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We study the evolution of the physical parameter values defined at the sub-planckian energies to values at low energies. TheWilson
action is the basis of the research. The presence of the compact extra dimensions has two consequences. The positive point is that
the integration over extra dimensions is a promising way to substantially reduce the parameters to be comparable with the
observational values. On the other hand, the discreteness of the energy levels of compact extra dimensions complicates the
analysis. This difficulty can be overcome with the truncated Green functions.

1. Introduction

It is assumed that the physics is formed at high energies
[1, 2]; the widespread idea on the inflationary processes
at the early universe is the well-known example. Absence
of the quantum gravity forces is working at the sub-
planckian energies as the highest scale. The purpose of future
research is to discover or guess the structure of theory at the
sub-planckian scale—its dynamical variables, symmetries,
and parameter values [3, 4].

The evident difficulty is that we live at low energies,
where the values of the observable physical parameters could
strongly deviate from their initial values [5]. Moreover, the
same structure of the Lagrangian at high energies could be
different from those at low energies due to the quantum
corrections, for example.

One of the aims of the fundamental physics is to postu-
late a Lagrangian depending on primary parameters and fix
them using their connection with observational values. This
means that we have to calculate the parameter values at low
energies starting from those at high energies [6–8]. The
well-known Wilson approach [9] is accommodated for this
purpose, and this idea is used in this paper.

The parameters at sub-planckian energies are usually
supposed to be of the order of the Planck scale [10], much
larger than the observable values at the present time. At

the same time, the variation of the parameter values with
energy is proportional to coupling constants which are
usually assumed to be small compared to the Planck scale.
This means that there is no proper way to connect the
parameters at both scales, and hence, new mechanisms
should be involved which is the essence of the hierarchy
problem [11, 12].

The idea of extra dimensions is very popular now and is
used in the solution to many problems [11, 13, 14]. It is
shown here that the insertion of an extra space facilitates
the connection of high energy Lagrangian structure and the
low energy one. This is shown in a study done in our first
article [15]. At the same time, the extra space inclusion
complicates the calculations, especially if the extra dimen-
sions are compact.

In the previous paper [15], we studied the role of the
compact extra dimensions on the parameter variation with
energy. Starting from a moderate scale, we have shown that
integration over additional coordinates can lead to a strong
change in physical parameters from a 4-dimensional point
of view. It is also possible to adjust them to the observable
values with the help of the inhomogeneous extra dimen-
sions [16].

In this paper, we continue discussion starting from the
sub-planckian energy scale where the excitations of the extra
space metric can not be neglected. We start with the analysis
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of running constants at the high energies [17] in the spirit of
the Wilson action. The truncated Green function is used to
neutralize the discreteness of the Kaluza-Klein spectra. As is
shown below, the corrected parameters (the Lambda term
is an important exception) differ slightly from the initial ones
if coupling constants are assumed to be small. This means
that this mechanism is not very effective and can not be
responsible for the parameter variation in many orders of
the magnitude. It is also confirmed that integration over the
extradimensional coordinates could be able to shift the
parameter values to the observational range.

The analysis made in this paper is based on the toy
model—scalar-tensor gravity [18, 19] with compact extra
space. We start from the scalar field theory at high energies
(small distances) and find the mass of the scalar field oscilla-
tions at lower energy scales.

The research is based on the multidimensional variant of
the f ðRÞ gravity. The interest in f ðRÞ theories is motivated by
inflationary scenarios starting with the work of Starobinsky
[20, 21] where 4-dimensional metric is used. Some f ðRÞ
models in 4-dim space that satisfies the observable con-
straints are considered in Refs. [19, 22]. New branch which
uses the Horndeski equations is also developed nowadays
[23]. The model used here is based on the 4-dim space
endowed by extra dimensions.

In the next section, we check a statement on the smallness
of the quantum corrections in the presence of the compact
extra dimensions with its discrete spectrum. The Wilson
approach is modernized, because it is not clear how to extract
an “infinitely small energy layer” in this case.

2. Parameters Renormalization in Presence of
Extra Dimensions

We use theWilsonian approach to study the renormalization
of the physical parameters in coarse of slowing down from
high to small energies. Primary parameters are assumed to
be fixed at high energies, M0 in our case. There are several
scales that influence the dynamic of the parameters—
D-dim Planck mass mD, the electroweak scale v, the size of
local extra space r, and the scale M0. The relations between
scales are assumed to be as follows:

v≪ 1/r≪M0 ≪mD ð1Þ

In this section, it will be shown that the perturbative
procedure of the renormalization cannot help in a significant
reduction of the physical parameters, the cosmological
constant is the important exception.

Here, we study the energy dependence of the parameters
in the spirit of theWilson approach by defining physics at the
highest energies. Descending to the electroweak scale v or
lower is the necessary step. This process is accompanied by
a variation of physical parameters due to quantum fluctua-
tions. It appears to be not easy to shift energy to small values
on the basis of pure gravity. Insertion of scalar field(s)
improve the situation [15, 24].

Consider the action of the scalar field and f ðRÞ gravity

S = mD−2
D

2

ð
dDz

ffiffiffiffiffiffiffiffiffiffi
∣gD ∣

p
f Rð Þ + ∂Aχ∂

Aχ −
1
2m

2χ2 − λχ4
� �

,

ð2Þ

f Rð Þ = R + aR2 + c,mD = 1 ð3Þ
acting in a D-dim space. The purpose of the study is to
elaborate a way of renormalization of physical parameters
in the presence of the extra space. For this, the scalar field
is considered. Given the complexity of the study, the influ-
ence of the scalar field on the metric is ignored. The opposite
case has been discussed in [25] with the specific choice of
parameters that leads to a correct inflationary model.

The metric is chosen in the form

ds2 = gD zð ÞABdzAdzB = dt2 − e2Ht dr2 + r2dΩ2
2

� �
− e2β yð ÞdΩ2

n:

ð4Þ

It is assumed that the de Sitter stage is the result of other
fields affect like the Higgs field [26] or the gravity with higher
derivatives [21].

Let us estimate the Hubble parameter value. We start
from the scale M0 and descend to lower energies. According
to the model of chaotic inflation [27], the Hubble parameter
relates to the energy density ρ ≃M4

0 asH ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρ/3M2

Planck

p
~

M2
0/MPlanck. Hence, the characteristic value of the Hubble

parameter is H ≲M0. On the other hand, we consider all
physical parameters (including the mass m) being of order of
mD ~MPlanck. Therefore, H ≪m according to inequalities (1).

The equation of motion for the homogeneous space in de
Sitter space is the following

€χ + 3H _χ +m2χ = 0: ð5Þ

It is seen thatH plays the role of friction and can be omit-
ted if H ≪m. In this case, equation (5) describes the motion
of the oscillator without friction in the 4-dim Minkowski
space, the Green function of which is well known. This fact
is widely used by the inflationary models to terminate the
inflationary stage.

The generating functional for action (2) at the intermedi-
ate scale M

ZM
0 =

ðM
0

Dχ½ �M exp iSð Þ: ð6Þ

plays the central role in the Wilsonian approach. The extra
space is supposed to be maximally symmetric; its radius
r and the corresponding energy scale Me are related as
Me = 1/r. The functional (6) is the result of integrating
out quick modes M <mD of the scalar field. The D-
dimensional Planck mass mD is considered as the maximal
energy scale in the rest of the article.

The physical parameters at the scale M0 ≲mD are of the
order of mD. The reason for such choice is that high-energy
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quantum corrections from the scales M0 to the highest
scale mD are assumed to have been taken into account
in expression (6).

Next, two subsections are devoted to discussion on the
energy shifting from high values to small ones with the
subsequent parameter renormalization in the presence of
the extra space.

Let us clarify the notion “scale of integration.” There is no
problem to think in terms of space scale l or the energy scale
M with the relation l = 1/M in 4 dimensions [28]. The energy
scale is also expressed in terms of the euclidean wave vector
kl,M = kl = jklj. The presence of local extra dimensions com-
plicates these relations due to the discreteness of their energy
levels. There are two kinds of the scalar field excitations in
this case—one of them is represented by the waves along
the four dimensions. The second set of the excitations in
the compact extra dimensions is discrete. The correspon-
dence between the energy of excitations in compact space
and the space scale is M = Kl/r, Kl = 0, 1, 2⋯ for 1-dim
extra space [29]. Suppose now that we wish to integrate over
“very thin” momentum layer δk in the 4 large dimensions.
Immediate question is—which of the energy states related
to the extra dimensions should be taken into account also?
If a chosen energy interval does not contain any discrete
level Kl, we should forget about integration over the extra
space modes. We should keep them in mind only in those
cases when kl − δkl < Kl/r < kl. Therefore, the differential
equations that describe the renormalization flow of parame-
ters cannot be applied in this case.

Let us start with the standard Wilsonian procedure and
formally divide the field into quick χqðzÞ and slow χsðzÞ parts

χ zð Þ = χs zð Þ + χq zð Þ ð7Þ

The quick modes relate to an energy interval ðM −
δM ÷MÞ which is not obligatory infinitesimally small.

Substitution (7) into (6) gives the generating functional in
the form (the units mD = 1 are used in the rest of the paper)

ZM
0 = ZM−δM

0 · ZM
M−δM ð8Þ

ZM
M−δM =

ðM
M−δM

Dχq exp
i
2

ð
dDz

ffiffiffiffiffiffi
gD

p�

� 1
2 ∂χq

� 	2
−
1
2m

2χ2
q − δU χq, χs

� 	� �

,

ð9Þ

ZM−δM
0 =

ðM
0
Dχs exp

i
2

ð
dDz

ffiffiffiffiffiffi
gD

p 1
2 ∂χsð Þ2 −U χsð Þ

� �� 

ð10Þ

where

δU χq, χs

� 	
= λχ4

q + 4λχ3
qχs + 6λχ2

qχ
2
s + 4λχqχ

3
s + λχ4

s :

ð11Þ

Here, we have taken into account orthogonality of χs
and χq.

The way to integrate out the field χq from (8), provided
that the coupling constant λ is small, is well known (see for
example textbook [28]). The result of integration over quick
modes can be written in the Euclid space as [28, 30].

ZM
M−δM = exp −

ð
dDz

ffiffiffiffiffiffi
gD

p
δU

δ

δJ zð Þ , χs zð Þ
� �� �

· Z Eð Þ
J :

ð12Þ

Here, the generating functional in the Euclid space

Z Eð Þ
J =

ðM
M−δM

Dχ exp −
ð
dDz

ffiffiffiffiffiffi
gD

p 1
2 ∂χð Þ2 + 1

2m
2χ2 − χJ

� �� �
ð13Þ

is a function of an external current J . Integration over small
deviations δχq = χq − χc around the classical part of the
field gives

Z Eð Þ
J = exp −

1
2 〠
N⊂N

ln λN +m2� �( )

· exp 1
2

ð
dDz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣gD zð Þ ∣

p
dDz′

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣gD z′

� 	
∣

r
J zð ÞG′ z, z′

� 	
J z′
� 	


ð14Þ

The set N is a set of eigenstates that were integrated
out. The complex index N = ðk, KÞ where k is the wave
vector in the 4-dim Euclidean space, and K marks eigen-
states in the compact extra space and represents a discrete
set. G′ðz, z′Þ is the truncated Green function discussed in
the Appendix. This Green function is cut both from UV
and IR sides because the integration over finite energy
interval is assumed.

Let us suppose that we have integrated out all discrete
modes K for which K ≥ Kl. This means that we are disposed
at the energy scale is M = Kl/r with space scale l = r/Kl and
the 4-dim mode of the energy excitation

kl = 1/l = Kl/r: ð15Þ

Now, we have to choose next coarse-graining space
scale l + Δl and subsequent energy shift. We define it by
the algebraic equation

Kl+Δl = Kl − 1→ Δl = r
Kl Kl − 1ð Þ : ð16Þ

The last expression follows from (15). The meaning of
(16) is as follows: the selected integration layer Δl relates
to one and only one number Kl of energy state by defini-
tion. The size of the 4-dim energy layer is

Δkl ≡ kl − kl+Δl = 1/r ð17Þ
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according to relations (15) and (16). Therefore, the contri-
bution of one step of the coarsening l→ l + Δl is as follows

Δl ⋯ = 〠
N⊂N

⋯ = 〠
Kl+Δl

K=0
〠
kl+Δl

k=kl
⋯ +〠

kl

k=0
Kl+Δl = constð Þ⋯ ð18Þ

The first term in the sum represents the contribution of all
modes that are quick in the 4-dim space. The last term
includes all 4-dim modes containing only one excitation
Kl+Δl of the extra dimensions. All these excitations contain
wavelengths in the interval ðl ÷ l + ΔlÞ. Manipulations with
the expressions similar to (18) are discussed in Appendix A
in light of the truncated Green functions calculations.

Let us fix scales for the following discussion and esti-
mations. Let MPl ≃mD = 1, the extra space size is r = 106,
and the initial energy scale is M0 = 10−2. Therefore, the
energy layer Δkl = 1/r is much smaller than M0. In this
case, summation can be approximated by integration with
appropriate accuracy.

Now, we will show that correction to the mass m also
contains the small parameter λ and hence is small. To verify
this, let us estimate quantum corrections produced by terms
proportional to χ2

s . The latter can be extracted from (11), (12)
and has the form

δU2 ≡ 6λχq zð Þ2χs zð Þ2: ð19Þ

Receipt (12) with δU2 instead of δU leads to the quantum
correction

δU2 χsð Þ = 3
2 λG

′ z, zð Þχs zð Þ2 ð20Þ

to the potential in the first multiplier ZM
0 of expression (8).

Therefore, the correction to the scalar field mass equals

Δlm
2 = 3λG′ z, zð Þ ð21Þ

and is small if the coupling constant is small. The truncated
Green function has the form (see Appendix A)

G′ z, zð Þ = 1
8π3r

k3l
mK

arctan kl
mK

� �
+m2

K ln mKð Þ + 1
2 k

2
l

"

−
1
2m

2
K ln k2l +m2

K

� �#

ð22Þ

Here, m2
K = k2l +m2 and kl =M is the running energy

scale. Substituting the Green function (22) into the expres-
sion (20), we obtain the quantum correction to the scalar
field mass.

The summation over layers gives

Δm2 = 3λ 〠
M0

kl=1/r
G′ z, zð Þ ≃ 3λr

ðM0

1/r
dklG′ z, zð Þ: ð23Þ

According to (22), the large parameter r is canceled and
the quantum correction appears to be proportional to the
coupling constant λ≪ 1. All other values likeM,m are smaller
than unity (mD = 1) and does not spoil this conclusion.

The expression (21) represents the mass difference
between observations at two energy scales—M and M − 1/r.
Expression (23) is obtained by the integration over all layers
in the energy interval M0 >M > 1/r. The lower boundary
is chosen because there are no KK excitations below 1/r.
Renormalization of the KK masses due to the quantum
effects were studied in [31].

Calculation of the change in the energy density of the
ground state (first line in expression (14)) during the one-
step transition from the energy scale M ≡ kl to the scale
kl+Δl = kl + 1/r gives the following result

Δεl
V5

≃
1

16π3r
−k4l ln k2l +m2

K

� �
+ 2k4l − 2mKk

3
l arctan

kl
mK

� ��

−
1
2m

4
K ln mK + 1

4 m4
K − k4l

� �
ln m2

K + k2l
� �

−
1
4 k

2
l m

2
K + 1

8 k
4
l

�
:

ð24Þ

Here,V5 = 2πrV4 is the 5-dimensional volume. The result
was obtained by combining expressions (B.4) and (B.5) in
Appendix B.

Let us estimate the value of the total energy density
shift provided that the energy scale is reduced from the
initial scale M0 to the scale 1/r where the fluctuations in
the extra dimensions are suppressed. To this end, we use
expression (24) to obtain

Δε

V5
≃〠

l

Δεl
V5

~ 1
r
〠
M0

kl=1/r
m4 ln m ~

ðM0

1/r
dklm

4 ln m ~M0m
4 ln m:

ð25Þ

inequalities kl ≤M0 ≤m ≤mD = 1 were used here. The var-
iation of mass Δm was neglected due to its smallness
proved above. The energy density M0 can not be larger
than the Planck one mD = 1, hence the correction to the
ground state energy density is small as compared to the
initial value ε0 ~mD = 1:

Δε

V5
≃M0m

4 ≤m5
D: ð26Þ

Evidently, such renormalization cannot make theΛ-term
be equal to the observational value which is almost zero.
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3. Moderate Energies: Reduction to
4 Dimensions

It was shown in the previous section that the physical
parameters vary slowly with the energy, at least for the
usual assumption on the coupling constant λ≪ 1. There-
fore, the shift of the parameter values from high energy
to small energies is a serious problem. In this section, it
will be shown that the extra dimensions supply us a more
effective mechanism of parameters changing provided that
the dimensionality of extra space n ≥ 2. We will assume
n = 2 in this section.

There are five energy scales—the D-dimensional Planck
mass mD, the initial energy scale M0 where we intend to
specify our Lagrangian, the scale Me which is related to a
characteristic size r = 1/Me of the compact extra dimensions,
the electroweak scale v where the parameter values are
known, and the running scale M.

Excitations discussed in the previous section act in each
of D dimensions if Me <M. The picture is simplified when
the energy scale shifts below Me where the excitations of
the extra space are suppressed, and hence, the extra metric
is static. It is reasonable to integrate over the extra coordi-
nates in this case. This strongly influences the values of the
physical parameters as is discussed in this section.

Consider the scalar field action taken from (2)

Sχ =
1
2

ð
d4xdny

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣g4gn ∣

p
∂Aχ zð ÞgAB∂Bχ zð Þ


− εm2χ zð Þ2 − λχ zð Þ4�, ð27Þ

where ε = ±1. As was shown in [16, 32, 33], there exist static
solution χ = χclðyÞ to the classical equation

Dχ +U ′ χð Þ = 0 ð28Þ

which are homogeneous in our 4-dim space. Let us decom-
pose the field around its classical part

χ x, yð Þ = χcl yð Þ + δχ ; δχ ≡ 〠
∞

k=1
χk xð ÞYk yð Þ≪ χcl yð Þ,

ð29Þ

where YkðyÞ are the orthonormal eigen-functions of the
d’Alembert operator acting in the n-dim extra space

nYk yð Þ = lkYk yð Þ: ð30Þ

Below, we limit ourselves by the only first term in the sum
(29) so that

δχ = χ0 xð ÞY0 yð Þ, nY0 = 0, Y0 =
1ffiffiffiffiffi
vn

p : ð31Þ

Here, vn is the volume of the compact extra space.
This mode is distributed uniformly in the extra dimen-
sions. After substitution (29) and (31) into expression

(27), we get the following form of the effective 4-dim
action for the scalar field χ0ðxÞ

Sχ =
1
2

ð
d4x

ffiffiffiffiffiffiffiffiffi
∣g4 ∣

p
∂μχ0 xð Þgμν∂νχ0 xð Þ


−m2
ef fχ0 xð Þ2 − 2Λχ + o χ2

0
� �� ð32Þ

where

m2
ef f = εm2 + 6λ

vn

ð
dny

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣gn yð Þ ∣

p
χcl yð Þ2,

Λχ =
1
2

ð
dny

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣gn yð Þ ∣

p
−∂aχcl yð Þgabn yð Þ∂bχcl yð Þ
h

+ εm2χ2
cl + λχ4

cl

i
ð33Þ

Our aim is to reduce the effective mass mef f in many
orders of the magnitude provided that the initial mass
m ~mD = 1. One could imagine that equation

m2
ef f = 0 ð34Þ

holds for a specific solution χclðyÞ = ~χclðyÞ to equation
(28) provided that ε = −1. Indeed, numerical simulation
indicates that an appropriate function ~χclðyÞ can be found
for a wide range of the coupling constant λ and the extra
space volume vn. This means that we are able to substan-
tially reduce the mass of the scalar field from the Planckian
scale ~mD ~MPlanck to the electroweak one. Moreover, its
value at low energies could have any sign. The Higgs-like
potential with two minima is realized if the sign of the mass
term remains negative.

The cosmological constant Λχ is also a function of the
classical field distribution χclðyÞ in the extra dimensions.
As was shown in [15], one can choose a function �χclðyÞ
that gives zero value of the cosmological constant. Notice
that ~χclðyÞ ≠ �χclðyÞ so that a more complicated extra met-
ric should be used in the future to simultaneously correct
the mass and the Lambda term.

4. Conclusion

In this paper, we use the Wilsonian approach to study the
evolution of the physical parameter values defined at the
sub-planckian energies to values at low energies. It is shown
that all parameters are varied slowly as compared to their
initial values which are of the order of the Planck scale. This
means that we need an alternative mechanism that is respon-
sible for a significant change in the parameter values so that
they coincide with the observational ones. We study the role
of the local extra dimensions in this relation.

The inclusion of the compact extra space has two conse-
quences. The positive point is that the integration over extra
dimensions is a promising way to substantially decrease the
parameter values to be comparable with the observable
values. At the same time, the integration over small energy
layers which is intrinsic to the Wilsonian approach appears
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to be problematic due to the discreteness of the Kaluza-Klein
energy levels. In this regard, the truncated Green functions
were used for analysis.

It is also shown that for any mass of scalar field at low
energies, there exists an inhomogeneous extra metric that
relates this mass value to its value at the Planck energy scale.

The subject of this study relates to the Hierarchy problem
which is widely discussed in the framework of the brane
paradigm starting from the pioneering works [34, 35] where
4-dim manifolds (branes) attached to specific points of extra
dimensions are postulated. Specific parameters of the branes
are involved to succeed in the description of a variety
phenomena [14]. Renormalization of the parameters is not
considered usually. In our research, as was shown in [16],
the brane could be formed due to the concentration of a scalar
field which is governed by the classical equations of motion. It
is the renormalization procedure in the presence of compact
extra dimensions that plays the central role in this paper.

The integration over the extra dimensions looks a
promising tool for a substantial shift of the parameter
values to small ones at the low energy. A more general
study based on the Green functions in the de Sitter metric
[36] looks promising.

Appendix

A.1. A. Truncated Green Function in the
Presence of the Compact Extra Dimensions

Here, we consider the integration of generating functional
(13) over a finite set N of modes of excitation in the space
with metric M4 ×Mn. The case n = 1 is considered as a
specific example. The excitations are described by the
eigen-functions YNðx, yÞ of the D’Alembertian operator

DYN zð Þ = λNYN zð Þ: ðA:1Þ

The integration over a finite set of modes N assumes the
decomposition

χ zð Þ = 〠
N⊂N

χNYN zð Þ: ðA:2Þ

Following the standard procedure for the calculation of
generating functional (13), consider the solution

χc zð Þ = 〠
N⊂N

Ð
dDz′

ffiffiffiffiffiffiffiffiffiffi
∣gD ∣

p
YN z′

� 	
J z′
� 	

Y∗
N zð Þ

λN +m2 ðA:3Þ

to the equation

Dχc zð Þ +m2χc zð Þ = J zð Þ ðA:4Þ

Comparison of expression (A.3) with the definition of the
Green function

χc zð Þ =
ð
dDz′

ffiffiffiffiffiffiffiffiffiffi
∣gD ∣

p
G′ z, z′

� 	
J z′
� 	

ðA:5Þ

gives the relation between the truncated Green function G′
and the finite number of the eigen-functions

G′ z, z′
� 	

≡ 〠
N⊂N

YN z′
� 	

Y∗
N zð Þ

λN +m2 ðA:6Þ

If N is a full orthonormal set then G′ represents the well-
known form of the Green function.

Let us refine the formulas written above and apply them
to our needs. The metric (4) leads to the decomposition

D = 4 xð Þ + n yð Þ ðA:7Þ

which simplifies the expressions for the eigen-functions and
eigen-values:

YN x, yð Þ = Yk xð Þ · YK yð Þ ðA:8Þ

λN = λk + λK ðA:9Þ
The form of excitations in the 4-dim Euclidean space is

known

λk = k2, Yk xð Þ = 1ffiffiffiffiffiffi
V4

p ei kxð Þ ðA:10Þ

as well as in the 1-dim extra space

λK = K2/r2, YK yð Þ = 1ffiffiffiffiffiffiffi
2πr

p eiKy/r: ðA:11Þ

Acting as in (18), the Green function (A.5) acquires
the form

G′ z, zð Þ = 1
2πrV4

〠
N⊂N

λN +m2� �−1

= 1
2πrV4

〠
Kl+Δl

K=0
〠
kl+Δl

k=kl
λk + λK +m2� �−1"

+ 〠
kl

k=0
λk + λKl+Δl

+m2� �−1#
ðA:12Þ

Summation over 4-dimensional excitations can be
replaced by integration in a standard way with the result

G′ z, zð Þ = 1
4π2 · 2πr 〠

Kl−1

K=0

ðkl+Δl
k=kl

dkk3 k2 + K2/r2 +m2� �−1
+ 1
4π2 · 2πr

ðkl
k=0

dkk3 k2 + Kl − 1ð Þ2/r2 +m2� �−1
ðA:13Þ

To move ahead, we have to fix scales for the numerical
estimations here and in the main text. Let mD ≃MPl = 1, the
extra space size is r = 106, and the primary energy scale is
M0 = 10−2. Then, the number of extra space modes (or the
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Kaluza-Klein levels) is Kl =M0/r−1 = 104, and we may
replace the sum over K by the integral. Those part of the
Green function that contains quick mode in 4-dim space
(first line above) acquires the form

G′4 dim ≃
1

8π3r
〠
Kl−1

K=0
Δklk

3
l k2l + K2/r2 +m2� �−1

≃
1
8π3 k

3
l Δkl

ð Kl−1ð Þ/r

0
dζ k2l + ζ2 +m2
� 	−1

≃
1
8π3

k3l
r

ðkl
0
dζ k2l + ζ2 +m2
� 	−1

= 1
8π3

k3l
rmK

arctan kl
mK

� �
ðA:14Þ

Here m2
K = k2l +m2, Δkl = 1/r and Kl − 1 ~ Kl = rkl.

The second line in (A.13) is responsible for the only quick
mode acting in the extra dimensions:

G′extra ≃
1

8π3r

ðkl
0
dkk3 k2 +m2

K

� �−1
= 1
8π3r

m2
K ln mKð Þ + 1

2 k
2
l −

1
2m

2
K ln k2l +m2

K

� �� �
:

ðA:15Þ

and the truncated Green function at the energy level kl is
as follows

G′ z, zð Þ =G′4 dim +G′extra: ðA:16Þ

A.2. B. Ground State Energy in the
Presence of the Compact
Extra Dimensions

The shift of the ground state energy (the first exponent in
(14)) is represented in this Appendix. The contribution of
layers in the interval Δkl from (17) is as follows

Δε = −
1
2 〠
N⊂N

ln λN +m2� �

= −
1
2 〠
Kl+Δl

K=0
〠
kl+Δl

k=kl
ln λk + λK +m2� �

−
1
2〠

kl

k=0
ln λk + λKl+Δl

+m2� �
ðB:1Þ

The first term in the sum represents the contribution of
the quick modes in the 4-dim space. The last term includes
all modes in the 4-dim space—quick and slow—and quick

excitation with the number Kl+Δl acting in the extra dimen-
sions. All these excitations are characterized by wavelength
in the interval ðl ÷ l + ΔlÞ in 4 dimensions or in the extra
space. The sums over k and K can be converted into the
integral in the standard form

〠
k

= V4
8π2

ð
dkk3, 〠

K

= r
ð
dK , ðB:2Þ

and we get the Euclidean version of the energy density

Δεl
V5

= −
1

16π3r
〠
Kl+Δl

K=0

ðkl+Δl
k=kl

dkk3 ln k2 + λK +m2� �"

+
ðkl
k=0

dkk3 ln k2 + λKl+Δl
+m2� �#

:

ðB:3Þ

Here, λk = k2 and V5 = 2πrV4 is the 5-dimensional
volume. V4 is 4-dim volume in the Euclidean space. The
interval of the energy layer Δkl is assumed to be small, and
we neglect variation of the physical parameters within this
interval. Then, (B.2) is

Δεl
V5

≃ −
1

16π3r
k3l Δkl 〠

Kl+Δl

K=0
ln k2l + λK +m2� �

+ 1
16π3r

−
1
2m

4
K ln mK −

1
4 k4l −m4

K

� �
ln m2

K + k2l
� ��

−
1
4 k

2
l m

2
K + 1

8 k
4
l

�
ðB:4Þ

where m2
K = λKl+Δl

+m2.
Remind that we are integrating over the wavelength

interval ðl ÷ ΔlÞ. Let us express everything in terms of the left
edge of the interval l or the wave number kl = 1/l. The wave-
length of the scalar field excitation in extra space is l = r/Kl.
Hence, Kl = rkl.

The right edge of the interval is defined as follows:
Kl+Δl = Kl − 1 that leads to the interval Δkl = 1/r and
m2

K = ðKl − 1Þ2/r2 +m2 ≃ K2
l /r2 = k2l (m≪ 1)

Δεl
V5

≃ −
1

16π3
k3l
r2

〠
Kl−1

K=0
ln K2

r2
+ k2l +m2

� �

+ 1
16π3r

−
1
2m

4
K ln mK + 1

4 k4l −m4
K

� �
ln m2

K + k2l
� ��

+ 1
4 k

2
l m

2
K −

1
8 k

4
l −

1
4m

4
K

�
:

ðB:5Þ
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According to the discussion made in Appendix A,
the sum in (B.4) can be approximated by the integral

〠
Kl−1

K=0
ln K2/r2 + k2l

� �
≃ r

ðKl/r

0
dζ ln ζ2 + k2l +m2

� 	
= kl ln k2l +m2

K

� �
− 2kl

+ 2mK arctan kl/mKð Þ:

ðB:6Þ

Finally, (B.4) is transformed in the following form

Δεl
V5

≃
k4l

16π3r
15
8 − ln 2 − π

2 −
5
2 ln kk

� �
: ðB:7Þ
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