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The Dirac field, spin 1/2 particles, is investigated in phase space. The Dirac propagator is defined. The Thermo Field Dynamics
(TFD) formalism is used to introduce finite temperature. The energy-momentum tensor is calculated at finite temperature. The
Stefan-Boltzmann law is established, and the Casimir effect is calculated for the Dirac field in phase space at zero and finite
temperature. A comparative analysis with these results in standard quantum mechanics space is realized.

1. Introduction

The Wigner function formalism [1, 2] and noncommutative
geometry [3] play a fundamental role in the study of phase
space quantum mechanics. The Wigner formalism enables a
quantum operator, A, defined in the Hilbert space, S, to
have an equivalent function of the type awðq, pÞ, in phase
space Γ, using the Moyal-product or star-product (å). Such
a formalism leads to the classical limit of a quantum theory.
In fact, quantum mechanics is a noncommutative theory
whose representation in phase space is an object of debate.
The opposite question, i.e., for a given classical function,
what is its quantum counterpart? It is solved by using the
Weyl transformation which is formulated independent of
the phase space. In fact, it can be established within the con-
figuration space of the generalized coordinates. The phase
space has a well-defined physical meaning. The Hamilto-
nian function is naturally identified with the energy of the
system. Establishing a field theory in phase space sheds light
on some obscure points in quantum mechanics. For
instance, the quantum symmetries are better understood
in the symplectic structure of phase space which is similar

to the role of Lorentz transformation in the covariant for-
mulation of special relativity. This theoretical framework
has to include a finite temperature in order to be suitable
for experiments.

The star product has been employed for different objec-
tives. In particular, it has been used for development of a
nonrelativistic quantum mechanics formalism in terms of a
phase space using the Galilean symmetry representation
[4]. Thus, the Schrödinger equation is obtained. In this case,
the wave function ψ = ψðq, pÞ is a quasiprobability amplitude
defined in phase space and the Wigner function is obtained
in an alternative way, i.e., by using f wðq, pÞ = ψ†åψ. The
Dirac equation coupled with the electromagnetic field in
phase space [5] and applications [6] has been obtained.

Our goal is to explore the quasiprobability amplitude to
study the effect of temperature using Thermo Field Dynam-
ics (TFD) formalism [7–13] in a system for spin-1/2 particles.
The principles of this theory are the duplication of the Fock
space using the Bogoliubov transformations. The TFD for-
malism is used to study the Casimir effect, at zero and finite
temperature. The scalar field in phase space has been studied
[14], and some exclusive effects have been found at finite
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temperature. In addition, the Stefan-Boltzmann law for spin-
1/2 particles in phase space is described in details.

In Section 2, the symplectic Dirac field is introduced. In
Section 3, the Thermo Field Dynamics formalism is pre-
sented. In Section 4, the Stefan-Boltzmann law is established
and the Casimir effect for the Dirac field is calculated in
phase space at zero and finite temperature. In the last section,
some concluding remarks are presented.

2. Spin-1/2 Field in Phase Space

A brief outline for spin-1/2 particles in phase space formal-
ism is described. For this purpose, the following star opera-
tors in phase space are defined:

P̂
μ = pμå = pμ −

i
2

∂
∂qμ

, ð1Þ

Q̂
μ = qμå = qμ +

i
2

∂
∂pμ

, ð2Þ

M̂
μν = Q̂

μ
P̂
ν − Q̂

ν
P̂
μ, ð3Þ

which satisfy the Heisenberg commutation relation ½Q̂μ, P̂ν�
= igμν, with gμν = diag ð−1, 1, 1, 1Þ. The Poincaré algebra
has the form

P̂
μ, P̂ν

h i
= 0,

P̂
μ, M̂νσ

h i
= i gμνP̂

σ − gσμP̂
ν

� �
,

M̂
μν, M̂σρ

h i
= −i gμρM̂

νσ − gνρM̂
μσ + gμσM̂

ρν
�
− gνσM̂

ρμ
�
:

ð4Þ

The operators in Equations ((1)–(3)) are defined on a
Hilbert space, HðΓÞ, associated with the phase space Γ.
The operators P̂

μ
and M̂

μν
stand for translations, rotations,

and boosts, respectively. Functions defined on the Hilbert
space HðΓÞ are defined as

ð
ϕ∗ qμ, pμð Þϕ qμ, pμð Þdqμdpμ <∞: ð5Þ

The Casimir invariants are P̂
2 = P̂

μ
P̂μ and Ŵ = Ŵ

μ
Ŵμ,

where Ŵ
μ = 1/2εμνσρM̂

νσ
P̂
ρ

are Pauli-Lubansky matrices
and εμνσρ is the Levi-Civita symbol.

The Dirac equation in phase space is obtained using the
invariant operator γμP̂μ. It is defined as

γμP̂μψ q, pð Þ =mψ q, pð Þ,

γμ pμ −
i
2

∂
∂qμ

� �
ψ q, pð Þ =mψ q, pð Þ

ð6Þ

where γμ are the Dirac matrices. The Lagrangian density for
the Dirac equation is

L = −
i
4

∂�ψ
∂qμ

γμψ − �ψγμ
∂ψ
∂qμ

� �
− �ψ m − γμpμ
� �

ψ, ð7Þ

where �ψ = ψ†γ0 and m is the mass of the particle.
TheWigner function provides the physical interpretation

[5] and is given as

f W q, pð Þ = �ψ q, pð Þåψ q, pð Þ, ð8Þ

where the star product is defined by

aW q, pð ÞåbW q, pð Þ

= aW q, pð Þ exp iℏ
2

∂
!

∂q
∂
 

∂p
−

∂
!

∂p
∂
 

∂q

0
@

1
A

2
4

3
5bW q, pð Þ: ð9Þ

Using the Noether theorem in phase space [5], the
energy-momentum tensor for the Dirac field is

θ
μν
D = −

i
4

−�ψγμ
∂ψ
∂qν

+ γμψ
∂�ψ
∂qν

� �
− gμνL: ð10Þ

Then, the Green function, GDðq − q′, p − p′Þ, is defined
as

i
2
γμ

∂GD q − q′, p − p′
� �

∂qμ
+ m − γμpμ
� �

GD q − q′, p − p′
� �

= δ q − q′
� �

δ p − p′
� �

, ð11Þ

which may be written as

1
2
γμkμ~G k, p − p′

� �
+ m − γμpμ
� �

~G k, p − p′
� �

= δ p − p′
� �

,

ð12Þ

where ~Gðk, p − p′Þ = 1/ð2πÞ4 Ð d4qeikμðqμ−q′μÞGDðq − q′, p − p′
Þ. The propagator of the Dirac field is

~G k, p − p′
� �

=
δ p − p′
� �

γμ kμ/2 − pμ
h i

+m
: ð13Þ

Then, Equation (12) is an algebraic expression which
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yields (13). Then, the Green function, GD, is

GD q − q′, p − p′
� �

=
ð

d4k

2πð Þ4 e
−ikμ qμ−qμ′ð Þ~G k, p − p′

� �

=
ð

d4k

2πð Þ4
e−ik

μ qμ−qμ′ð Þ δ p − p′
� �

γμ kμ/2
� �

− pμ
h i

+m
:

ð14Þ

Taking M = 2m, the expression is

GD q − q′, p − p′
� �

= 2e−2i qμ−q′μð Þ pμ−p′μð Þ δ p − p′
� � ð d4k

2πð Þ4
e−ik

μ qμ−q′μð Þ
γμkμ +M

:

ð15Þ

This leads to the Green function for the Dirac equation in
phase space

GD q − q′, p − p′
� �
= 2e−2i qμ−q′μð Þ pμ−pμ′ð Þδ p − p′

� �
i∂μγ

μ −M
� �

G0 q − q′
� �

:

ð16Þ

G0ðq − q′Þ is defined as

G0 q − q′
� �

= −
iM
4π2

K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− qμ − q′μ
� �

qμ − q′μ
� �r� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− qμ − q′μ
� �

qμ − q′μ
� �r ,

ð17Þ

where κνðqÞ is the modified Bessel function. It should be
noted that due to the dependence on the Dirac matrices,
the Green’s function has matrix properties itself.

3. Thermo Field Dynamics Formalism

The Thermo Field Dynamics (TFD) is a thermal quantum
field theory at finite temperature [7–13]. It has two basics ele-
ments: (i) doubling the degrees of freedom in a Hilbert space
and (ii) the Bogoliubov transformation. The doubling of Hil-
bert space is given by the tilde ( ~) conjugate rules where the
thermal space is ST = S ⊗ S, with S being the standard Hilbert
space and S the tilde (dual) space. There is a mapping
between the two spaces; i.e., the map between the tilde ~bi
and nontilde bi operators is defined by the following tilde
conjugation rules:

bibj
� �~ = ~bi~bj,

cbi + bj
� �~ = c∗~bi + ~bj,

b†i
� �~

= ~bi
†,

~bi
� �~

= −ξbi,

ð18Þ

with ξ = −1 for bosons and ξ = +1 for fermions.
The Bogoliubov transformation corresponds to a rotation

of the tilde and nontilde variables. Using the doublet nota-
tion, for fermions leads to

ba =
b1 αð Þ
b2 αð Þ

 !
=

b αð Þ
~b
†
αð Þ

 !
= B αð Þ

b kð Þ
~b
†
kð Þ

 !
,

ð19Þ

where ðb†, ~b†Þ are creation operators, ðb, ~bÞ are destruction
operators, and BðαÞ is the Bogoliubov transformation given
by

B αð Þ =
u αð Þ −v αð Þ
v αð Þ u αð Þ

 !
: ð20Þ

Taking α = β (β ≡ 1/kBT with kB being the Boltzmann
constant and T the temperature), the thermal operators are
written explicitly as

b βð Þ = u βð Þb kð Þ − v βð Þ~b† kð Þ,
~b βð Þ = u βð Þ~b kð Þ + v βð Þb† kð Þ,
b† βð Þ = u βð Þb† kð Þ − v βð Þ~b kð Þ,
~b
†
βð Þ = u βð Þ~b† kð Þ + v βð Þb kð Þ:

ð21Þ

These thermal operators satisfy the algebraic rules

bp βð Þ, b†q βð Þ
n o

= δ3 p − qð Þ,

~bp βð Þ, ~b†q βð Þ
n o

= δ3 p − qð Þ,
ð22Þ

and other anticommutation relations are null. In addition,
the quantities uðβÞ and vðβÞ are related to the Fermi distribu-
tion, i.e.,

u2 βð Þ = 1
1 + e−βω

 and v2 βð Þ = 1
1 + eβω

, ð23Þ

such that v2ðβÞ + u2ðβÞ = 1. The parameter α is associated
with temperature, but, in general, it may be associated with
other physical quantities. In general, a field theory on the

topology Γd
D = ðS1Þd ×ℝD−d with 1 ≤ d ≤D, is considered.

D are the space-time dimensions, and d is the number of
compactified dimensions. This establishes a formalism such
that any set of dimensions of the manifold ℝD can be
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compactified, where the circumference of the nth S1 is
specified by αn. The α parameter is assumed as the compac-
tification parameter defined by α = ðα0, α1,⋯,αD−1Þ. The
effect of temperature is described by the choice α0 ≡ β and
α1,⋯, αD−1 = 0.

Any field in the TFD formalism may be written in terms
of the α parameter. As an example, the scalar field is consid-
ered. Then, the α-dependent scalar field becomes

ϕ q, p ; αð Þ = B αð Þϕ q, pð ÞB−1 αð Þ, ð24Þ

where the Bogoliubov transformation is used.
The α-dependent propagator for the scalar field is

G abð Þ
0 q − q′, p − p′ ; α
� �

= i 0, ~0 ∣ τ ϕa q, p ; αð Þϕb q′, p′ ; α
� �h i

∣ 0, ~0
D E

, ð25Þ

where τ is the time-ordering operator. Using j0ðαÞi = BðαÞ
j0, ~0i leads to the Green function

G abð Þ
0 q − q′, p − p′ ; α
� �

= i 0 αð Þ τ ϕa q, pð Þϕb q′, p′
� �h i			 			0 αð Þ

D E
= i
ð

d4k

2πð Þ4 e
−ik q−q′ð Þ p−p′ð ÞG abð Þ

0 k ; αð Þ, ð26Þ

where

G abð Þ
0 k ; αð Þ = B−1 k ; αð ÞG abð Þ

0 kð ÞB k ; αð Þ, ð27Þ

with Bðk ; αÞ being the Bogoliubov transformation and

G abð Þ
0 kð Þ =

G0 kð Þ 0

0 G∗
0 kð Þ

 !
, ð28Þ

where

G0 kð Þ = 1
k2 −m2 + iε

ð29Þ

is the scalar field propagator and m is the scalar field mass.
Here, G∗

0 ðkÞ is the complex conjugate of G0ðkÞ.
It is important to note that the physical quantities are

given by the nontilde variables. Then, the physical Green

function Gð11Þ0 ðk ; αÞ is written as

G 11ð Þ
0 k ; αð Þ ≡ G0 k ; αð Þ = G0 kð Þ + v2 αð Þ G∗

0 kð Þ −G0 kð Þ½ �,
ð30Þ

where

v2 k ; αð Þ = 〠
d

s=1
〠
σsf g

2s−1 〠
∞

lσ1 ,⋯,lσs=1
−ηð Þ

s+〠
s

r=1
lσr

exp −〠
s

j=1
ασ j

lσ j
kσ j

" #

ð31Þ

is the generalized Bogoliubov transformation [15], where d
is the number of compactified dimensions, η = 1ð−1Þ for fer-
mions (bosons), fσsg denotes the set of all permutations
with s elements, and k is the 4-momentum. In the next sec-
tion, three different topologies are used [16]: (i) the topology
Γ1
4 = S1 ×ℝ3, where α = ðβ, 0, 0, 0Þ. In this case, the time axis

is compactified in S1, with circumference β; (ii) the topology
Γ1
4 with α = ð0, 0, 0, i2dÞ, where the compactification along

the coordinate z is considered; and (iii) the topology Γ2
4 =

S1 × S1 ×ℝ2 with α = ðβ, 0, 0, i2dÞ is used. In this case, the
double compactification consists in time and the coordinate
z. Then, thermal effects are considered for the Casimir effect
and Stefan-Boltzmann law.

4. Stefan-Boltzmann Law and Casimir Effect for
the Dirac Field in Phase Space

The Stefan-Boltzmann law is calculated by analyzing the
energy-momentum tensor given as

θμνD q, pð Þ = lim
q′,p′ð Þ→ q,pð Þ

τ −
i
4

−�ψ′γμ ∂ψ
∂qν

+ γμψ
∂�ψ′
∂qν ′

" #(

+ gμν i
4

∂�ψ
∂qλ

γλψ′ − �ψγλ
∂ψ′
∂qλ′

 !
+ �ψ m − γμpμ
� �

ψ′
" #)

= lim
q′,p′ð Þ→ q,pð Þ

Γμντ �ψ′ q′, p′
� �

ψ q, pð Þ
h in o

,

ð32Þ

where

Γμν = −
i
4

−γμ
∂
∂qν

+ γμ
∂

∂qν′
− gμν

∂
∂qλ

γλ − γλ
∂

∂qλ′

� �" #

+ gμν m − γμpμ
� �

: ð33Þ

It should be noted that the field ψ′ is the Dirac field in
phase space as a function of the variables (q′, p′), i.e., ψ′ ≡
ψðq′, p′Þ. The vacuum expectation value of the energy-
momentum tensor is

θ
μν
D q, pð Þ
 �

= lim
q′,p′ð Þ→ q,pð Þ

Γμν 0 ∣ τ �ψ′ q′, p′
� �

ψ q, pð Þ
h i

∣ 0
D En o

:

ð34Þ

The Dirac propagator in phase space is defined in
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Equation (16) as

GD q − q′, p − p′
� �

= i 0 ∣ τ �ψ′ q′, p′
� �

ψ q, pð Þ
h i

∣ 0
D E

: ð35Þ

Then, the energy-momentum tensor has the form

θ
μν
D q, pð Þ
 �

= −i lim
q′,p′ð Þ→ q,pð Þ

Γμν 2e−2i qμ−q′μð Þ pμ−p′μð Þhn

� δ p − p′
� �i

i∂μγ
μ − 2m

� �
G0 q − q′
� �o

:

ð36Þ

The vacuum average of the energy-momentum tensor in
terms of α-dependent fields becomes

θμνD
abð Þ q, p ; αð Þ

D E
= lim

q′,p′ð Þ→ q,pð Þ
−iΓμν 2e−2i qμ−q′μð Þ pμ−p′μð Þhn

� δ p − p′
� �i

i∂μγ
μ − 2m

� �
G0 q − q′ ; α
� �o

:

ð37Þ

In order to obtain measurable physical quantities at finite
temperature, a renormalization procedure is carried out. The
physical energy-momentum tensor is defined as

Tμν abð Þ q, p ; αð Þ = θ
μν abð Þ
D q, p ; αð Þ

D E
− θ

μν abð Þ
D q, pð Þ

D E
= −i lim

q′,p′ð Þ→ q,pð Þ
Γμν�G abð Þ

D q − q′, p − p′ ; α
� �n o

,

ð38Þ

where

�G abð Þ
D q − q′, p − p′ ; α
� �

= G abð Þ
D q − q′, p − p′ ; α
� �

− G abð Þ
D q − q′, p − p′
� �

: ð39Þ

Now, the Stefan-Boltzmann law and the Casimir effect in
phase space are calculated at finite temperature.

4.1. Stefan-Boltzmann Law. The study of the Stefan-
Boltzmann law in phase space corresponds to a choice
of the parameter α. It is important to note that the parameter
α is the compactification parameter that is defined as
α = ðα0, α1,⋯,αD−1Þ. The temperature effect is described by
the choice α = ðβ, 0, 0, 0Þ:

The generalized Bogoliubov transformation, Equation
(31), for these parameters is

v2 k, βð Þ = 〠
∞

l=1
−1ð Þl+1 e−βk0l: ð40Þ

The Green’s function for the Dirac field in phase space
is

�G abð Þ
D q − q′, p − p′ ; β
� �

= 〠
∞

l=1
−1ð Þl+1 G∗

D q − q′ + iβln0, p − p′
� �h

− GD q − q′ − iβln0, p − p′
� �i

,

ð41Þ

where n0 = ð1, 0, 0, 0Þ is a time-like vector. Then, the phys-
ical energy-momentum tensor is

Tμν 11ð Þ βð Þ = −i lim
q′,p′ð Þ→ q,pð Þ

〠
∞

l=1
−1ð Þl+1Γμν G∗

D q − q′ + iβln0, p − p′
� �h

−GD q − q′ − iβln0, p − p′
� �i

:

ð42Þ

In order to calculate the Stefan-Boltzmann law, taking
μ = ν = 0 leads to

T00 11ð Þ βð Þ = − lim
p′→p

〠
∞

l=1

4mδ p − p′
� �

−1ð Þl+1e−2 p0−p′0ð Þβl

π2l3β3

� m lβð Þ2 p0 − p′0
� �

κ0 2mlβð Þ
n
+ K1 2mlβð Þ 3 + 2 mlβð Þ2 + lβ p0 − p′0

� �
1 −mlβγ0
� �h io

:

ð43Þ

This is the Stefan-Boltzmann law for the Dirac field in
phase space. It is worth pointing out that the result T00ð11Þ

ðβÞ ~ T4 is recovered by taking the limit of the momentum
variable. This result in phase space is necessary to compare
with experiments. In this sense, we can integrate over the
momenta which explicitly yield

T00 11ð Þ βð Þ = −〠
∞

l=1

4m −1ð Þl+1βl
π2l3β3 K1 2mlβð Þ 3 + 2 mlβð Þ2� 
� �

ð44Þ

and take the limitm→ 0; then, the only remaining part is
the factor ofK1ð2mlβÞthat leads to the dependency β−4 =
T4, once the limit of Bessel function is taken. On the other
hand, it is possible to project in the momentum space by
integrating over coordinates. This process leads to a diver-
gence which is of the same nature of the coordinate projec-
tion in the absence of temperature. Hence, a quantity in the
momentum space analogous to the temperature is neces-
sary, that is, the thermal energy. The introduction of TFD
formalism introduces the role of temperature, but it can
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equally do the same for the thermal energy. Using phase
space and TFD allows us to deal with systems where micro-
scopic energy is dominant.

4.2. Casimir Effect for the Dirac Field in Phase Space. Here,
the choice is α = ð0, 0, 0, i2dÞ, then

v2 dð Þ = 〠
∞

l3=1
−1ð Þl3+1 e−i2dk3l3 : ð45Þ

The Green function is this case is

�G abð Þ
D q − q′, p − p′ ; d
� �

= 〠
∞

l3=1
−1ð Þl3+1 G∗

D q − q′ + 2dl3n3, p − p′
� �h

− GD q − q′ − 2dl3n3, p − p′
� �i

,

ð46Þ

where n3 = ð0, 0, 0, 1Þ is a space-like vector. Then, the energy-
momentum tensor is

Tμν 11ð Þ dð Þ

= −i lim
q′,p′ð Þ→ q,pð Þ

〠
∞

l3=1
−1ð Þl3+1Γμν G∗

D q − q′ + 2dl3n3, p − p′
� �h

− GD q − q′ − 2dl3n3, p − p′
� �i

:

ð47Þ
By taking μ = ν = 0, the Casimir energy for the Dirac field

in phase space at zero temperature is

T00 11ð Þ dð Þ

= lim
p′→p

〠
∞

l3=1

m2δ p − p′
� �

−1ð Þl3+1 e4i pz−p′zð Þdl3
π2dl3

� 1 + 2 p0 − p′0
� �

γ0
h i

K1 2mdl3ð Þ:
ð48Þ

And for μ = ν = 3, the Casimir pressure in phase space is

T33 11ð Þ dð Þ

= lim
p′→p

〠
∞

l3=1

m2δ p − p′
� �

−1ð Þl3+1 e4i pz−p′zð Þdl3
π2dl3

� imγ3 + pz − p′z
� �h i

κ2 2mdl3ð Þ
n
− 2 m − pz − p′z

� �
γ3

h i
K1 2mdl3ð Þ

o
:

ð49Þ

It reproduces the usual result when m⟶ 0 and inte-
grated over the momenta which means the projection on
coordinate space. Then, only the factors of K1 is left; the limit

of this part yields the dependency d−4. Here, the dependency
on γmatrices should be viewed as part of the phase space for-
malism which is by its core matricial. This part does not sur-
vive once the projection on coordinates is performed, but it is
part of the behavior in phase space. In order to be compared
with experimental data, the projection on momentum space
requires the introduction the thermal energy.

4.3. Casimir Effect for the Dirac Field in Phase Space at Finite
Temperature. The effect of temperature is introduced by tak-
ing α = ðβ, 0, 0, i2dÞ. Then, the generalized Bogoliubov trans-
formation becomes

v2 β, dð Þ = 〠
∞

l=1
−1ð Þl+1e−βk0l + 〠

∞

l3=1
−1ð Þl3+1e−i2dk3l3

+ 2 〠
∞

l,l3=1
−1ð Þl+l3e−βk0l−i2dk3l3 : ð50Þ

The first two terms of these expressions correspond,
respectively, to the Stefan-Boltzmann term and the Casimir
effect at T = 0. The third term is analyzed and it leads to the
Green function

�G abð Þ
D q − q′, p − p′ ; β, d
� �

= 〠
∞

l3=1
−1ð Þl+l3 G∗

D q − q′ + iβln0 + 2dl3n3, p − p′
� �h

−GD q − q′ − iβln0 − 2dl3n3, p − p′
� �i

:

ð51Þ

Then, the Casimir energy at finite temperature is

T00 11ð Þ β, dð Þ

= lim
p′→p

〠
∞

l0,l3=1

2mδ p − p′
� �

−1ð Þl3+l0 e−4i pz−p′zð Þdl3−2 p0−p′0ð Þβl0

4π2 4d2l23 + β2l20
� �2

� κ0 m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2l23 + β2l20

q� �
2m 2dl3ð Þ2 1 + 2mβl0ð Þ�

8><
>:
− βl0ð Þ2 3 − 2mβl0ð Þ − 24idβl0l3γ3�

+
K1 m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2l23 + β2l20

q� �
4d2l23 + β2l20
� �1/2 −4m 2d2l23

� �2h
− βl0ð Þ2 12 − 2mβl0 4 − 2mβl0ð Þ½ �
+ 2 dl3ð Þ2 8 − 2mβl0 −8 + 6mβl0ð Þ½ � − 48im2d3l33βl0γ

3

− 3idβl0l3γ3 32 + 4m2β2l20
� �i

9>=
>;,

ð52Þ
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and the Casimir pressure at finite temperature is

T33 11ð Þ β, dð Þ

= lim
p′→p

〠
∞

l0,l3=1

2mδ p − p′
� �

−1ð Þl3+l0 e−4i pz−pz′ð Þdl3−2 p0−p0′ð Þβl0

4π2 4d2l23 + β2l20
� �2

� κ0 m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2l23 + β2l20

q� �
4m βl0ð Þ2 + 4dl3 5dl3 + 6iβl0γ3

� �� 

8><
>:

+
K1 m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2l23 + β2l20

q� �
4d2l23 + β2l20
� �1/2 128m2 d2l23

� �2 + 160d2l23
h

+ βl0ð Þ2 8 + 48m2d2l23
� �

+ 4m2 βl0ð Þ4

+ 6idβl0l3 32 + 4m2 4d2l23 + β2l20
� �� �

γ3
i

− 4m 4d2l23 + β2l20
� �

2 + 2mβl0 + 2i 4mdl3ð½

+ i pz − pz ′ð Þβl0Þγ3�κ2 m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2l23 + β2l20

q� �9>=
>;:

ð53Þ
It should be noted that in the limit p⟶ p′, both the

Casimir energy and pressure are real quantities at zero and
finite temperature. In the limit β⟶ 0, i.e., T ⟶∞, the
Casimir energy and pressure become

T00 11ð Þ dð Þ = lim
p′→p

〠
∞

l3=1

mδ p − p′
� �

−1ð Þl3+l0 e−4i pz−pz ′ð Þdl3
4π2 dl3ð Þ3

� dl3κ0 2mdl3ð Þ + 1 − 2 mdl3ð Þ2� �
K1 2mdl3ð Þ� 


,

T33 11ð Þ dð Þ = lim
p′→p

〠
∞

l3=1

mδ p − p′
� �

−1ð Þl3+l0 e−4i pz−p′zð Þdl3
2π2 dl3ð Þ3

� mdl3 3 − 8imdl3γ
3� �
κ0 2mdl3ð Þ�

+ 3 + 4mdl3 mdl3 − 2iγ3
� �� �

K1 2mdl3ð Þ�:
ð54Þ

It is important to note that in this limit, both the Casimir
energy and pressure depend only on the distance d between
the plates. The dependence on gammamatrices is not a prob-
lem since the formalism of the phase space is matrix. It leads
to the conclusion that neither the energy nor the pressure are
scalars but components of a tensor.

5. Conclusion

The Dirac field in phase space is considered. Using the Dirac
equation, the propagator for spin-1/2 particles is calculated.
This form of the propagator is similar to that in the usual
quantum mechanics. The TFD results are obtained by using
the temperature effects in the Dirac propagator. TFD, a
real-time finite temperature formalism, is a thermal quantum
field theory. Using this formalism, a physical (renormalized)

energy-momentum tensor is defined. Then, the Stefan-
Boltzmann law in phase space and the Casimir effect are cal-
culated at finite temperature. The results lead to the usual
results for the Dirac field when they are projected in the
quantum field theory space. The TFD formalism allows
studying the finite temperature effects in phase space. On
the other hand, such a formalism also may be used to explore
the role of a thermal energy which is possibly related to the
fermionic feature of the field.
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the references.
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