is equivalent to
solving the Euler-Lagrange equation with the effective

Lagrangian LNG =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdu/dsÞ2 + ðu4/ð1 + λθ2 u4 ÞÞ

q
when u

= uðsÞ along with the boundary condition uðs ≡ x3 = ±LÞ =
uB as the contour profile is already taken into account by
the gauge choice. One can indeed solve the relevant problem
and find the explicit form of uðs ≡ x3Þ. However, since the
Lagrangian in (34) does not explicitly depend on the param-
eter s (In principle, one considers a profile where u = uðs, tÞ as
the two diffeomorphism symmetries are exhausted by (32).
However, such a choice would reflect nonadiabatic interac-
tions, i.e., the interpretation of Wilson loops of measuring
the interaction potential of q�q pairs at rest as in Figure 1
would be invalid.), by Noether’s theorem, there exists a con-
served quantity (Q) for the solution.

Q ≡ −
du
ds

∂LNG

∂ du/dsð Þ +LNG =
u4h uð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du/dsð Þ2 + u4h uð Þ
q ;

h uð Þ = 1
1 + λθ2u4

:

ð35Þ

As indicated in [32], the fundamental string is assumed
to be carrying charges at its two ends and is otherwise sym-
metric about its origin. Thus, one can choose uðsÞ to be an
even function of s ≡ x3. In the present case, this means the
x3 direction of NCYM is symmetric around its origin which
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holds true in spite of its noncommutative nature. From the
form of (35), the solution of du/ds involves both positive
and negative signs. Thus, there exist a value of the parameter
s = s0 for which du/dsðs0Þ = 0. This is the turning point of the
string profile as indicated in Figure 1. Simplifying (35) and
introducing a rescaled holographic coordinate y = u/u0, one
obtains the following differential equation:

d
ds

u
u0

� �
≡

dy
dx3

=
u0y

2 ffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1

p
1 + λθ2u40y4

: ð36Þ

In the above, u0 indicates the value of uðsÞ at s = s0 and
the gauge choice x3ðs, tÞ = s has been used. The above equa-
tion is obtained from evaluating the l.h.s of (35) at the turn-
ing point. From the equation obtained, one can estimate
the separation length (2L) of the q�q dipole by integration
both sides

L ≡
ðL
0
dx3 =

ðuB/u0
1

dy

u0y2
ffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1

p +
ðuB/u0
1

λθ2u30y
2ffiffiffiffiffiffiffiffiffiffiffiffi

y4 − 1
p dy: ð37Þ

It is worthwhile to point out that if one tries to take uB
⟶∞ in (37), the dipole length diverges due to the second
integral (which is absent in the commutative counterpart
where θ = 0). However, unlike the generic quark/antiquark
potential calculation where a divergence is attributed to the
self-energy of infinitely massive quarks, the present situation
cannot be remedied by such arguments. The fact that the
holographic dual of a NCYM does not live at radial infinity
has been reported in [26] where it has been shown a slight
perturbation on the string profile at infinity destabilizes it
completely. An alternative has been advocated in [33] where
the string profile is allowed to have a velocity in the x2 and
the Bμν term in the string action contributes to the interquark
length unlike the present case. It can be shown that for a cer-

tain velocity of the q�q pair in the transverse direction, the
dipole can be consistently taken to radial infinity. As indi-
cated before, we avoid such a configuration for the present
case.

The mass of the fundamental matter (q�q pairs) is given by
the self-energy of a stretched string from the probe to the
interior [34]. For determining the same, the relevant gauge
is x0 = t, u = s, x3 = constant. Thus, the mass is given by

m =
1

2πα′

ðuB
0
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α′

ffiffiffi
λ
p

u2 ·
α′

ffiffiffi
λ
p

u2

s
=

ffiffiffi
λ
p

2π
uB: ð38Þ

The dipole separation length of the test particles (37) can
be analytically integrated, and in terms of the parameter a
= u0/uB, one has

L =
ffiffiffi
λ
p

2πm

ffiffiffi
π
p

Γ 3/4ð Þ
aΓ 1/4ð Þ −

a2

3 2
F1

1
2
,
3
4
,
7
4
, a4

� �� 

+
8π3m3θ2ffiffiffi

λ
p a3

� −
ffiffiffi
π
p

Γ 3/4ð Þ
Γ 1/4ð Þ + a·2F1 −

1
4
,
1
2
,
3
4
, a4

� �� 

:

ð39Þ

The sum of the potential and the static energy of the q�q
pairs is given by the (time averaged) on-shell value of the
Nambu-Goto action which by the virtue of (34) and (37) is

UCP+SE =
ffiffiffi
λ
p

2π
auB

ð1/a
1
dy

y2ffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2a4u4B

q
=m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

16π4m4θ2a4

λ

r
−a

ffiffiffi
π
p

Γ 3/4ð Þ
Γ 1/4ð Þ +2F1 −

1
4
,
1
2
,
3
4
, a4

� �� 

:

ð40Þ

From the above, one can look at the limit when L⟶∞

(uB)

Probe

T L

q

q q

x3

Boundary
(u0)

x3

L

u

u0 uB
∞

x0

u

“Adiabatic
switching off’’

“Adiabatic
switching on”

(a) (b)

q

Figure 1: This figure illustrates the setup used. The probe brane is placed at a finite position (uB) on the holographic direction as in (b). On the
probe brane, the placement of the Wilson loop is shown in (a), arrows indicating the contour of the loop (not the propagation of the string).
For adiabatic interactions, one can neglect the effects of the dotted lines and the string profile becomes static.
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which is the same as taking the limit a⟶ 0. This fact is evi-
dent from the above expression, see Figure 2. This is the sit-
uation when the string stretches to the interior, i.e., u0 ⟶ 0.
Using the relation 2F1ð−1/4, 1/2, 3/4, 0Þ = 1, the leading
dependence of the interquark length (39) is given by L = 1/2
m

ffiffiffiffiffiffiffiffiffiffiffiðλ/πÞp ððΓð3/4ÞÞ/ðaΓð1/4ÞÞÞ, and the interquark potential
(40) becomes

UCP+SE a⟶ 0ð Þ ≈m − am

ffiffiffi
π
p

Γ 3/4ð Þ
Γ 1/4ð Þ =m −

ffiffiffi
λ
p

2
Γ 3/4ð Þ
Γ 1/4ð Þ
� �2 1

L
:

ð41Þ

Thus, the usual Coulomb law is recovered at large dis-
tances. However, for arbitrary separation, there is a rapid
modification from the Coulomb law. This can be attributed
due to two reasons. Firstly, as is evident from (39) and (40)
for arbitrary values of the parameter a, the noncommutative
effects creep in which breaks the conformal symmetry and
hence Coulombic dependence. Secondly, as found in [29],
even for a commutative theory, the potential profile is altered
from and is finite even at short distances. This is because in
the presence of a mass term, the theory is not conformal any-
more as can be understood from the presence of (8) which is
coupled to the usual SUðNÞ action. To get a better view of the
same, we look at a 1 limit of (40) and (39). It is evident from
the integrals that both of them vanishes in the above-said
limit. Looking at the limiting values, one has

UCP+SE a⟶ 1−ð Þ ≈ m/λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 16π4m4θ2a4/λ
� 	q −

16π4m4θ2a4 + λ

a
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − a4
p

 264
−

ffiffiffi
π
p

48π4m4θ2a4 + λ
� 	

Γ 3/4ð Þ
Γ 1/4ð Þ

+
48π4m4θ2a4 + λ
� 	

2F1 −1/4, 1/2, 3/4, a4
� 	

a

!#
a⟶1−

· 1 − að Þ:

ð42Þ

In the above, the Oð1 − aÞ2 terms have been neglected.
Similarly for the interquark distance, one has

L a⟶ 1−ð Þ ≈ 1 − að Þ ·
ffiffiffi
λ
p

2πm
−

affiffiffiffiffiffiffiffiffiffiffiffi
1 − a4
p +

a
32
F1

1
2
,
3
4
,
7
4
, a4

� ��
−

ffiffiffi
π
p
a2

Γ 3/4ð Þ
Γ 1/4ð Þ



a⟶1−

+ 1 − að Þ

· −
8π3m3θ2a3ffiffiffi
λ
p ffiffiffiffiffiffiffiffiffiffiffiffi

1 − a4
p +

16π3m3θ2a3ffiffiffi
λ
p

2
F1

−1
 4

,
1
2
,
3
4
, a4

� �" #
a⟶1−

:

ð43Þ

Comparing (42) and (43) and using the identity 2F1ða,
b, c, 1Þ = ðΓðcÞΓðc − a − bÞÞ/ðΓðc − aÞΓðc − bÞÞ, it can be eas-
ily seen that for short interquark separation,

UCP+SE a⟶ 1−ð Þ ≈ 2πm2ffiffiffi
λ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 16π4m4θ2/λ
� 	q L a⟶ 1−ð Þ:

ð44Þ

Thus, increment in the value of noncommutative param-
eter θ results into decrement of the slope of the potential
curve at small separation. This is because of repulsive forces
due to noncommutativity, signaling the force needed to
detach the noncommutative q�q pair should be smaller than
its commutative counterpart.

Till now, we have calculated the interquark potential.
However, in the presence of an external electric field, the
charged q�q pairs develop an electrostatic potential of their
own. The total potential is given by the sum of the two.
Defining the effective potential to be

Ueffective Lð Þ =UCP+SE Lð Þ − E · L: ð45Þ

It can be guessed from (44) that in the presence of an
external electric field of strength,

ET =
2πm2ffiffiffi

λ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 16π4m4θ2/λ
� 	q , ð46Þ

the q�q pair overcomes the linear barrier of the potential pro-
file in Figure 3. However, it is still to be seen whether the
above-mentioned electric field is enough to get out of the
tunneling phase for all values of interquark separation L.
One has from (37) and (40),

UCP+SE (L) 

0.0 L
2 4 6 8 10

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 2: This is a parametric plot of LðaÞ v/s a. The values chosen
are m = 1, λ = 4π2. The red and blue lines are plots for θ = 0:2 and
θ = 0:3, respectively; the cyan line stands for θ = 0:75. Note that
for the latter case, the plot becomes degenerate of intermediate
values of the parameter a, though the predictions for extreme
values of L remain true. We will stick to the first two values for
our numerical computations.
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Ueffective L u0ð Þð Þ = 1 − rð ÞETL u0ð Þ +G L u0ð Þð Þ,

G L u0ð Þð Þ =
ffiffiffi
λ
p

2π

ðuB
u0

du
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2u40

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u40

p −
u2Bu

2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λθ2u4B
p 1 + λθ2u4

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u40

p" #
,

L u0ð Þ =
ðuB
u0

du
u20
u2

1 + λθ2u4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u4 − u40
p :

ð47Þ

In the above, we have reinstated the turning point u0 and
have introduced the ratio r = E/ET for simplicity where ET
the threshold electric field is given by (46). It is apparent from
(47), at the value r = 1 (applied field being of threshold
value), the first term vanishes. Thus, the potential profile is
governed fully by the second term G ðLðu0ÞÞ and will cease
to put up a tunneling barrier if the function is monotonically
decreasing and is vanishing at the origin. At L = 0 which is
realized if u0 = uB, it is evident from (47) that G ðL = 0Þ = 0.
Indeed, this is the case for UeffectiveðL = 0Þ too.

d
dL

Ueffective Lð Þ = 1 − rð ÞET +
d
dL

G Lð Þ = 1 − rð ÞET +
du0
dL

dG u0ð Þ
du0

:

ð48Þ

Moreover, one can show from (47) that

dL u0ð Þ
du0

= −
1 + λθ2u40
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 + εð Þ4 − u40

q +
ðuB
u0

du

� 2u0 1 + λθ2u4
� 	

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u40

p +
2u50 1 + λθ2u4
� 	

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u40

p� �3
264

375
= −

1 + λθ2u40
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 + εð Þ4 − u40

q + 2
ðuB
u0

du
1 + λθ2u4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u4 − u40
p� �3 u0u2

264
375:
ð49Þ

The first term comes when the differential operator acts
on the lower limit of integration in (47). A regulator ε (whose
physical meaning is rather vague) has been put in the expres-
sion as the first term is actually divergent. By a similar proce-
dure, one has

dG u0ð Þ
du0

=
ffiffiffi
λ
p

2π
−

1 + λθ2u40
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 + εð Þ4 − u40

q + 2
ðuB
u0

u0u
2 1 + λθ2u4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u4 − u40
p� �3

264
375

×
u20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2u4B

p
− u2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2u40

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2u4B
� 	

1 + λθ2u40
� 	q

0B@
1CA:

ð50Þ

Though the above two terms are actually divergent, one

can see from (49) and (50) that their ratio is not.

G′ Lð Þ ≡ dG Lð Þ
dL

=
ffiffiffi
λ
p

2π
u20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λθ2u40
p −

u2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2u4B

p !
:

ð51Þ

It is easily seen that GðLðu0ÞÞ is a monotonically decreas-
ing function w.r.t Lðu0Þ, i.e., for uB ≥ u0. From the above, it is
clear that the net potential/force due to the applied field has
two components as follows:

(a) ð1 − rÞETLðu0Þ: this is the part which creates the
potential barrier for r < 1, i.e., the attractive force
between the q�q pairs in an external electric field. At
r = 1, this part ceases to contribute, and for r > 1,
the force corresponding to this part becomes
repulsive

(b) G ðLðu0ÞÞ: this part contributes to bringing down the
potential barrier. As can be seen from (51), the asso-
ciated force due to this is repulsive for all values of
Lðu0Þ except at the origin where it vanishes. Thus,
at threshold point (r = 1) where the first component
(part a) becomes irrelevant, the slope of the net
potential for all nonzero values L is negative as can
be seen in Figure 4 confirming the prediction of (46)

It is also interesting to see whether the effective potential
admits a confining phase where the tunneling behavior is
totally absent. This amounts to showing the existence of an
intermediate value of u0 for r < 1 where the total potential
as in (45) and (47) vanishes. Alternatively, one can check
the values of the slope of the potential at extreme points
and look for a saddle point of the same. It is easy to see that
at L = 0/u0 = uB, the slope (48) is given by ð1 − rÞET which

0.0 0.2 0.4 0.6 0.8 1.0
a

2

4

6

8

10
L

Figure 3: This is a parametric plot of UCP+SE v/s L. The plot
indicates the profile of the potential (with static energy subtracted)
to be Coulombic at large distances. At small distance, the profile
exhibits a linear dependence. However, noncommutativity has a
tendency to increase the linear effect. The values used are m = 1
and λ = 4π2. The red line stands for the value θ = 0:2 while the
blue line indicates θ = 0:3.
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is positive for r < 1. However, at u0 = 0/L⟶∞, the slope of
the potential is given by

d
dL

Ueffective L⟶∞ð Þ = −r
ffiffiffi
λ
p

2π
u2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λθ2u4B
p : ð52Þ

Thus, we see that the slope of the potential curve is neg-
ative (force between q�q pairs is repulsive) at large distances
for all values of the applied electric field unlike the situations
in [12, 35], indicating the present case of not being confining.
It is also clear from (48) and (51) that the maximal potential
barrier is encountered when

a4 ≡
u0
uB

� �4
= r2

1 + 16π4m4θ2/λ
� 	

1 − r2ð Þ
: ð53Þ

This is the point when the effective q�q potential becomes
repulsive rather than being attractive.

3.2. Potential Analysis at Finite Temperature. The finite tem-
perature case closely resembles the above calculation. For the
present situation, the gravity dual is given by (28). The ther-
mal mass of fundamental q�q pairs is given by

m Tð Þ = 1
2πα′

ðuB
πT
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α′

ffiffiffi
λ
p

u2 1 −
π4T4

u4

� �
·

α′
ffiffiffi
λ
p

u2 1 − π4T4/u4
� 	� 	s

=
ffiffiffi
λ
p

2π
uB − πTð Þ =m T = 0ð Þ −

ffiffiffi
λ
p

2
T:

ð54Þ

Very much like the above analysis, the Nambu-Goto

action in static gauge reduces to

S =T

ffiffiffi
λ
p

2π

ð
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du
ds

� �2
+
u4 − π4T4

1 + λθ2u4

s
: ð55Þ

Quite similar to the previous case, the conserved quality
arising from the Lagrangian (55) is

1
1 + λθ2u4

·
u4 − π4T4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du/dsð Þ2 + u4 − π4T4� 	
/ 1 + λθ2u4
� 	� 	q = conserved:

ð56Þ

Demanding the profile admits a zero slope at the turning
point u0 (the turning point should be greater than the hori-
zon radius, i.e., u0 ≥ πT), we have

du
ds

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − π4T4� 	

u4 − u40
� 	

1 + λθ2π4T4� 	q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − π4T4� 	q

1 + λθ2u4
� 	 : ð57Þ

From the above equation, the separation length between
test particles can be integrated out to be

LT að Þ = 1
a

ffiffiffi
λ
p

2πm

ð1/a
1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	q

1 + 16π4m4θ2/λ
� 	

y4a4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y4 − 1ð Þ y4 − λ2T4/16m4a4
� 	� 	

1 + λθ2π4T4� 	q :

ð58Þ

The above equation is written in terms of redefined vari-
ables: y = u/u0 ; a = u0/uB; the parameterm is the mass at zero

VSch = U+2m–rEcL 
0.04
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0.01
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(a) θ = 0.2

VSch = U+2m–rEcL 
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0.00 L
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(b) θ = 0.3

Figure 4: The plot indicates the effective potential (in the presence of external electric field) v/s the interquark separation. The values used are
m = 1 and λ = 4π2. The green line indicates r = 0:9, blue line for r = 0:95. The parameter r is the ratio of the applied field to its threshold value.
Note that the maximal height of the potential barrier decreases as noncommutativity increases. The red line which exhibits the threshold
behavior stands for r = 1:0, and cyan for r = 1:05 shows catastrophic decay of vacuum.
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temperature. The interquark potential at finite temperature
for noncommutative theories is obtained from (55) and
(58) to be

UT LT að Þð Þ =ma
ð1

a

1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − λ2T4/16m4a4

� 	
y4 − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 16π4m4θ2a4/λ
� 	
1 + λθ2π4T4

s
:

ð59Þ

It is not possible to integrate the above two equations
analytically. The separation however due to the presence of
a finite temperature, the interquark potential ceases to be
Coulombic even at large interquark separation which can
be explicitly checked by computing (59) for small tempera-
ture using binomial approximation. This phenomenon can
be attributed to the breakdown of conformal symmetry (for
the commutative case) in finite temperature.

In the presence of an external electric field E, the effective
potential experienced by the q�q pairs gets modified to

UT ,eff LT að Þð Þ =UT LT að Þð Þ − E · LT = 1 − Rð ÞEth · LT að Þ

+
ffiffiffi
λ
p

2π
H LT að Þð Þ ; R =

E
Eth

:

H að Þ =
ð1/a
1
dy

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1ð Þ 1 + λθ2π4T4� 	q

� 2πmffiffiffi
λ
p a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 −

λ2T4

16m4a4

� �
1 +

16π4m4θ2a4

λ

� �s24
−
Eth

am
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	q

1 + 16π4m4θ2a4/λ
� 	

y4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y4 − λ2T4/16m4a4
� 	q

375:
ð60Þ

In the first step, we have added and subtracted the term
“Eth · LT” where Eth the threshold electric field at finite tem-
perature is to be found out. The slope of the potential profile
(60) for fixed values of the physical parameters is given by

dUT ,eff að Þ
dLT

= 1 − Rð ÞEth +
ffiffiffi
λ
p

2π
·
dH að Þ
da

·
dLT að Þ
da

� �−1
:

ð61Þ

At the threshold point where R = 1, the first term van-
ishes and one is left with the second term alone which itself
consists of the threshold value (60). However, at the thresh-
old point, the slope the potential should be negative for all
allowed values of the parameter a (and henceforth the sepa-
ration LT). An explicit calculation leads to

dLT að Þ
da

=
ffiffiffi
λ
p

2πm
1
a2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λθ2π4T4
p

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	q

264
�
ð1/a
1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − λ2T4/16m4a4

� 	q
1 + 16π4m4θ2a4/λ
� 	

y4
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1ð Þ3

q
−

1 + 16π4m4θ2a4/λ
� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + εð Þ4 − 1
q

0B@
1CA
375:

ð62Þ

Similarly (after quite some algebraic manipulations), one
finds

dH að Þ
da

=
4π2m2

λ
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	

1 + 16π4m4θ2/λ
� 	

a4

s
−

2πffiffiffi
λ
p Eth

 !
dLT að Þ
da

,

ð63

⇒ dUT,eff að Þ
dLT

= 1 − Rð ÞEth +
2πm2ffiffiffi

λ
p a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	

1 + 16π4m4θ2/λ
� 	

a4

s
−Eth

 !
:

ð64Þ
It is clear from (58) that as the parameter a⟶ 1, the

interquark separation LT ⟶ 0. Moreover, at a = 1, the effec-
tive potential (60) vanishes too. At LT = 0 (a = 1), the effective
force (64) on the q�q pairs should be zero at the threshold con-
dition. Thus,

Eth =
2πm2ffiffiffi

λ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4� 	
1 + 16π4m4θ2/λ
� 	 :s

ð65Þ

Thus, we see that the effect of finite temperature is to
decrease the threshold electric field. However, noncommuta-
tive effects do not mix up with the influence of finite temper-
ature (in the sense that there are no “θT” mixed terms in the
expression of the threshold electric field). Similar inference
can be drawn from studying the quasinormal modes of scalar
perturbations in the presence of noncommutativity as in [36]
(We thank Juan F. Pedraza for bringing this to our notice.)
which shows enhancement of the dissipation rate in accor-
dance to decrement of threshold field. Also, as shown in
[37, 38], the NCYM is less viscous than its commutative
counterpart. It is of interest to wonder whether viscosity
and threshold electric field has anything to do with each
other. From (65) and (64), we have

dUT ,eff að Þ
dLT

= 1 − Rð ÞEth −
2πm2ffiffiffi

λ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4� 	
1 + 16π4m4θ2/λ
� 	s 

− a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2T4/16m4a4
� 	

1 + 16π4m4θ2/λ
� 	

a4

s !
:

ð66Þ
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The monotonic nature of the second term w.r.t. the
parameter a is quite clear in the allowed range of a. Thus,
the value of Eth so found suffices to cause vacuum decay at
the threshold point (R = 1).

4. Pair Production Rate of the Noncommutative
Schwinger Effect

In this section, we would like to estimate the rate of produc-
tion of q�q pairs interacting with NCYM in the presence of an
external electric field along a noncommutative direction. As
indicated in (11), the production rate is proportional to the
Wilson loop of the classical Euclidean trajectory of particles
under the presence of the electric field, i.e., a circle in the x0
− x3 plane. An explicit solution of the circular string profile
for the gravity dual of N = 4 SYM is given in [39] and in
[11]. Here, we state the same for later purposes.

x0 t, sð Þ = R
cosh s0
cosh s

cos t ;

x3 t, sð Þ = R
cosh s0
cosh s

sin t ;

u t, sð Þ = uB
tanh s0
tanh s

:

ð67Þ

The solution holds true in the conformal gauge of the
Polyakov action which is equivalent to the Nambu-Goto
action at the classical level. In the above, R indicates the
radius of the Wilson loop on the probe brane. The parameter
s in one of the coordinates of the 2-dimensional string world-
sheet and its value on the probe brane is given by s0; t param-
etrizes the circular contour on the probe brane and thus has
range ½0, 2π�. Moreover, one can obtain the relation, sinh s0
= 1/RuB, which connects the allowed range of the worldsheet
parameter to the physical quantities like mass and external
electric field. For the present purpose, the relevant gravity
dual is given by (27). The Polyakov action in conformal
gauge looks

S =
ffiffiffi
λ
p

4π

ð
dtds U2∂aX0∂aX0 +

1
U2 ∂aU∂aU +

U2

1 + αU4 ∂aX3∂aX3+⋯
� 


:

ð68Þ

Both the worldsheet and target spacetime have been con-
tinued to Euclidean signature. We have redefined α ≡ λθ2

and have neglected the terms involving X1,2. The equations
of motion corresponding to (68) are given by

2∂tU∂tX0 + 2∂sU∂sX0 +U ∂2t X0 + ∂2s X0
� 	

= 0, ð69Þ

U 1 + αU4� 	
∂2t X3 + ∂2s X3
� 	

= 2 αU4 − 1
� 	

∂tU∂tX3 + ∂sU∂sX3ð Þ,
ð70Þ

∂tX0ð Þ2 + ∂sX0ð Þ2 + 1 − αU4� 	
1 + αU4� 	2 ∂tX3ð Þ2 + ∂sX3ð Þ2� 	

+
1
U4 ∂sUð Þ2 + ∂tUð Þ2 −U∂2t U −U∂2s U
� 	

= 0:

ð71Þ
These equations are to be supplemented with the condi-

tion X2
0ðt, s0Þ + X2

3ðt, s0Þ = R2. The set of equations in
(69)–(71) form a system of coupled second-order nonlinear
differential equations and in general is impossible to solve.
In the context of gauge/string duality, the solution of Wilson
loops in general background has been a perplexing issue. A
certain way has been suggested in [40] based on employing
a “circular ansatz,” but it can be checked that such methods
are valid only if the background has SOð2Þ isometries in the
plane of theWilson loop (which in our case, i.e., x0 − x3 plane
is absent). However, if relevant the background is a continu-
ous parametric deformation of AdS, one can describe the
string profile as Xμðt, s ; σiÞ where σi collectively indicates
the deformation parameters.

Expanding in power series, Xμðt, s ; σiÞ = Xμðt, s ; σi = 0Þ
− σi · ∂σiXμðt, s ; σi = 0Þ + Oðσ2i Þ, and noting that Xμðt, s ; σi
= 0Þ is the known AdS solution, the nonlinear equations
become simplified. In the present context, the deformation
parameter is σ ≡ α = λθ2. Crudely speaking, this amounts to
treating NCYM as a perturbation over YM. Using the expan-
sion,

X0 t, sð Þ = K cos t sech s − αχ0 t, sð Þð Þ,
X3 t, sð Þ = K sin t sech s − αχ3 t, sð Þð Þ,

U t, sð Þ = 1
K

coth s − αξ t, sð Þð Þ:
ð72Þ

One obtains the following equations at order OðαÞ:

coth s ∂2t χ0 + ∂2sχ0
� 	

− 2 sin t sech s ∂tξ − 2ξ cos t sech3s
− 2 csch2s ∂sχ0 − 2 cos t sech s ∂sξ = 0,

ð73Þ

coth s ∂2t χ3 + ∂2sχ3
� 	

− 2ξ sin t sech3s + 2 cos t sech s∂tξ

− 2 sin t tanh s sech s∂sξ − 2 csch2s∂sχ3

=
4
K4 sin t coth2s csch3s,

ð74Þ
3
K4 coth8s sech2s cos2t + sin2t tanh2s sech2s

� 	
= 4 coth3s sech2s 1 + tanh2s

� 	
ξ − coth s

� ∂2t ξ + ∂2s ξ + 2
csch2

coth s
∂sξ + 2 csch2sξ

 !
− coth4s sech s sin t∂tχ0 + cos t tanh s∂sχ0ð
+ sin t tanh s∂sχ3 − cos t∂sχ3Þ:

ð75Þ

In deriving the above, (69)–(71) has been linearized using
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(This is possible because in the present case, we have an
upper bound of U = uB; in using the binomial expansion,
we have assumed λθ2u4Bto be small.) 1/ð1 + αU4Þ ≈ 1 − αU4,
and then, (72) has been used keeping in mind that terms of
Oðα0Þ are AdS equations which are automatically zero.
Moreover, we have assumed αU4ðt, sÞ ≈ α/K4 coth4s up to
first order in α. Equations (73)–(75) though being simplified
than before are still daunting. Using the ansatz ξðt, sÞ = ξðsÞ
, χ0ðt, sÞ = χ0ðsÞ cos t, χ3ðt, sÞ = χ3ðsÞ sin t in (74) and (75),
one has

∂sχ0 =
1
2
sinh2s coth s ∂2sχ0 − χ0

� 	
− ξ sinh2s sech3s

− sech s tanh s sinh2s ∂sξ,
ð76Þ

∂sχ3 =
1
2
sinh2s coth s ∂2sχ3 − χ3

� 	
− ξ sinh2s sech3s

− sech s tanh s sinh2s ∂sξ −
2
K4 coth2scsch s:

ð77Þ
Since the set (73)–(75) are coupled differential equations,

the solution of the first two has to satisfy the other one.
Substituting (76) and (77) in (75) and noting that the result-
ing equation has to be satisfied for all values of parameter t,
one obtains the following three equations:

tanh s sinh s ∂2sχ0 − 2 sech sχ3 − tanh s sinh sχ0 +
3
K4 coth2s csch2s = 0,

ð78Þ

tanh s sinh s ∂2sχ3 − 2 sech sχ0 − tanh s sinh sχ3 −
1
K4

2
csch s = 0,

ð79Þ
coth s ∂2s ξ − 2ξ coth s csch2s 1 + 3 tanh2s

� 	
+ 2 csch2s − 1
� 	

∂sξ = 0:

ð80Þ
It can be checked that (80) has no real solution, further-

more, (80) being a linear equation permits a solution of the
form ξ = 0. Thus, we are left with first two equations (78)
and (79) which are coupled differential equations themselves.
To simplify those, we define the following variables whose
significance is rather obscure.

χ+ sð Þ = χ0 sð Þ + χ3 sð Þ ;
χ− sð Þ = χ0 sð Þ − χ3 sð Þ:

ð81Þ

In terms of the above, one has

∂2sχ+ − χ+ − csch2sχ+ +
csch3s
K4 coth s 3 coth2s − 1

� 	
, ð82Þ

∂2sχ− − χ− + csch2sχ− +
csch3s
K4 coth s 3 coth2s − 1

� 	
:

ð83Þ

Digressing a bit from the main discussion, let us see the
first-order correction to the on-shell action in light of the
perturbation theory set up. From the decomposition (72),
one has up to OðαÞ

∂tX0ð Þ2 = K2 sin2t sech2s − 2α sech sχ0
� 	

,

∂tX3ð Þ2 = K2 cos2t sech2s − 2α sech sχ3
� 	

,

∂sX0ð Þ2 = K2 cos2t sech2s tanh2 s + 2α sech s tanh s∂sχ0
� 	

,

∂sX3ð Þ2 = K2 sin2t sech2s tanh2 s + 2α sech s tanh s∂sχ3
� 	

:

ð84Þ

Using the above in the Polyakov action in the presence of
the NC dual (68) and approximating 1/ð1 + ðα/K4Þα/K4

coth4sÞ ≈ 1 − ðα/K4Þ coth4s, one has in the first order of the
effective parameter

Lon‐shell = 2 csch2s − 2α
cosh s

sinh2s
sin2t χ0 − tanh s∂sχ3 −

coth2s
2K4 sech s

( )"

+ cos2t χ3 − tanh s ∂sχ0 −
coth4s
2K4 sech s

( )#
:

ð85Þ

Using equations (78) and (79) and the fact that ξðsÞ = 0,
one can reduce the first-order correction to above expression
to

δαLon‐shell = −α cosh s sin2t 2 csch2sχ0 +
3
K4 coth2s sech s csch2s − ∂2sχ3 + χ3

� ��
+ cos2t 2 csch2sχ3 −

1
K4 coth4s sech s csch2s − ∂2sχ0 + χ0

� �

= −

2α
K4 coth2 csch2s 1+csch2s cos2t


 �
:

ð86Þ

In the last line, (78) and (79) have been put to use. Thus,
we see that the equations of motions alone determine the
first-order correction of the on-shell action from the commu-
tative counterpart. In the context of holographic entangle-
ment entropy, similar methods have been presented in [40].
For finding out the limit of the integration and its connection
to physical variables, one has to solve the equations of
motion. Returning to our main discussion, the real part of
the solution of (82) is

χ+ sð Þ = χ0 sð Þ + χ3 sð Þ = −
1

6K4 coth4s sech s: ð87Þ

Equation (83) which dictates the deviation of the circular
symmetry cannot be solved by analytical means. It is worth-
while to note that (83) is not a linear equation and does not
admit a solution χ−ðsÞ = 0. However, since it is a second-
order differential equation with two constants, one can rede-
fine them to set χ−ðs = s0Þ = 0 for a specific value s0, which is
essentially imposing the boundary condition of the loop
being circular at the probe brane. There exist no known
methods to solve a generic second-order partial differential
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equation. We do not claim that the first derivative of χ− is
zero at s0. Thus, at the point given by s = s0, the profile is cir-
cular and the variable χ+ is twice the radius of the loop(R).
Putting the above in mathematical language, from (72) and
(87)

R = K sech s0 +
α

12K4 coth4s0 sech s0
� �

,

uB =
1
K

coth s0:
ð88Þ

From the above, one gets

RuB = csch s0 1 + α

12
u4B

� �
: ð89Þ

This relation serves to define the integration limits and
also connects the on-shell value of the action to physical
parameters. From the above, one has in the first order of
the noncommutative parameter

coth s0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + R2u2B 1 −

α

6
u4B

� �r
: ð90Þ

In presence of an external electric field in the x3 direction,
the on-shell value of the action gets modified to (Uð1Þ gauge
fields contribute to the string Lagrangian via a boundary
term. For constant electromagnetic field, the string equations
of motion are unchanged but the boundary conditions are
altered (Robin). For inhomogeneous fields, this is not the
case. The Schwinger effect for inhomogeneous fields has been
explored via holographic methods in [41].)

Son‐shell =
ffiffiffi
λ
p

1 − 3ηð Þ coth s0 − 1f g − 5η
1

coth s0
+ 8η

1
coth4s0

−E csch2s0
� 


:

ð91Þ

In the above, we replaced the constants by hyperbolic
functions (88) and have defined η = ðα/30Þu4B ≡ ðλθ2/30Þu4B
and E = ðπ/ ffiffiffi

λ
p

u2BÞð1 + ð5/2ÞηÞ2E. Note that the dependence
on the radius (R) is now encoded in the hyperbolic functions
themselves. Quite similar to arguments in [11, 42] at a large
value of R (large E), the production rate (11), (30), and (91)
is dominated by Γ ~ exp ð ffiffiffiλp R2EÞ similar to the phase (in
potential analysis) when V sch does not permit a tunneling
barrier. However, for small R (πR2E not dominating the
other terms), the approximate production rate is

Γ ~ exp −Son‐shellð Þ ~ exp −
ffiffiffi
λ
p

u2B
2

1 − 5ηð Þ 1 − 30ηð ÞR2 + πER2 + O R4� 	 !
:

ð92Þ

It is evident that as R varies, one moves from a tunneling
or damped production phase (when the first term in (92)
dominates) to a spontaneous production phase (when the
second term dominates). This is quite synonymous to the
potential analysis with the identification Γ ~ exp ð−VeffectiveÞ
. The potential barrier vanishes when both terms in (92) can-

cel each other which happens at

Ethreshold ~
ffiffiffi
λ
p

2π
u2B 1 − 5ηð Þ 1 − 30ηð Þ ~ 2πm2ffiffiffi

λ
p 1 −

56
3
π4m4θ2

λ

 !
:

ð93Þ

To get the production rate, one needs to extremize the
on-shell action with respect to R for reasons mentioned
before. Instead of extremizing w.r.t. R, one can extremize
w.r.t. s0; however, doing so, one is left to solve a sextic equa-
tion. To simplify the situation, note that the value of coth s0 is
proportional to the mass of the quark (W boson) via the rela-
tion derived earlier. Thus, for heavy mass, (actually λθ2m4/
m6 ≪ 1), the contribution of the second and third term of
(91) is negligible. Under those circumstances, one has

Son‐shell ≈
ffiffiffi
λ
p

1 − 3ηð Þ coth s0 − 1 −E2s0

 �

: ð94Þ

Extremizing the above w.r.t. s0 (i.e., R), one is lead to
coth s0 = ð1 − 3ηÞ/2E which is a condition connecting R
and E. From the relation thus obtained, the on-shell value
of the action is

Son‐shell =
ffiffiffi
λ
p

1 − 3ηð Þ
2

1 − 3ηð Þ 1 − 5ηð Þ
ffiffiffi
λ
p

u2B
2πE

−
2

1 − 3ηð Þ

"

+
2πE

1 − 3ηð Þ 1 − 5ηð Þ
ffiffiffi
λ
p

u2B

#
:

ð95Þ

Thus, the production rate which is proportional to the
(negative) exponential of the on-shell action (11), (30), and
(95) is given by

Γ ~ exp −
ffiffiffi
λ
p

2
1 −

8π4m4θ2

5λ

 ! ffiffiffiffiffiffiffi
ET

E

r
−

ffiffiffiffiffiffiffi
E
ET

s( )2

+
8π4m4θ2

5
ffiffiffi
λ
p

24 35,
ð96Þ

where we have restored the physical parameters via the rela-
tion η = 8π4m4θ2/15λ. In the above, the threshold electric
field is given by

ET =
2πm2ffiffiffi

λ
p 1 −

8
5
π4m4θ2

λ

 !
1 −

8
3
π4m4θ2

λ

 !

≈
2πm2ffiffiffi

λ
p 1 −

64
15

π4m4θ2

λ

 !
:

ð97Þ

At low electric field, E≪ET , the second term in (96)
ceases to contribute and one is left with

Γ ~ exp −
πm2

E
1 −

88π4m4θ2

15λ

 !
+

8π4m4θ2

5
ffiffiffi
λ
p

 !" #
: ð98Þ
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One can compare (98) to the result of [9], and both of

them show the same pattern with the identification of B
 
~ θ

where B
 

indicates an external magnetic field in [9]. In the
presence of strong magnetic fields, commutativity is lost
and the theory is described by noncommutative physics
[43]. We come up with “three” values of threshold electric
field in (46), (93), and (97). The reason they do not match
is because the latter two values have been found via perturba-
tive methods while the former (46) by exact methods. More-
over, one should notice that (93) is estimated from (92)
which itself is valid for small R, unlike (97), which is derived
at the limit of large quark mass (where the assumption on R is
relaxed). However, all of them point towards the same fact,
threshold electric field is decreased due to noncommutativity.
A reason for concern may be the extra (θ dependent) term
in (96) and (98) which is independent of the electric field.
We believe this is an effect of our simplification of solving a
quadratic equation instead of a sextic one (see above).

A reason for concern: one can also find out the “thresh-
old” electric field from the DBI action (by claiming that the
DBI action should be real for all allowed values of the electric
field) [44, 45]. However, such analysis shows that the thresh-
old electric field is the same as that of the commutative case
irrespective of whether the applied electric field is parallel
or perpendicular to the noncommutative directions contrary
to our findings. This issue is not clear to us at the moment.

5. Conclusions

In this paper, we have performed an interquark potential
analysis to find the effective potential barrier in the presence
of an external electric field in noncommutative gauge theory.
From the same, we have shown that the threshold electric
field is decreased from its commutative counterpart. In the
presence of noncommutativity, there exist strong repulsive
forces between the particles at short distances, i.e., the Cou-
lombic interaction develops a short distance repulsive correc-
tion. This implies the electrostatic potential energy needed to
tear out the virtual particles is less than usual explaining the
result found. We have also argued that noncommutativity
does not lead to confinement as at large distances, the behav-
ior of the potential is essentially Coulombic as demonstrated.
We also have found out the thermal corrections to the above
and have seen that finite temperature effects do not entangle
with (space-space) noncommutative ones as expected which
also can be seen by putting the values of (27) and (28) in [46].
Moreover, we have also perturbatively computed the correc-
tions to the circular Wilson loop over the known commuta-
tive result in the first order of the noncommutative
deformation parameter, and hence, the decay rate has been
found out from which the decrement of the threshold value
is also clear. To the best of our knowledge, such an analysis
for the noncommutative holographic Schwinger effect is
new. At low electric field, our result shares the same pattern
with that of [9] for noncommutative Uð1Þ gauge theory.
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