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In this paper, we study a projectable Hořava-Lifshitz cosmology without the detailed balance condition minimally coupled to a
nonlinear self-coupling scalar field. In the minisuperspace framework, the super-Hamiltonian of the presented model is
constructed by means of which some classical solutions for the scale factor and scalar field are obtained. Since these solutions
exhibit various types of singularities, we came up with the quantization of the model in the context of the Wheeler-DeWitt
approach of quantum cosmology. The resulting quantum wave functions are then used to investigate the possibility of the
avoidance of classical singularities due to quantum effects which show themselves important near these singularities.

1. Introduction

In recent years, a new gravitation theory based on anisotropic
scaling of the space x and time t was presented by Hořava.
Since the methods used in this gravitation theory are similar
to the Lifshitz work on the second-order phase transition in
solid-state physics, it is commonly called Hořava-Lifshitz
(HL) theory of gravity [1–4]. In general, HL gravity is a gen-
eralization of general relativity (GR) at a high-energy ultravi-
olet (UV) regime and reduces to standard GR in the low-
energy infrared (IR) limit. However, unlike another candi-
dates of quantum gravity, the issue of the Lorentz symmetry
breaking at high energies is described somehow in a different
way. Here, the well-known phenomenon of Lorentz symme-
try breaking will be expressed by a Lifshitz-like process in
solid-state physics. This is based on the anisotropic scaling
between space and time as

t⟶ bzt, x⟶ bx, ð1Þ

where b is a scaling parameter and z is a dynamical critical
exponent. It is clear that z = 1 corresponds to the standard
relativistic scale invariance with the Lorentz symmetry.

Indeed, with z = 1, the theory falls within its IR limit. How-
ever, different values of z correspond to different theories,
for instance, what is proposed in [1, 2] as the UV gravita-
tional theory requires z = 3. In order to better represent the
asymmetry of space and time in HL theory, we write the
space-time metric in its ADM form, that is,

gμν t, xð Þ =
−N2 t, xð Þ +Na t, xð ÞNa t, xð Þ Nb t, xð Þ

Na t, xð Þ hab t, xð Þ

 !
,

ð2Þ

where Nðt, xÞ is the lapse function, Naðt, xÞ are the compo-
nents of the shift vector, and habðt, xÞ is the spacial metric.
There are two classes of HL theories depending on whether
the lapse function is a function only of t, for which the theory
is called projectable, or of ðt, xÞ, for which we have a nonpro-
jectable theory. Since in cosmological settings, the lapse func-
tion usually is chosen only as a function of time, the
corresponding HL cosmologies are projectable [5–7]. In
more general cases however, one may consider the lapse
function as a function of both t and x to get a nonprojectable
theory (see [8, 9]). At first glance, it may seem that imposing

Hindawi
Advances in High Energy Physics
Volume 2021, Article ID 6617910, 12 pages
https://doi.org/10.1155/2021/6617910

https://orcid.org/0000-0003-4316-0234
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6617910


the lapse function to be just a function of time is a serious
restriction. However, it should be noted that in the frame-
work of this assumption, the classical Hamiltonian constraint
is no longer a local constraint, but its integral over all spatial
coordinates should be done, which means that we do not
have a local energy conservation. In [10], it is shown that this
procedure yields classical solutions to the IR limit of HL grav-
ity which are equivalent to Friedmann equations with an
additional term of the cold dark matter type. On the other
hand, in homogeneous models like the Robertson-Walker
metric, such spatial integrals are simply the spatial volume
of the space and thus the above-mentioned dark dust con-
stant must vanish [11, 12]. In summary, it is worth noting
that although almost all physically important solutions of
the Einstein equations like Schwarzschild, Reissner-Nord-
ström, Kerr, and Friedmann-Lemaitre-Robertson-Walker
space times can be cast into the projectable form by suitable
choice of coordinates, most of the results, in principle, may
be extended to the nonprojectable case through a challenging
but straightforward calculation [13, 14].

Another thing to note about the HL theory is the form of
its action which in general consists of two kinetic and poten-
tial terms. Its kinetic term SK is nothing other than what
comes from the Einstein-Hilbert action. The form for the
potential term is SV =

Ð
d4x

ffiffiffiffiffiffi−gp
V ½hab�, where V is a scalar

function that depends only on the spacial metric hab and its
spacial derivatives. Among the very different possible combi-
nations that can be constructed using the three-metric scalars
[5], Hořava considered a special form in z = 3 theory known
as “detailed balance condition,” in which the potential is a
combination of the terms ∇aRbc∇aRbc, ∇aRbc∇bRac, ∇aR∇aR
[2, 3]. Here, we do not go into the details of this issue. The
detailed balanced theories show simpler quantum behavior
because they have simpler renormalization properties. How-
ever, as shown in [11, 12], if one relaxes this condition, the
resulting action with extra allowed terms is well-behaved
enough to recover the models with detailed balance. Another
feature of HL theory is its known inconsistency problems
such as its instabilities, ghost scalar modes, and the strong
coupling problem. Indeed, by perturbation of this theory
around its IR regime, one can show that it suffers from some
instabilities and fine-tunings that may not be removed by
usual tricks such as analytic continuation. Since our study
in this article is done at the background level, such issues
are beyond our discussion. However, a detailed review of this
topic can be found in [15]. On the other hand, there are some
extensions of the initial version of the HL gravity theory that
deal with such problems. Some of these are as follows: [16], in
which a projectable Uð1Þ symmetric soft-breaking detailed
balance condition model is considered and it is shown that
the resulting theory displays anisotropic scaling at short dis-
tances while almost all features of GR are recovered at long
distances. The nonprojectable model without detailed bal-
ance condition is studied in [9], where it is proven that only
nonprojectable model is free from instabilities and strong
coupling. The Uð1Þ symmetric nonprojectable version of
the HL gravity is studied in [17, 18], in which a coupling of
the theory with a scalar field is also considered and it is
shown that all the problems that the original theory suffers

from will disappear. Finally, a progress report around all of
the above-mentioned issues has been reviewed in [19].

In this paper, we consider a Friedmann-Robertson-
Walker (FRW) cosmological model coupled to a self-
interacting scalar field, in the framework of a projectable
HL gravity without detailed balance condition. The basis of
our work to deal with this issue is through its representation
with minisuperspace variables. Minisuperspace formulation
of classical and quantum HL cosmology is studied in some
works (see, for instance, [5, 6] and [20–23]). Also, quantiza-
tion of the HL theory without restriction to a cosmological
background is investigated, for instance, in [24], in which
the quantization of two-dimensional HL theory without the
projectability condition is considered, and [25], where a ð1
+ 1Þ-dimensional projectable HL gravity is quantized.

Here, we first construct a suitable form for the HL action
and then will add a self-coupling scalar field to it. For the flat
FRW model and in some special cases, the classical solutions
are presented and their singularities are investigated. We
then construct the corresponding quantum cosmology based
on the canonical approach of the Wheeler-DeWitt (WDW)
theory to see how things may change their behavior if the
quantum mechanical considerations come into the model.

2. The Model Outline

To study the FRW cosmology within the framework of HL
gravity, let us start by its geometric structure in which in a
quasispherical polar coordinate, the space time metric is
assumed to be

ds2 = −N2 tð Þdt2 + a2 tð Þ dr2

1 − kr2
+ r2 dϑ2 + sin2ϑdφ

� �� �
, ð3Þ

where NðtÞ is the lapse function, aðtÞ is the scale factor, and
k = 1, 0, and −1 correspond to the closed, flat, and open uni-
verse, respectively. In terms of the ADM variables, the above
metric takes the form

gμν t, xð Þ = −N2 tð Þ 0
0 hab

 !
, ð4Þ

where

hab = a2 tð Þ diag 1
1 − kr2

, r2, r2 sin2ϑ
� �

ð5Þ

is the intrinsic metric induced on the spatial 3-dimensional
hypersurfaces. The gravitational part of the HL action, with-
out the detailed balance condition, is given by SHL = SK + SV ,
where SK is its kinetic part:

SK ~
ð
dtd3xN

ffiffiffi
h

p
KabK

ab − λK2
	 


, ð6Þ

where h is the determinant of hab and λ is a correction con-
stant to the usual GR due to HL theory. Also, Kab is the
extrinsic curvature (with trace K) defined as
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Kab =
1
2N Na∣b +Nbja −

∂hab
∂t

� �
, ð7Þ

where Na∣b denotes the covariant derivative with respect to
hab. Since for the FRW metric, all components of the shift
vector are zero, a simple calculation based on the above def-
inition results in KabK

ab = 3 _a2/N2a2 and K = −3 _a/Na, where
a dot represents differentiation with respect to t. Going back
to the action, its potential part is in the form

SV = −
ð
dtd3xN

ffiffiffi
h

p
V hij
� �

: ð8Þ

According to the relation (1) and because of the aniso-
tropic scaling of space and time coordinates, their dimensions
are different as ½x� = ½κ�−1 and ½t� = ½κ�−z, where the ½κ� is a
symbol of dimension of momentum. In this sense, the
dimension of the metric, lapse function, and shift vector will
be ½γij� = ½N� = 1 and ½Ni� = ½κ�z−1. Therefore, the potential

term in a three-dimensional space has the dimension ½V ½hij��
= ½κ�z+3. So, according to such a dimensional analysis, one
may argue that for special case z = 3, the potential V ½hij� con-
sists of the following terms of the Ricci tensor, Ricci scalar, and
their covariant derivatives of dimension ½κ�6 [26]

V hij
� �

= g0ζ
6 + g1ζ

4R + g2ζ
2R2 + g3ζ

2RijR
ij

+ g4R
3 + g5RRijR

ij + g6RijR
jkRi

k

+ g7R∇
2R + g8∇iRjk∇

iRjk,
ð9Þ

where gi (i = 0,⋯, 8) are dimensionless coupling constants
coming fromHL correction to usual GR and ζwith dimension
½ζ� = ½κ� is introduced to make the constants gi dimensionless.
Under these conditions, the gravitational part of the HL theory
that we shall consider hereafter has the following form [11, 12,
21, 26–28]:

SHL =
M2

PL
2

ð
M

dtd3xN
ffiffiffi
h

p �
KijK

ij − λK2 + R − 2Λ

−
g2
M2

PL
R2 −

g3
M2

PL
RijR

ij −
g4
M4

PL
R3 −

g5
M4

PL
RRijR

ij

−
g6
M4

PL
RijR

jkRi
k −

g7
M4

PL
R∇2R −

g8
M4

PL
∇iRjk∇

iRjk
�
,

ð10Þ

in which MPL = 1/
ffiffiffiffiffiffiffiffiffi
8πG

p
and we have set c = 1, ζ = 1, Λ = g0

M2
PL/2, and g1 = −1.
Now, let us consider a scalar field minimally coupled to

gravity but has a nonlinear interaction with itself by a cou-
pling function FðϕÞ [29]. The action of such a scalar field
may be written as

Sϕ =
ð
M

d4x ffiffiffiffiffiffi
−g

p
F ϕð Þgμν∂μϕ∂νϕ: ð11Þ

The existence of a scalar field in a gravitational theory can
address many issues in cosmology such as spatially flat and
accelerated expanding universe at the present time, inflation,
dark matter, and dark energy. The action of the scalar field
considered here has the same form as that in usual cosmolog-
ical models with general covariance. However, in the HL
gravity, the Lorentz symmetry is broken in such a way that
various higher spatial derivatives will appear in the gravita-
tional part of the action. Therefore, one expects this feature
to be considered when constructing the action of the scalar
field. This means that we may be able to add higher spatial
derivatives of the scalar field into its action. One of the possi-
ble types of such actions for the scalar field is presented in
[30] as

Sϕ =
ð
d4x ffiffiffiffiffiffi

−g
p

N
1
N2

_ϕ −Ni∂iϕ
	 
2

−V ∂iϕ, ϕð Þ
� �

, ð12Þ

where the potential function V can in general contain arbi-
trary combinations of ϕ and its spatial derivatives. However,
as emphasized in [30], in homogeneous and isotropic cosmo-
logical settings like the FRW metric, we have Ni = 0 and the
cosmological ansatz for the scalar field is ϕ = ϕðtÞ. In such
cases since ∂iϕ = 0, the functionV in the scalar action reduces
effectively to a usual potential that vanishes for a free scalar
field. In this respect, the action (11) we presented for a self-
interacting scalar field in the theory appears to be based on
physical grounds.

The total action may now be written by adding the HL
and scalar field actions as S = SHL + Sϕ =

Ð
dtL½a, ϕ, _a, _ϕ�.

Having at hand the actions (10) and (11), by substituting
the metric (3) into them, we are led to the following effective
Lagrangian in terms of the minisuperspace variables ðaðtÞ,
ϕðtÞÞ (the Planck mass can be absorbed in a time term and
so we may rescale the time as t⟶ t/tPL, where tPL = 1/MPL
is the Planck time. In this sense, in what follows, by t, we
mean the dimensionless quantity t/tPL. In particular, the fig-
ures are plotted in terms of this quantity):

L a, ϕ, _a, _ϕ
h i

=N
�
−
a _a2

N2 + gca − gΛa
3 −

gr

a

−
gs
a3

+ 1
N2 F ϕð Þa3 _ϕ2

�
,

ð13Þ

in which the new coefficients are defined as [31]

gc =
6k

3 3λ − 1ð Þ ,

gΛ = 2Λ
3 3λ − 1ð Þ ,

gr =
12k2 3g2 + g3ð Þ
3 3λ − 1ð ÞM2

PL
,

gs =
24k3 9g4 + 3g5 + g6ð Þ

3 3λ − 1ð ÞM4
PL

:

ð14Þ
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The momentum conjugate to each of the dynamical var-
iables can be obtained by definition pq = ∂L/∂ _q with results

pa = −ð2a _a/NÞ and pϕ = ð2/NÞFðϕÞa3 _ϕ. In terms of the these
momenta, the total Hamiltonian reads

H =NH =N −
p2a
4a +

p2ϕ
4a3F ϕð Þ − gca + gΛa

3 + gr

a
+ gs

a3

 !
:

ð15Þ

As it should be, the lapse function appears as a Lagrange
multiplier in the Hamiltonian which means that the Hamil-
tonian equation for this variable yields the constraint equa-
tion H = 0. At classical level, this constraint is equivalent to
the Friedmann equation. As we shall see later, this constraint
also plays a key role in forming the basic equation of quan-
tum cosmology, that is, the WDW equation.

3. Classical Cosmology

In this section, we intend to study the classical cosmological
solutions of the HL model whose Hamiltonian is given by
equation (15). In the Hamiltonian approach, the classical
dynamics of each variable is determined by the Hamilton
equation _q = fq,Hg, where {.,.} is the Poisson bracket. So,
we get

_a = −
Npa
2a ,

_pa =N −
p2a
4a2 + gc − 3gΛa

2 + gr
a2

+ 3gs
a4

+
3p2ϕ

4a4F ϕð Þ

 !
,

_ϕ =
Npϕ

2a3F ϕð Þ ,

_pϕ =
Np2ϕ
4a3

F ′
F2 ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð16Þ

where F ′ = dFðϕÞ/dϕ. Before attempting to solve the above
system of equations, we must choose a time gauge by fixing
the Lapse function. Without this, we will face with the prob-
lem of underdeterminacy which means that there are fewer
equations than unknowns. So, let us fix the lapse function
as N = anðtÞ, where n is a constant. With this time gauge,
by eliminating pϕ from two last equations of (16), we obtain
the following equation for ϕ:

€ϕ
_ϕ
+ 1
2
F ′ ϕð Þ
F ϕð Þ

_ϕ + 3 − nð Þ _a
a
= 0, ð17Þ

which seems to be a conservation law for the scalar field. This
equation can easily be integrated with result

_ϕ
2
F ϕð Þ = Ca2 n−3ð Þ, ð18Þ

where C is an integration constant. Now, to obtain a differen-
tial equation for the scale factor, let us eliminate the
momenta from the system (16) from which and also using
(18), we will arrive at

_a2 + a2n gc − gΛa
2 −

gr
a2

−
gs + C
a4

� �
= 0, ð19Þ

which is equivalent to the Hamiltonian constraintH = 0. The
last differential equation we want to derive from the above
relations is an equation between a and ϕ whose solutions give
us the classical trajectories in the plane a − ϕ. This may be
done by removing the time parameter between (18) and
(19) which yields

F ϕð Þ dϕ
da

� �2
= Ca−6 −gc + gΛa

2 + gr
a2

+ gs + C
a4

� �−1
: ð20Þ

The nondependence of this equation on the parameter
n indicates that although different time gauges lead to dif-
ferent functions for the scale factor and scalar field, the
classical trajectories are independent of these gauges. On
the other hand, from now on, to make the model simple
and solvable, we take a polynomial coupling function for
the scalar field as FðϕÞ = λϕm.

In general, the above equations do not seem to have ana-
lytical solutions, so in what follows, we restrict ourselves to
some special cases for which we can obtain analytical closed
form solutions for the above field equations.

3.1. Flat Universe with Cosmological Constant: k = 0, Λ ≠ 0.
For a flat universe, the coefficients gc, gr , and gs vanish. So,
if we choose the time parameter corresponding to the gauge
N = 1 or equivalently n = 0, the Friedmann equation (19)
reads

_a2 = gΛa
2 + C

a4
, ð21Þ

with solution

a tð Þ = C
gΛ

� �1/6
sinh1/3 3 ffiffiffiffiffiffi

gΛ

p
tð Þ, ð22Þ

where the integration constant is adopted in such a way that
the singularity occurs at t = 0, which means that aðt = 0Þ = 0.
Now, let us find an expression for the scalar field. As we men-
tioned before, we consider its self-coupling function in the
form of FðϕÞ = λϕm. With this choice for the function FðϕÞ,
equation (18) takes the form

ϕm/2dϕ = ±
ffiffiffiffi
C
λ

r
dt

a3 tð Þ , ð23Þ
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in which with the help of equation (22), we are able to inte-
grate it and find the time evolution of the scalar field as

ϕ tð Þ = ϕ m+2ð Þ/2
c −

m + 2
6
ffiffiffi
λ

p ln tanh 3 ffiffiffiffiffiffi
gΛ

p
t

2

� �� �2/ m+2ð Þ
, m ≠ −2,

ð24Þ

where the integration constant ϕc is chosen such that
limt→∞ϕðtÞ = ϕc. In Figure 1, we have plotted the behavior
of the scale factor and the scalar field. As this figure shows,
the universe begins its evolution with a Big Bang singularity
(zero size for aðtÞ) at t = 0 where the scalar field blows up
there. As time goes on, while the universe expands (with pos-
itive acceleration) until it finally enters to a de Sitter phase,
that is, we have aðtÞ ~ e

ffiffiffiffi
gΛ

p t , as t⟶ +∞, the scalar field
eventually tends to have a constant value. We can also follow
this behavior by studying the classical trajectories in the
plane a − ϕ. To do this, we need to extract the scalar field in
terms of the scale factor from equation (20) which now can
be written as

ϕm
dϕ
da

� �2
= C

λ

1
a2 gΛa

6 + Cð Þ , ð25Þ

whose integration yields

ϕ að Þ = ϕ m+2ð Þ/2
c + m + 2

6
ffiffiffi
λ

p ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΛa6 + C

p
−

ffiffiffiffi
C

p
ffiffiffiffiffiffi
gΛ

p
a3

" #2/ m+2ð Þ
, m ≠ −2:

ð26Þ

In Figure 1, we also plotted the above expression for typ-
ical numerical values of the parameters. How the scale factor
varies with respect to the scalar field, or vice versa, can also
be seen from this figure. We will return to this classical tra-
jectory again when looking at the quantum model to inves-
tigate whether the peaks of the wave function correspond
to these paths.

3.2. Nonflat Universe with Zero Cosmological Constant: k ≠ 0,
Λ = 0. In this section, we consider another special case in
which while the curvature index is nonzero, the cosmological
constant is equal to zero. This means that gc, gs, gr ≠ 0 and
gΛ = 0. Under these conditions, if we take an evolution
parameter corresponding to the lapse function NðtÞ = aðtÞ
(or n = 1), the Friedmann equation (19) will be

_a2 + gca
2 − gr −

gs + C
a2

= 0: ð27Þ

Before trying to solve this equation, we should note a
point about the selected lapse function. Unlike the case in
the previous section in which our time parameter with N =
1 was indeed the usual cosmic time, here with N = aðtÞ, t is
just an evolution or clock parameter in terms of which the
evolution of all dynamical variables is measured. However,
one may translate the final results in terms of the cosmic time
τ, using its relation with the time parameter t, that is, dτ =
NðtÞdt.

The general solution to equation (27) is

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1 − cos ωtð Þ + β sin ωt

p
, ð28Þ

where α = gr/2gc, β =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgs + CÞ/gc

p
, and ω = 2 ffiffiffiffiffi

gc
p

. To
express this and the following relations in a simpler form,
let us take gr = 0, which is equivalent to g3 = −3g2 in (14).
Also, we assume that λ > 1/3 and 9g4 + 3g5 + g6 > 0, so that
sign ðgc, gsÞ = sign ðkÞ. In the following, we will present the
solutions for the closed universe k = +1. The open (k = −1)
counterpart of the solutions can be obtained via making
small changes by replacing the trigonometric functions with
their hyperbolic counterparts. Therefore, by applying, again,
the initial condition aðt = 0Þ = 0, we have

a tð Þ = gs + C
gc

� �1/4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2 ffiffiffiffiffi

gc
p

tð Þ
q

: ð29Þ

6

5

4

3

2

1

0

{a
 (t

), 
𝜙

 (t
)}

0.0 0.5 1.0
t

1.5 2.0

(a)

5432
a

1

5

4

3

2

1

0

𝜙
 (a

)

0

(b)

Figure 1: (a) The qualitative dynamical behavior of the scale factor (blue line) and scalar field (red line) in the flat universe. (b) Classical
trajectory in the plane a − ϕ. The figures are plotted for numerical values: gΛ = 1, C = 5, λ = 1, m = 2, and ϕc = 2/5.
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The time dependence of the scalar field can also be
deduced from equation (18) which for the present case has
the solution

ϕ tð Þ = ϕ m+2ð Þ/2
c + m + 2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

gs + Cð Þλ

s
lntan ffiffiffiffiffi

gc
p

tð Þ
" #2/ m+2ð Þ

, m ≠ −2:

ð30Þ

Finally, what remains is the classical trajectories in the
plane a − ϕ which as before may be obtained from (20) with
result

ϕ að Þ = m + 2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

gs + Cð Þλ

s
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
gs + C

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs + C − gca4

p
ffiffiffiffiffi
gc

p
a2

" #2/ m+2ð Þ
:

ð31Þ

In Figure 2, we have shown the time behavior of the scale
factor and the scalar field. As clearly shown from this figure,
the universe begins its decelerated expansion from a singular-
ity where the size of the universe is zero and the value of the
scalar field is infinite. As the scale factor expands to its max-
imum value, the scalar field decreases to zero. Then, by recol-
lapsing the scale factor to a Big Crunch singularity, the scalar
field again increases until it blows where the scale factor van-
ishes. The behavior of the scale factor and the scalar field in
the plane a − ϕ is also plotted in this figure. This figure also
clearly shows the divergent behavior of the scalar field where
the scale factor is singular.

3.3. Early Universe. In this section, we consider the dynam-
ics of the universe in the early times of cosmic evolution
when the scale factor is very small. For such a situation,
the Friedmann equation (19) (again in the gauge N = aðtÞ)
takes the form

_a2 = gr +
gs + C
a2

, ð32Þ

in which we omit the terms containing a2 and a4. It is easy to
derive the scale factor from this equation as

a tð Þ = gr t + δð Þ2 − gs + C
gr

� �1/2
, ð33Þ

where δ =
ffiffiffiffiffiffiffiffiffiffiffiffi
gs + C

p
/gr . This equation shows that, regardless

of whether the curvature index is positive or negative, the
universe has a power law expansion in the early times of its
evolution coming from a Big Bang singularity. Following
the same steps we took in the previous sections will lead us
to the following expressions for the scalar field and the clas-
sical trajectory:

ϕ tð Þ =
"
ϕ m+2ð Þ/2
c −

m + 2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

gs + Cð Þλ

s

� ln gr t + δð Þ − ffiffiffiffiffiffiffiffiffiffiffiffi
gs + C

p
gr t + δð Þ + ffiffiffiffiffiffiffiffiffiffiffiffi

gs + C
p

#2/ m+2ð Þ
, m ≠ −2,

ð34Þ

ϕ að Þ =
"
ϕ m+2ð Þ/2
c + m + 2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

gs + Cð Þλ

s

� ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gra2 + gs + C

p
+

ffiffiffiffiffiffiffiffiffiffiffiffi
gs + C

p
ffiffiffiffiffi
gr

p
a

#2/ m+2ð Þ
:

ð35Þ

As before, we summarized all the results of this section in
Figure 3, which illustrates the evolution and singularity of the
dynamical variables.

3.4. Late Time Expansion. Another important issue in cos-
mological dynamics is the late time behavior of the universe.
In this limit, the Friedmann equation (19), in the gauge N = 1,
has the form

_a2 + gc − gΛa
2 = 0, ð36Þ
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Figure 2: (a) The qualitative behavior of the scale factor (blue line) and scalar field (red line) when Λ = 0 and gr = 0. (b) The classical
trajectory in the plane a − ϕ. The figures are plotted for the numerical values: gc = 2, gs = 1, C = 3, λ = 1, m = 2, and ϕc = 0.
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where here we have neglected the terms 1/a2 and 1/a4. It is
easy to see that this equation is solved by the following
functions:

a tð Þ = 1
2gΛ

e
ffiffiffiffi
gΛ

p t + gcgΛe
− ffiffiffiffigΛp t� �

,

a tð Þ = 1
2gΛ

gcgΛe
ffiffiffiffi
gΛ

p t + e−
ffiffiffiffi
gΛ

p t� �
,

ð37Þ

of which both enter the de Sitter phase:

a tð Þ ~ e
ffiffiffiffi
gΛ

p t , ð38Þ

when t⟶ +∞. Similar to the calculations of the preceding
sections, we can obtain the following expression for the sca-
lar field:

ϕ tð Þ =
"
ϕ m+2ð Þ/2
c + m + 2ð ÞgΛ

4gc

ffiffiffiffiffiffiffiffi
C
λgc

s  
tanh ffiffiffiffiffiffi

gΛ
p

t
� �

cosh ffiffiffiffiffiffi
gΛ

p
t

� �
+ 2 arctan e

ffiffiffiffi
gΛ

p t� �!#2/ m+2ð Þ
,

ð39Þ

which tends to have a constant value as t⟶ +∞.

4. Canonical Quantization of the Model

As we mentioned before, HL gravity is a generalization of the
usual GR at UV regimes in such a way that in the low-energy
limits, the standard GR is recovered. Therefore, from a cos-
mological point of view, one may obtain some nonsingular
bouncing solutions. From this perspective, this theory may
be considered an alternative to inflation since it is expected
that it might solve the flatness and horizon problems and
generate scale invariant perturbations for the early universe
without the need of exponential expansion usually used in
the inflationary theories [32–34].

On the other hand, at the background (nonperturbation)
level, almost all solutions to the Einstein field equations

exhibit different kinds of singularities. On this basis, cosmo-
logical solutions along with conventional matter fields are no
exception to this rule and mainly exhibit Big Bang-type sin-
gularities. Any hope to eliminate these singularities would
be in the development of a concomitant and conducive quan-
tum theory of gravity. In the absence of a complete theory of
quantum gravity, it would be useful to describe the quantum
state of the universe in the context of quantum cosmology, in
which based on the canonical quantization procedure, the
evolution of the universe is described by a wave function in
the minisuperspace. In other words, in this view, the system
in question will be reduced to a conventional quantum
mechanical system. In what follows, according to this proce-
dure, we are going to overcome the singularities that appear
in the classical model.

Now let us focus our attention on the quantization of the
model described in the previous section. To do this, we start
with the Hamiltonian (15). As we know, the lapse function in
such Hamiltonians appears itself as a Lagrange multiplier,
so we have the Hamiltonian constraint H = 0. This means
that application of the canonical quantization procedure
demands that the quantum states of the system (here the uni-
verse) should be annihilated by the quantum (operator) ver-
sion of H, which yields the WDW equation ĤΨða, ϕÞ = 0,
where Ψða, ϕÞ is the wave function of the universe. To
obtain the differential form of this equation, if we use the
usual representation Pq ⟶ ∂q, we are led to the following
WDW equation:

1
4a

∂2

∂a2
+ β

a
∂
∂a

 !
Ψ a, ϕð Þ

−
1

4a3F ϕð Þ
∂2

∂ϕ2
+ κF ′ ϕð Þ

F ϕð Þ
∂
∂ϕ

 !
Ψ a, ϕð Þ

+ −gca + gΛa
3 + gr

a
+ gs
a3

	 

Ψ a, ϕð Þ = 0,

ð40Þ

where the parameters β and κ represent the ambiguity in the
ordering of factors ða, PaÞ and ðϕ, PϕÞ, respectively. It is clear
that there are lots of the possibilities to choose these
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Figure 3: (a) The behavior of the scale factor (blue line) and scalar field (red line) in the early times of cosmic evolution. (b) The
corresponding classical trajectory in the plane a − ϕ. The figures are plotted for numerical values: gr = 1, gs = 2, C = 1, λ = 1, m = 2, and ϕc
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parameters. For example, with β = κ = 0, we have no factor
ordering, and with β = κ = 1, the kinetic term of the Hamil-
tonian takes the form of the Laplacian −ð1/2Þ∇2 of the min-
isuperspace. In general, as it is clear from the WDW
equation, the resulting form of the wave function depends
on the chosen factor ordering [35]. However, it can be
shown that the factor ordering parameter will not affect
semiclassical calculations in quantum cosmology [36], and
so for convenience, one usually chooses a special value for
it in the special models.

As the first step in solving equation (40), let us separate
the variables into the form Ψða, ϕÞ = ψðaÞΦðϕÞ, which yields
the following differential equations for the functions ψðaÞ
and ΦðϕÞ:

d2ψ að Þ
da2

+ β

a
dψ að Þ
da

+ 4
�
−gca

2 + gΛa
4

+ gr +
gs +w2

a2

�
ψ að Þ = 0,

ð41Þ

d2Φ ϕð Þ
dϕ2

+ κF ′ ϕð Þ
F ϕð Þ

dΦ ϕð Þ
dϕ

+ 4w2F ϕð ÞΦ ϕð Þ = 0, ð42Þ

with w being a separation constant. As in the classical case,
here we examine the analytical solutions of the above equa-
tions in a few specific cases. Moreover, we assume that the
wave functions are supposed to obey the boundary condi-
tions:

Ψ a = 0, ϕð Þ = 0, Dirichlet B:C:, ð43Þ

∂Ψ a, ϕð Þ
∂a






a=0

= 0, Neumann B:C:, ð44Þ

where the first condition is called the Dewitt boundary con-
dition to avoid the singularity in the quantum domain. In
what follows, we will deal with the resulting quantum cos-
mology in the same special cases that we have already exam-
ined the classical solutions.

4.1. Flat Quantum Universe with Cosmological Constant: k
= 0, Λ ≠ 0. In this case by selecting β = −2, equation (41)
reads as

d2ψ að Þ
da2

−
2
a
dψ að Þ
da

+ 4 gΛa
4 + w2

a2

� �
ψ að Þ = 0, ð45Þ

of which the solutions in terms of Bessel functions JνðzÞ and
YνðzÞ are as follows:

ψ að Þ = C1a
3/2 J i

6
ffiffiffiffiffiffiffiffiffiffiffi
16w2−9

p 2
3
ffiffiffiffiffiffi
gΛ

p
a3

� �

+ C2a
3/2 Y i

6
ffiffiffiffiffiffiffiffiffiffiffi
16w2−9

p 2
3
ffiffiffiffiffiffi
gΛ

p
a3

� �
,

ð46Þ

where C1 and C2 are the integration constants. In the case
where the order of Bessel functions is imaginary, (w2 >

9/16), both of them satisfy the DeWitt boundary conditions
and so both integral constants can be nonzero which we take
them here as C1 = 1 and C2 = i.

On the other hand, by putting the coupling function
FðϕÞ = λϕm and setting the ordering parameter as κ = 0,
equation (42) takes the form

d2Φ ϕð Þ
dϕ2

+ 4w2λϕmΦ ϕð Þ = 0, ð47Þ

with solutions

Φ ϕð Þ = C3
ffiffiffi
ϕ

p
J1/ m+2ð Þ

4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

+ C4
ffiffiffi
ϕ

p
Y1/ m+2ð Þ

4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

:

ð48Þ

Thus, the eigenfunctions of the WDW equation can be
written as

Ψw a, ϕð Þ = ψw að ÞΦw ϕð Þ = a3/2
ffiffiffi
ϕ

p
H 1ð Þ

i
6
ffiffiffiffiffiffiffiffiffiffiffi
16w2−9

p

� 2
3
ffiffiffiffiffiffi
gΛ

p
a3

� �
J1/ m+2ð Þ

4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

,
ð49Þ

where we choose C4 = 0, for having well-defined functions
in all ranges of variable ϕ, and Hð1Þ

ν ðzÞ = JνðzÞ + iYνðzÞ are
the Hankel functions. We may now write the general solu-
tions to the DWD equation as a superposition of the
above eigenfunctions, that is,

Ψ a, ϕð Þ =
ð
D
dw f wð ÞΨw a, ϕð Þ

= a3/2
ffiffiffi
ϕ

p ð
D
dw f wð ÞH 1ð Þ

i
6
ffiffiffiffiffiffiffiffiffiffiffi
16w2−9

p

� 2
3
ffiffiffiffiffiffi
gΛ

p
a3

� �
J1/ m+2ð Þ

4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

,

ð50Þ

where f ðwÞ is a suitable weight function to construct the
quantum wave packets and D = ð−∞,−3/4� ∪ ½+3/4,+∞Þ is
the domain on which the integral is taken. It is seen that
this expression is too complicated for extracting an analyt-
ical closed form for the wave function and the choice of a
function f ðwÞ that leads to an analytical solution for the
wave function is not an easy task. However, such weight
functions in quantum systems can be chosen as a shifted
Gaussian weight function:

f wð Þ =wpe−σ w−w0ð Þ2 , ð51Þ

which are widely used in quantum mechanics as a way to
construct the localized states. This is because these types of
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weight factors are centered about a special value of their argu-
ment and they fall off rapidly away from that center. Due to
this behavior, the corresponding wave packet resulting from
(50) after integration has also a Gaussian-like behavior, i.e.,
localized about some special values of its arguments.

To realize the correlation between these quantum pat-
terns and the classical trajectories, note that in the minisuper-
space formulation, the cosmic evolution of the universe is
modeled with the motion of a point particle in a space with
minisuperspace coordinates. In this sense, one of the most
important features in quantum cosmology is the recovery
of classical solutions from the corresponding quantummodel
or, in other words, how can the WDD wave functions predict
a classical universe. In quantum cosmology, one usually con-
structs a coherent wave packet with suitable asymptotic
behavior in the minisuperspace, peaking in the vicinity of
the classical trajectory. In Figure 4, we have plotted the qual-
itative behavior of the square of the wave function (50) with
the above mentioned Gaussian weight factor and its contour
plot for typical numerical values of the parameters. As this
figure shows, while the wave function has its dominant peaks
in the vicinity of the classical trajectories, these peaks predict
a universe to come out of a nonzero value of the scale factor.
Therefore, it can be seen that by the quantization of the
model, while we are able to eliminate the classical singularity,
we are also led to a quantum pattern with a good agreement
with its classical counterpart.

4.2. Nonflat Quantum Universe with Zero Cosmological
Constant: k ≠ 0, Λ = 0. In this case (equation (41)), the
WDW equation for the scale factor takes the form

d2ψ að Þ
da2

+ 4 −gca
2 + gr +

gs +w2

a2

� �
ψ að Þ = 0, ð52Þ

in which we have set the ordering parameter as β = 0. The
general solutions to this differential equation are

ψ að Þ = C5
Mμν 2 ffiffiffiffiffi

gc
p

a2
� �
ffiffiffi
a

p + C6
Wμν 2 ffiffiffiffiffi

gc
p

a2
� �
ffiffiffi
a

p , ð53Þ

where MμνðxÞ and WμνðxÞ are Whittaker functions with μ

= gr/2
ffiffiffiffiffi
gc

p
and ν = ði/4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16ðgs +w2Þ − 1
p

. If as in the classi-
cal case, we take gr = 0 (or equivalently g3 = −2g2), the Whit-
taker functions can be expressed in terms of the modified
Bessel functions KiνðzÞ and IiνðzÞ as follows [37]:

ψ að Þ = C7
ffiffiffi
a

p
K i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p ffiffiffiffiffi
gc

p
a2

� �
+ C8

ffiffiffi
a

p
I i
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p ffiffiffiffiffi
gc

p
a2

� �
:

ð54Þ

Since the wave functions must satisfy limψðaÞa→∞ = 0,
we restrict ourselves to consider only the modified Bessel
function KiνðzÞ as solution and so we set C8 = 0. The other
part of the WDW equation is the equation of the scalar field
which in this case is also the same as equation (47), and its
solutions have already been given in relation (48). Therefore,
if the coefficients are selected as C3 = 1 and C4 = i, the eigen-
functions of the WDW equation read

Ψw a, ϕð Þ =
ffiffiffiffiffiffi
aϕ

p
Ki/4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p ffiffiffiffiffi
gc

p
a2

� �
� H 1ð Þ

1/ m+2ð Þ
4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

,
ð55Þ
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Figure 4: The figures show the square of the wave function (a) and its corresponding contour plot (b). Also, the dashed line denotes the
classical trajectory of the system in the phase space. The figures are plotted for the numerical values: gΛ = 1, λ = 1, m = 2, p = 0, σ = 1/10,
and w0 = 1/2.
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in which their superposition gives the total wave function as

Ψ a, ϕð Þ =
ffiffiffiffiffiffi
aϕ

p ð
D

′dw f wð ÞK i
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p

� ffiffiffiffiffi
gc

p
a2

� �
H 1ð Þ

1/ m+2ð Þ
4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

,
ð56Þ

where f ðwÞ is again a Gaussian-like weight factor in the form
(51) and D′ is the domain of integration over w as

D′ =
−∞, +∞ð Þ, gs ≥

1
16 ,

−∞, − 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16gs

p� �
∪ + 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16gs

p
, +∞

� �
, gs <

1
16 :

8>><
>>:

ð57Þ

The results of the numerical study of this wave function
are shown in Figure 5. The similarities and differences
between quantum and classical solutions, and the fact that
the wave functions’ peaks correspond very well to the classi-
cal trajectories, are similar to those described at the end of the
previous section.

4.3. Early Quantum Universe. In this last part of the article,
we study the quantum dynamics of the model in the early
times of evolution of the universe. As it is well known, the
quantum behavior of the universe is more important in this
period, and it is the quantum effects in this era that prevent
the classical singularities. For small values of the scale factor,
equation (41) with β = 0 takes the form

d2ψ að Þ
da2

+ 4 gr +
gs +w2

a2

� �
ψ að Þ = 0, ð58Þ

with solutions

ψ að Þ = C9
ffiffiffi
a

p
J i/2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p 2 ffiffiffiffiffi
gr

p
að Þ

+ C10
ffiffiffi
a

p
Y i/2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p 2 ffiffiffiffiffi
gr

p
að Þ:

ð59Þ

Since both Bessel functions satisfy the DeWitt boundary
condition, both can contribute to making the wave function,
so we take the coefficients as C9 = 1 and C10 = i. The solu-
tions for the scalar field are the same as the ones we presented
in the previous two sections. So, the final form of the wave
function in this case is

Ψ a, ϕð Þ =
ð
D

′dw f wð Þψw að ÞΦw ϕð Þ

=
ffiffiffiffiffiffi
aϕ

p ð
D

′dw f wð ÞH 1ð Þ
i/2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 gs+w2ð Þ−1

p

� 2 ffiffiffiffiffi
gr

p
að Þ J1/ m+2ð Þ

4
ffiffiffi
λ

p
w

m + 2 ϕ m+2ð Þ/2
 !

,

ð60Þ

where as before f ðwÞ is a Gaussian-like weight function and
the domain of integration D′ is given by (57). The final
results are shown in Figure 6. A look at this figure shows that
the universe started its evolution from a nonzero value for the
scale factor which in turn means that quantum effects have
eliminated the singularity of the classical model. Also, as
the figure clearly shows, the wave function has its peaks in
the vicinity of classical trajectories shown in Figure 3, which
indicate the compatibility of classical and quantum solutions.

5. Summary

In this paper, we have studied the classical and quantum
FRW cosmology in the framework of the projectable HL
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Figure 5: The figures show the square of the wave function (a) and its corresponding contour plot (b). Also, the dashed line denotes the
classical trajectory of the system in the plane a − ϕ. The figures are plotted for the numerical values: gc = 2, gs = 1, λ = 1, m = 2, p = 2,
σ = 1/2, and w0 = 3.
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theory of gravity without the detailed balance condition. The
phase space variables turn out to correspond to the scale fac-
tor of the FRW metric and a nonlinear self-coupling scalar
field with which the action of the model is augmented. After
an introduction to the HL theory, based on a dimensional
analysis, we present the terms which are allowed to be
included in the potential part of the action of this theory. This
process enabled us to write the Lagrangian and Hamiltonian
of the model in terms of the minisuperspace variables and
some correction parameters coming from the HL theory.

We then studied the classical cosmology of this model
and formulate the corresponding equations within the
framework of the Hamiltonian formalism. Though, in gen-
eral, the classical equations did not have exact solutions, we
analyzed their behavior in the special cases of the flat uni-
verse with cosmological constant, the nonflat universe with
vanishing cosmological constant, and the early and late times
of cosmic evolution and obtained analytical expressions for
the scale factor and the scalar field in each of these cases.
Another point to note about the classical solutions is the
choice of the appropriate lapse function in each case, which
actually represents the time gauge in which that solution is
obtained. We have seen that the classical expressions for
the scale factor and scalar field exhibit some kinds of classical
singularities. These singularities are mainly of the Big Bang
type for the scale factor and blowup type for the scalar field.

The last part of the paper is devoted to the quantization of
the model described above in which we saw that the classical
singular behavior will be modified. In the quantum models,
we separated the WDW equation and showed that its eigen-
functions can be obtained in terms of analytical functions. By
an appropriate superposition of the eigenfunctions, we con-
structed the integral form of the wave functions. Although
it is seen that these integral expressions are too complicated
for extracting an analytical closed form for the wave func-
tions, employing numerical methods, we have plotted the

approximate behavior of the square of the wave functions
for typical values of the parameters. In each case, investiga-
tion of the pattern followed by the wave functions show a
nonsingular behavior near the classical singularity. In addi-
tion to singularity avoidance, we saw that the wave functions’
peaks are with a good approximation, in the vicinity of the
classical trajectories, which indicates the fact that the classical
and quantum solutions are in complete agreement with each
other in the late time of cosmic evolution.
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