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Abstract: Considering the importance of continually improving the algorithms in aircraft engine
diagnostic systems, the present paper proposes and benchmarks a gas-path monitoring and diagnos-
tics framework through the Propulsion Diagnostic Methodology Evaluation Strategy (ProDiMES)
software developed by NASA. The algorithm uses fleet-average and individual engine baseline
models to compute feature vectors that form a fault classification with healthy and faulty engine
classes. Using this classification, a hybrid fault-recognition technique based on regularized extreme
learning machines and sparse representation classification was trained and validated to perform both
fault detection and fault identification as a common process. The performance of the system was
analyzed along with the results of other diagnostic frameworks through four stages of comparison
based on different conditions, such as operating regimes, testing data, and metrics (detection, classi-
fication, and detection latency). The first three stages were devoted to the independent algorithm
development and self-evaluation, while the final stage was related to a blind test case evaluated by
NASA. The comparative analysis at all stages shows that the proposed algorithm outperforms all
other diagnostic solutions published so far. Considering the advantages and the results obtained, the
framework is a promising tool for aircraft engine monitoring and diagnostic systems.

Keywords: aircraft engine; gas turbine; monitoring; diagnostics; ProDiMES; fault recognition

1. Introduction

Over the decades, maintenance programs in gas turbines have evolved from simple to
more complex and complete strategies, such as condition-based maintenance (CBM). CBM
helps to detect turbomachinery problems, extend machine life, maintain high reliability,
reduce operation and maintenance costs, and even avoid catastrophic situations through
the use of monitoring and diagnostic systems [1]. This is of vital importance, as evidenced
by a previous study [2] showing that in all the causes of commercial flight accidents in the
world that occurred from 1990 to 2006, equipment damage was found to be responsible
for 23% of the accidents, and of this proportion, 64% of the accidents were related to gas
turbine faults. From an economical point of view, the estimated annual fuel costs of the U.S
civilian fleet reached 35 billion dollars just some years ago [3].

Due to the increasing safety standards in aviation, condition-monitoring systems need
to be continuously improved to correctly detect and identify potential aircraft engine faults,
creating demands for research with a focus on improving algorithms and software related
to different diagnostic stages. The stages of a diagnostic system are usually data acquisition
and processing, monitoring (anomaly detection), diagnostics (fault identification), and
prognostics. Each of these stages depends on independent and complex algorithms that
require years of work, and their integration into a complete, efficient, and robust system is
one of the most important goals of gas turbine engine-health management [4].
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Modern gas turbine engines employ different types of condition monitoring tech-
niques, such as vibration analysis, thermography, lubricant analysis, acoustic emission, and
gas-path analysis (GPA), and they can be implemented in a separated or integrated way
through information-fusion methods [5]. GPA is one of the most common strategies in gas
turbine diagnostics. It uses measurements sensed and collected along the air/gas flow path
in the gas turbine (temperatures, pressures, rotation speeds, etc.) to constantly monitor,
diagnose, and predict the overall engine state without stopping its operation [6,7]. Com-
bined with machine learning and pattern-recognition techniques, the GPA approach can be
an efficient tool to diagnose complex and hidden engine faults. Many machine-learning
techniques have been employed for gas turbine diagnostics, for example, support vector
machines (SVM) [8], genetic algorithms [9], fuzzy logic [10] and neuro-fuzzy inference
systems [11], multi-layer perceptron (MLP) [12], probabilistic neural network (PNN) [13],
and extreme learning machines (ELM) [14,15].

In any machine-learning method, a trade-off between accuracy and computational
complexity must be considered. This means that it is difficult to design a method that is
fast while also achieving the best performance. To solve this problem, hybrid approaches
have been designed to combine the best characteristics of different methods in an efficient
way [16–18]. Thus, the limitations of one method can be overcome by the advantages of
another.

Despite the advances in the development of different gas turbine fault-recognition
techniques, they have been applied to different types of conditions, engines, systems,
subsystems, fault scenarios, metrics, etc. This makes it impossible to correctly compare
the diagnostic methodologies. To solve this problem, the NASA Glenn Research Center
developed a benchmarking platform called ProDiMES (Propulsion Diagnostic Method
Evaluation Strategy) that enables specialists to design and evaluate in an objective and fair
manner different engine gas-path diagnostic methodologies [19–21]. Based on a physics-
based thermodynamic model, the tool simulates a fleet of commercial aircraft engines
that produce steady-state gas-path measurements registered for every flight for healthy
and faulty engines under variable flight conditions. A diagnostic framework analyzes the
registered data, producing diagnostic decisions. The effectiveness of the diagnostic system
can be measured through different performance metrics. The results published so far about
different aircraft engine gas-path monitoring and diagnostic frameworks designed and
validated on the ProDiMES software are briefly reviewed below.

Simon et al. [19] evaluated the performance of an example diagnostic solution con-
sisting of three steps related to trend monitoring, anomaly detection, and event isolation.
Simon et al. [21] presented four diagnostic approaches: (1) Weighted Least-Squares-based
algorithm (WLS) that uses measurement data correction and computes smoothed residu-
als based on a fleet average engine model for trend monitoring. A backward difference
algorithm for computing residual gradients and a threshold are used for anomaly detec-
tion. After obtaining anomaly signature vectors, the fault-isolation problem is solved by
selecting the fault most likely to be the cause of the observed anomaly. This is achieved
through a weighted least-squares estimation method and the application of a fault influence
coefficient matrix; (2) PNN-based algorithm that applies the same three steps as in WLS,
but a PNN with anomaly signature vectors as inputs is trained instead to isolate faults;
(3) Performance Analysis Tool with Kalman Filter (PATKF) is composed by three modules:
(a) tracking of progressive degradation with a constant gain-extended Kalman filter that
estimates health parameters; (b) an anomaly detection step that sequentially analyzes
residuals under the assumptions that an abrupt fault has occurred or not. A comparison
between the maximum value of a likelihood ratio over a sliding flight window and a
threshold determines the event of the fault or the healthy condition; and (c) a fault-isolation
stage that works with a regularized WLS; and (4) Generalized Estimator (GE). It consists
of a three-stage procedure with a linear state-space representation of the engine model, a
fault detection estimator based on the comparison of filtered residual components and a
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predefined threshold for detecting the presence of a fault, and a fault-isolation estimator
based on adaptive estimation techniques.

Jaw et al. [8] compared seven machine learning methods in three stages for binary
and multi-class problems: (1) Naïve Bayes (NB) that estimates the probability of each
fault class given a test sample, (2) Decision Tree (DT) that chooses a class by making a
sequence of decisions organized as a tree, (3) K-Nearest Neighbors (KNN) that selects a
class through the majority vote of the k-nearest training elements of a test sample, (4) Linear
Support Vector Machine (LSVM) that finds a hyperplane with maximal margin to better
classify samples, (5) nonlinear SVM (NSVM) that maps the space of input vectors into a
higher-dimensional space to perform class separation, (6) a hierarchical linear SVM with
kernel sliced inverse regression (kSIR) called HSVMkSIR that reduces the dimensionality of
the data to train multiple classifiers and hierarchically identify faults, and (7) a non-linear
SVM with kSIR version called NSVMkSIR.

Borguet et al. [22] developed a regression-based approach for modeling a fleet of
jet engines from historical operational data considering engine-to-engine variations. The
models are assessed quantitatively with coefficient determination and then applied to the
ProDiMES turbofan engine fleet to perform anomaly detection. Using different diagnosis
analysis and validation data, Loboda et al. [23] benchmarked a data-driven gas turbine
diagnostic methodology based on three well-known methods: (1) multi-layer perceptron,
(MLP) whose learning process consists of looking for such weight and bias coefficients
that minimize the error through the backpropagation algorithm. The output is a measure
of the closeness of an input sample and a class. In the decision stage, the class that has
the maximum output is selected; (2) probabilistic neural network (PNN), whose hidden
neurons based on radial basis functions produce responses that indicate how close an input
vector is to the training samples. These hidden neurons are connected to only one output
neuron. The output neuron receives a sum (a probability of the class) of the responses
related to the training vectors of the corresponding class and a competitive transfer function
chooses the class that produces the maximum probability; and (3) a nonlinear SVM.

Koskoletos et al. [13] proposed a diagnostic framework that integrated the stages
of data processing, fault detection based on a cumulative sum algorithm, and fault iden-
tification intended to evaluate six different gas-path methods: PNN, KNN, estimation
of health parameters with an optimization algorithm, a combinatorial approach through
the examination of all possible combinations of health parameters and measurements, a
method based on an adaptive engine model, and a hybrid method using PNN and adap-
tive model. This last hybrid approach uses an adaptive engine model and the a-priori
information about the occurrence of a component fault in the engine. It is applied only
when the PNN outputs a component fault as the most probable to happen and the adaptive
method produces the final classification. For actuator and sensor faults, PNN performs the
classification. The methods are tested in three stages considering a simplified scenario with
module faults; a more complex scenario with module, actuator, and sensor faults; and the
blind test case.

Calderano et al. [24] implemented and evaluated an enhanced diagnostic method
based on upper and lower singleton type-2 fuzzy logic system (ULST2-FLS) that works with
a pre-processing module as proposed in [6,21], including parameter correction, residual
computation for trend monitoring, backward differences, and normalization; and anomaly
detection and classification modules that use ULST2-FLS. The classification method first
receives crisp inputs that pass through a fuzzifier block, producing fuzzy sets. Applying
rules in an inference engine, the fuzzy output sets feed an output processing block formed
by a type-reducer set and a defuzzifier that finally returns crisp outputs. Teixeira et al. [25]
proposed the Wang–Mendel Fuzzy Logic System (WMFLS), which has a similar procedure
to ULST2-FLS, with the main difference that the former employs a type-1 fuzzy logic
system that automatically extracts rules via the Wang–Mendel method.

Considering the advantages of ProDiMES, the main objective of the present paper is
to continue the improvement of algorithms by proposing an aircraft engine monitoring
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and diagnostic hybrid approach. The results of the proposed system are compared with all
the aforementioned diagnostic algorithms. The main contributions of this paper are:

1. We propose a diagnostic system based on a hybrid fault-recognition method that
exploits the advantages of the low computational complexity of ELM and high recog-
nition accuracy and noise-robustness of sparse representation classification method
to improve the aircraft engine diagnostic decisions.

2. Up to now, the majority of the published solutions using ProDiMES work with
an anomaly detection algorithm followed by another fault identification algorithm,
causing delays in the diagnostic decisions. The present methodology performs both
stages as a common process by computing their corresponding performance metrics
at the same time and with the same fault recognition algorithm.

3. The paper contributes to the advancement of the state-of-the-art in the area of gas
turbine engine health management since it provides a robust and fair comparison with
all the available diagnostic algorithms published in the literature using ProDiMES
from worldwide leading and established researchers, including the authors of the
benchmarking platform. Additionally, the work stimulates the competition between
diagnostic solutions and further development of the area of gas turbine diagnostics.

The work is organized as follows. Section 2 gives the general benchmarking process
in ProDiMES. Section 3 introduces the proposed diagnostic framework. Section 4 presents
the results of the comparison with other diagnostic approaches. The Discussion section
(Section 5) addresses the major findings of the paper.

2. ProDiMES Benchmarking Process

In this section, an overview of ProDiMES and its benchmarking process is given.
Appendix A contains additional information about the engine layout and diagnostic
performance metrics. A more detailed description of the software design and operation can
be found in the official ProDiMES user’s guide [20] and NASA’s software catalog available
at https://software.nasa.gov (accessed on 15 August 2021).

The process of aircraft engine fleet performance assessment through ProDiMES has
two functionalities: (1) an independent evaluation case that assists in the development of
diagnostic algorithms and self-assessment through the generation of engine data by the
user, the knowledge of true fault/no-fault conditions (a.k.a. “ground-truth” information),
and the computation of diagnostic performance metrics and (2) a blind test case intended
to perform a fair comparison between different optimized diagnostic methodologies from
other researchers employing a unique dataset (available in a ProDiMES folder) generated
by NASA, who withholds the blind test case “ground-truth” information. NASA receives
and evaluates the diagnostic assessments, returning the metrics along with the anonymous
results of other participants. Figure 1 illustrates these two functionalities with their corre-
sponding blocks and output information (mat-files or Excel spreadsheets) produced by the
ProDiMES platform, by the user’s diagnostic algorithm, or by NASA.

2.1. Engine Fleet Simulator

The platform core is the Engine Fleet Simulator (EFS) that works with the steady-state
version of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) [26],
a software that provides a realistic simulation of a large, commercial two-spool turbofan
engine (See Appendix A). In a first step, the participants must set in a graphic user interface
(GUI) all the required simulation characteristics that include the fault scenario, number of
occurrences per scenario, the number of flights over which the sensed parameter history
will be collected in an engine (with a maximum of 5000 flight cycles), the fault evolution
rate (abrupt, rapid, or random), flight of fault initiation (fixed or random) with a minimum
persistence for abrupt and rapids faults, and sensor noise selector (on or off). ProDiMES
works with small, medium, and large faults. In addition, an average of all three faults is
considered.

https://software.nasa.gov
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Figure 1. ProDiMES benchmarking process.

After defining the values in the GUI, the Case Generator randomly assigns to each
engine in the fleet realistic and unique operating condition attributes and degradation
profiles. This includes power settings at take-off and cruise regimes, the cities where
the aircraft takes off and lands, ambient conditions, Mach number, etc. The software
emulates long-term engine performance deterioration as a natural part of engine service
life due to fouling, erosion, and other abrasive conditions in five major components: fan,
low-pressure compressor (LPC), high-pressure compressor (HPC), high-pressure turbine
(HPT), and low-pressure turbine (LPT). Efficiency η and flow capacity γ are the two
health parameters in each component that modify the normal engine behavior. However,
ProDiMES also considers short-term degradation in the form of rapid or abrupt faults
since they evolve in a much faster timescale than long-term degradation. Apart from the
no-fault case, Table 1 presents 18 fault scenarios with uniformly distributed magnitudes
related to component, actuator, and sensor faults (in units of standard deviation from
measurement noise). C-MAPSS finally receives the Case Generator outputs and produces
sensed parameter histories for each engine in the fleet. Table 2 contains four operating
conditions U (ambient and control variables) and Table 3 shows seven gas-path monitored
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variables Y corresponding to a standard measurement system. Thus, this raw simulated
information is ready to be processed and interpreted by a diagnostic framework.

Table 1. Simulated faults in ProDiMES [20].

ID Fault Type Fault Description Fault Magnitude

0 None No-fault None

1

Component

Fan 1 to 7%
2 LPC 1 to 7%
3 HPC 1 to 7%
4 HPT 1 to 7%
5 LPT 1 to 7%

6
Actuator

VSV 1 to 7%
7 VBV 1 to 19%

8

Sensor

Nf ±1 to 10 σ

9 Nc ±1 to 10 σ

10 P24 ±1 to 10 σ

11 Ps30 ±1 to 10 σ

12 T24 ±1 to 10 σ

13 T30 ±1 to 10 σ

14 T48 ±1 to 10 σ

15 Wf ±1 to 10 σ

16 P2 ±1 to 10 σ

17 T2 ±1 to 10 σ

18 Pamb ±1 to 19 σ

Table 2. Operating conditions U in ProDiMES [20].

ID Symbol Description Units

1 Nf Physical fan speed rpm
2 P2 Total pressure at fan inlet psia
3 T2 Total temperature at fan inlet ◦R
4 Pamb Ambient pressure psia

Table 3. Gas-path monitored variables Y in ProDiMES [20].

ID Symbol Description Units

1 Nc Physical core speed rpm
2 P24 Total pressure at LPC outlet psia
3 Ps30 Static pressure at HPC outlet psia
4 T24 Total temperature at LPC outlet ◦R
5 T30 Total temperature at HPC outlet ◦R
6 T48 Total temperature at HPT outlet ◦R
7 Wf Fuel flow pps

2.2. Performance Metrics

The performance estimation program is a routine contained in ProDiMES that receives
diagnostic assessments and then evaluates the detection and classification capabilities of
candidate diagnostic methods. To compute the metrics, it is necessary to compare the
diagnostic assessments and the ground-truth information. The ProDiMES performance
metrics are grouped in three categories [20]:

1. Detection: true-positive rate (TPR), true-negative rate (TNR), false negative rate (FNR),
and false positive rate (FPR).

2. Classification: correct classification rate (CCR), misclassification rate (MCR), and
kappa coefficient (it indicates the capability of the diagnostic framework to accurately
classify a fault considering the expected number of correct classifications that occur by
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chance. If kappa = 1, then the diagnostic technique produces a perfect classification;
if kappa < 0, then the classification is worse than expected).

3. Latency metrics: detection latency as the average number of flights a fault persists
before a true-positive detection and classification latency as the average number of
flights a fault must persist prior to correct classification.

In the present paper, an extra metric P is employed to analyze the global diagnostic
accuracy of the recognition method, allowing the adjustment of the algorithm according to
the requirements in each comparison stage. This metric is computed as a weighted mean
probability of the main diagonal elements of a confusion matrix considering the number of
samples in each class for healthy and faulty cases.

3. Proposed Monitoring and Diagnostics Framework
3.1. Averaged Baseline Model for Engine Fleet

It is common that in a gas turbine diagnostic process, engine health diagnostic in-
dicators are computed. One typical indicator is a deviation, which contains information
about the current engine state and reveals engine degradation trending and changes due to
faults. Deviations can be calculated as relative differences between actual measurements
and healthy engine values [22]. Considering a gas-path monitored variable Y, a deviation
is expressed as:

δY∗ =
Y∗ −Y0(U)

Y0(U)
(1)

where Y* is an actual measured value and Y0(U) is the normal engine value (also called
baseline function) depending on operating conditions. Second-order polynomials are good
estimators of healthy engine performance at steady-state and transients [27]. For one
monitored variable Y and four operating conditions U, such a polynomial has the following
structure:

Y0(U) = c1 + c2N f + c3P2 + c4T2 + c5Pamb + c6N f P2 + c7N f T2 + c8N f Pamb+
+c9P2T2 + c10P2Pamb + c11T2Pamb + c12N f 2 + c13P22 + c14T22 + c15P2

amb
(2)

If all measured variables and n flights are considered, Equation (2) can be described in
the form of a linear system Y0 = VC and unknown coefficients ĉij, which are contained in
a (k×m)-matrix, are estimated through the least-squares method (LSM):

^
C =

(
VTV

)−1
VTY0 (3)

where Y0 is a (n×m)-matrix of m measured variables, and V is a (n× k)-matrix with k
elements

(
1, N f , P2, . . . , T22, P2

amb
)

from operating conditions.
Anomaly detection and fault identification stages highly depend on the quality of

deviations, which in turn depend on baseline model adequacy. To achieve this, two
steps are proposed: (1) baseline model creation with a proper reference sample and (2)
model verification with a test dataset. In the case of the first step, it is important to have
a representative engine-fleet dataset with a considerable amount of flights that present
a low level of degradation to avoid elevated deviation errors. A reference sample of
100 engines and initial 90 flights per engine is sufficient to obtain an adequate average
baseline model [28]. To see the quality of deviations based on this dataset, a sample without
noise is generated through ProDiMES using the no-fault case scenario. Figure 2a shows
deviations obtained for two gas-path measured variables (total pressure and temperature
at LPC outlet) and 900 flights (from 10 engines). For each engine, the low and progressive
degradation (pressure drop and temperature increase) in the first 90 flights and the small
random flight-to-flight variations are visible. The unique, randomly assigned operating
conditions and deterioration profiles for each engine are evident through these deviations.
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Figure 2. Deviations: (a) for a reference sample of 10 engines and their 90 first flights, (b) for baseline
model verification with 1 engine through its service life.

In the case of the second step, the deviation analysis of individual engines can be
employed to verify the effectiveness of the baseline model through the engine lifetime.
Figure 2b shows the deviations computed for one engine and all its 5000 successive flights
and the same two monitored variables as in Figure 2a. A 4th order polynomial is employed
to approximate the systematic component of the signal (general change without noise) and
see more clearly the degradation trending. Deviations errors (or noise) can be computed as
a difference between the random signal and the systematic component. From the picture,
one can observe that the model effectively captures the progressive engine deterioration.
Deviation errors are small at the initial flights and increase at the final of the engine lifetime.
This is explained by the fact that the influence of operating conditions on the gas-path
monitored variables of a degraded engine greatly differs from the baseline model producing
an increasingly less accurate model. This should be considered when diagnosing an aged
engine to not confuse normal deterioration with faults. It is important to mention that
this work considers measurement noise for baseline model creation as a requirement by
ProDiMES to develop noise-robust diagnostic systems.

3.2. Baseline Model Correction and Class Formation

Once the baseline model is determined, deviations between healthy and faulty values
can be computed. However, it is necessary to correct the deviations through the computa-
tion of individual engine baseline models. The reason is that the simulated engines have
individual characteristics, such as particular performances and levels of degradation. Since
a fleet-average baseline model is employed, the deviations are affected, producing errors
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for not considering engine individualities. To solve this problem, a correction is made as
follows. First, the first ten flights free of any fault in each engine are utilized to compute an
average correction coefficient:

Ki =
1
10

10

∑
j=1

δY∗ (4)

This coefficient is defined as a relative difference between the individual baseline
model YI0i and the fleet-average baseline model Y0(U). Thus, an individual baseline value
is given by:

YI0i = Y0i(1 + Ki) (5)

Final deviations consider engine individualities and are normalized using a mean
deviation error σδYi to have a homogeneous diagnostic space:

Z∗i =
Y∗i −YI0i

σδYiYI0i
(6)

Figure 3 shows uncorrected deviations applying an average-fleet baseline model
(Equation (1)) and corrected deviations based on individual baseline models (Equation (6)
without normalization) plotted for one monitored variable and 50 flights from each of
20 different healthy engines (1000 concatenated flights). Since no fault is implanted in the
engines, deviations to be employed for monitoring and diagnostics should remain around
zero with no significant shifts (except for random noise). Uncorrected deviations do not
meet this requirement since they present for each engine abrupt changes and perturbations
that can be confused with particular faults. It is clear that computing deviations as a
difference between measured values of a particular engine and a generalized fleet-average
baseline model (that does not match the specific performance characteristics of such a
particular engine) results in a wrong approach that will cause elevated diagnostic errors in
further stages. Corrected deviations solve this problem with individual baseline models
that correctly reflect the performance of a healthy engine.

Figure 3. Corrected and uncorrected deviations for different healthy engines.

Deviations from Equation (6) are filtered for further analysis using exponential moving
average (EMA) as follows:

ZEMAi,j = αZi,j + (1− α)ZEMAi,j−1 (7)

where α is the smoothing factor with values between 0 and 1, and j is the current flight in the
engine. In this manner, deviations computed for all monitored variables constitute a feature
vector Z. Feature vectors form a fault classification with healthy and faulty classes to be
recognized by a machine-learning technique in a multidimensional diagnostic space. To
that end, measurements from many engines and flights are simulated through ProDiMES
and transformed into feature vectors to have a representative no-fault class as well as
18 fault classes. These 19 fault classes with all their corresponding samples form a complete
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fault classification that is randomly partitioned into two sets: one called learning set ZL
(80–90% of the data) for training the fault recognition technique and another one called
validation set ZV (10–20% of the data) to verify the performance of the trained models
for unseen data using k-fold cross-validation. In this process, hyperparameters are also
optimized to produce the best recognition performance. Thus, the best-trained model is
applied to a third set called testing set ZT . In the present work, this set varies depending
on the comparison stage, and it is intended to compare the techniques.

3.3. Hybrid Fault Classification Approach

The hybrid fault classification procedure consists of two parts: the regularized extreme
learning machine (RELM) and the sparse representation classification (SRC) block. Figure 4
summarizes the steps in each block.

Figure 4. The proposed hybrid fault classification procedure.
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Block 1: ELM was originally developed as a generalized feed-forward neural network
with one hidden layer. Due to its extended use in different applications, there are many
network configurations with improved features. ELM differs from many popular ANNs,
such as multilayer perceptron, in the following aspects: the hidden node parameters are
randomly selected, and only the output parameters are computed; the backpropagation
algorithm is replaced by a matrix inverse that is computed only once; and there is no need
of network learning iterations for gradient descent. As a result, the training process is less
complex and faster.

Considering a training dataset
{(

Zj, tj
)}N

j=1, where N is the total number of train-

ing samples, Zj = [Zj1,Zj2,, . . . , Zjm]
T is an m-dimensional input feature vector, and

tj = [tj1,tj2,, . . . , tjq]
T is a q-dimensional target vector with values −1 and 1 indicating

the category (d = 1 . . . q classes) each vector belongs to, the ELM structure can be expressed
as follows:

oj = f (Zj) =
L

∑
i=1

g(wi
TZj + bi)βi, j =1, 2, . . . , N (8)

where oj is the network output or prediction, g(Zj) is the activation function,
wi = [wi1,wi2,, . . . , wim]

T are the randomly generated weights of the i-th hidden node
connected to the input neurons, bi is the bias, and βi = [βi1,βi2,, . . . , βiq]

T are the output
layer weights connected to the hidden neurons.

Since ELM tries to learn pre-defined classes by finding such output layer parame-
ters that minimize the difference between outputs and targets, the problem to solve is
presented as:

arg min
β
‖Hβ− T‖F (9)

where β = [β1, . . . , βL]
T is the (q × L) output weight matrix, T =

[
tT
1 , . . . , tT

N
]T is the

(q × N) target matrix, and H is the hidden layer output matrix for L hidden layer neurons.

H =

 g(w1
TZ1 + b1) · · · g(wL

TZ1 + bL)
...

. . .
...

g(w1
TZN + b1) · · · g(wL

TZN + bL)

 (10)

Output weights can be obtained by LSM in the form of β̂ = H†T. However, due to
the instability problems in the computation of the Moore–Penrose matrix inverse H†, a
regularized LSM is employed instead:

arg min
β
‖Hβ− T‖F +

1
ξ
‖β‖F (11)

where ξ is a parameter that balances training error and regularization terms. The leave-
one-out cross-validation approach can be used for model selection to search the optimal
ξopt that produces the best separating hyperplane [29]. The solution of Equation (11) is:

β̂ =
(

HTH + ξoptI
)−1

HTT if L < N or

β̂ = HT
(

HHT + ξoptI
)−1

T if L ≥ N (12)

where I is the identity matrix. After determining
ˆ
β, the output can be computed as o = Hβ̂,

and the label of the class is finally assigned with:

Label(Z) = arg max
d

(o) (13)

To evaluate different network models, 10-fold cross-validation is performed. At each
iteration, new subsets ZL and ZV are randomly created from a pre-built fault classification.
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First, all the N samples of the training data are used to compute the output weights. Then,
all the validation samples are introduced by turn to the network to obtain predictions that
will serve to form a confusion matrix and compute the diagnostic accuracy P of the current
model for unseen data. An averaged value of P considering all iterations gives the final
network classification performance.

After the training-validation process is finished, and a testing feature vector from set
ZT is introduced to the network to generate an output vector o, a difference odi f f between
the two largest values contained in o is computed. Since the RELM classification decision is
based on the maximum value in the output, Label(Z) = arg max

d
(o), a measure of closeness

between the first and second value can reflect, to some extent, how well the RELM decision
hyperplane works. If odi f f is small, then the network will be prone to misclassification. For
that reason, such difference can be employed as a decision rule to separate those samples
with high noise levels (resulting in small output differences and erroneous classification)
and classify them again but with a more noise-robust method. In this way, for the proposed
procedure, if odi f f value exceeds a pre-defined threshold τ, then the sample is classified
with RELM; otherwise, it is treated as a potential misclassification and reclassified with
SCR in the next block.

Block 2: Given a test sample Z as a column vector, the objective of SRC is to reconstruct
such original test signal as sparse and exact as possible with a linear combination of training
signals from the same class predominantly. This is achieved by obtaining non-zero scalar
coefficients x in the location of the corresponding class.

In a classic SRC, an over-complete dictionary approach considers all the training
classes to reconstruct the testing signal. However, this approach forms a unique and fixed
dictionary that considers unnecessary and uncorrelated classes affecting optimal sparse
representation and classification [30]. Besides, testing time increases with the number
of classes considered for dictionary formation. To solve these problems, the formation
of sub-dictionaries, which contain only the information of similar classes to the testing
sample, is considered [31]. The idea is to take into account the indices of the k largest
values in the RELM output vector that reflect the most correlated classes and discard those
with small values that affect signal reconstruction. Thus, each time a testing sample is
classified with SRC, the training atoms (feature vectors) from the same classes of the k
largest output values are selected to construct a new sub-dictionary with the structure
Asub = [Ad(1), Ad(2), . . . , Ad(k)], where d(i) ∈ (1, 2, . . . , q) is one of the indices of the k
largest elements, and Ad(i) contains all the training samples from the d(i)-th class. The
sparse representation coefficients are estimated by solving:

^
x = arg min

x
‖Z−Asubx‖2

2 + λ‖x‖1 (14)

where λ is a scalar parameter that controls the trade-off between sparsity and signal
reconstruction. A test sample Z can be classified by the atoms from the class d that
produce the minimum residual or reconstruction error (difference between original and

reconstructed signal), rd(Z) =
∥∥∥∥Z−Adψd(

^
x)
∥∥∥∥2

2
, where ψd(

^
x) is the characteristic function

that only selects the coefficients in vector
^
x associated to the class d ∈ {d(1), . . . , d(k)}.

Thus, the classification is given by the expression:

Label(Z) = arg min
d

rd(Z) (15)

To minimize classification errors and obtain the best classification results in the hybrid
approach, it is necessary to search by trial-and-error the optimal values of other important
parameters, such as the number of hidden neurons L in RELM, the threshold τ, and the
value of k in the adaptive sub-dictionary formation. This can be achieved by varying one
parameter by turn and fixing the rest. The configuration of those parameters that produce
the highest diagnostic accuracy is then selected.
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3.4. Anomaly Detection and Fault Identification as a Common Process

Commonly, in aircraft engine diagnostic systems, anomaly detection is carried out
first to know if a potential problem is occurring in the engine. However, many of the faults
are difficult to detect due to their small magnitude and high measurement noise, causing
them to be confused with healthy states. A noise-robust detection algorithm will try to
monitor the progression of such faults considering these negative circumstances. Typically,
if an engine health indicator has significantly surpassed an established threshold, then the
algorithm confirms the detection of an anomaly. After that, a fault identification procedure
is applied to locate and determine the nature of such a fault. All the above-mentioned
procedure causes delays in diagnostic decisions, especially if a fault is not detected on time.

The present work proposes a different scheme, with the stages of anomaly detection
and fault identification viewed as a recognition problem in a common process. Figure 5
gives an illustration of this concept with feature vectors in the diagnostic space Z for two
monitored variables. First, Figure 5a shows a separate example of anomaly detection,
where feature vectors only belong to the no-fault class or the fault class. Thus, this stage
can be seen as a binary recognition problem by training a classifier with the two classes.
After an anomaly is detected, the fault identification stage is performed as a multi-class
problem, as shown in Figure 5b. Here, all the samples of different q fault classes are used
to train a second classifier and identify new samples. Such consecutive procedure is not
convenient since the training and adjustment of two different classifiers may require a
significant amount of time, causing delays in making decisions. Instead, as depicted in
Figure 5c, a single classifier trained with the samples from the no-fault case and all the fault
classes can detect and identify a fault at once. To compute the anomaly detection and fault
identification metrics, the same confusion matrix of size [(q + 1) × (q +1)] is employed to
extract the corresponding information for each task.

Figure 5. Recognition problem using feature vectors for (a) anomaly detection stage, (b) fault identification stage, and (c)
both stages as a common process.

4. Comparison of Diagnostic Frameworks

This stage compares the different diagnostic frameworks benchmarked so far through
ProDiMES and reviewed in the Introduction section (Section 1). The comparison analysis is
divided into four stages that differ by comparison conditions and are performed one after
another. The first three are intended to adjust the proposed algorithm and are related to the
Independent Evaluation Case functionality, while the last stage deals with the Blind Test
Case, which is the final goal in ProDiMES. Table 4 summarizes the comparison conditions
that include engine operating points, diagnostic performance metrics employed as criteria,
and type of testing data. A diagnostic technique may employ only the cruise data or the
data collected at both regimes (cruise and takeoff) a.k.a. multipoint diagnosis. The two
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options of criteria are the diagnostic accuracy P and the diagnostic metrics computed by
ProDiMES. Three options of testing data include the sets generated by users, the dataset
given in ProDiMES as an example, and ProDiMES blind test dataset. The table indicates
the options used at each of the four stages.

Table 4. Conditions and stages of comparison.

Comparison
Conditions

Comparison
Options

Comparison Stages

1 2 3 4

Operating
points

Cruise X X

Multipoint X X

Diagnostic
metrics

P X

ProDiMES metrics X X X X

Testing
Data

Generated by authors X

ProDiMES dataset X X X

Blind test dataset X

4.1. Stage 1: Comparison with Other Diagnostic Frameworks Using ProDiMES Cruise Dataset

The first stage addresses a comparison between the proposed algorithm based on
RELM-SRC (and a version of RELM) and three state-of-the-art machine-learning methods
benchmarked by Loboda et al. [23]: PNN, MLP, and non-linear SVM. The methods are
analyzed under the same conditions and with tuned hyperparameters for a fair comparison.
Three training configurations were generated through ProDiMES for the cruise regime to
analyze the influence of training dataset size and deviation smoothing with EMA on the
diagnostic accuracy P.

ProDiMES includes an example solution folder with an output file that serves as a
test dataset for comparing other diagnostic solutions. The characteristics of this set are
presented in Table 5. Considering that the first 10 flights in an engine are fault-free and
not diagnosed by ProDiMES, the total number of testing samples to be diagnosed are
7600 samples (19 fault scenarios × 10 engines per scenario × 40 flights per engine). The
training configurations are generated following the same specifications as the testing set,
with the difference that Configuration 1 works with 40 engines per scenario (30,400 samples
in total), and Configuration 2 and 3 incorporate 100 engines per scenario (76,000 samples).
To give an idea, the sizes of the output weight and target matrices with these last training
configurations are (19 classes × 4000 hidden neurons) and (19 classes × 76,000 samples),
respectively. Since fault initiation is random in each engine, some flights from flight 11 do
not present faults. During the process of fault classification formation, the feature vectors
related to those flights from all the fault scenarios are added to the healthy class, increasing
its size. As a final remark, when EMA is applied in training deviations, testing deviations
are smoothed as well.

Table 6 shows the probabilities P obtained for the testing set. For the first configu-
ration, SVM presents the best results closely followed by RELM-SRC and RELM with a
difference of 1.03% and 1.02% in recognition accuracy, respectively. PNN produces the low-
est results. For Configuration 2, SVM continues to be the best option, while the proposed
two techniques occupy the last positions. However, the difference in comparison with SVM
remains small (0.86% for RELM and 1.13% for RELM-SRC). In this case, the increase of
the number of training samples (from 760 to 1900 engines) does not produce a significant
improvement in P since there is a general increase of 0.69% without considering PNN (the
method was excluded for further analysis in [23]). In the third configuration, the hybrid
approach wins by 1.31% compared to SVM. To this point, there is an average difference of
only 0.23% between RELM-SRC and RELM. The use of EMA in deviations helps to increase
the general recognition accuracy by 6.12% and up to 7.82% individually for RELM-SRC.
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Table 5. Training and testing datasets specifications (Stage 1).

Description Training
Conf.1

Training
Conf.2

Training
Conf.3
(EMA)

Testing
Set

Fault scenarios 19 19 19 19
Engines per fault scenario 40 100 100 10

Simulated flights per engine 50 50 50 50
Fault initiation and evolution rate Random Random Random Random

Minimum initiation flight 11 11 11 11
Rapid fault evol. rate (min, max) 9 9 9 9

Sensor measurement noise On On On On
Total number of engines 760 1900 1900 190

Total samples for diagnosis 30400 76000 76000 7600

Table 6. Diagnostic accuracy P for the ProDiMES cruise testing dataset averaged for abrupt and
rapid faults (Stage 1, comparison with [23]).

Method
Training Configuration

1 2 3

MLP 65.07% 66.60% 70.75%
PNN 64.66% - -
SVM 66.63% 67.01% 72.39%

RELM 65.61% 66.15% 73.29%

RELM-SRC 65.60% 65.88% 73.70%

ProDiMES metrics are also computed for the three best techniques in this last con-
figuration. The results averaged for abrupt and rapid faults are shown in Table 7. Here,
RELM-SRC provides better TPR and detection latency, while RELM presents the best TNR.
This last result can be explained by the fact that RELM gives more attention to correctly
detect engine healthy states rather than faulty scenarios, resulting in higher TNR and lower
TPR compared to the hybrid approach that behaves oppositely. For the kappa coefficient,
RELM-SRC and RELM have the same values.

Table 7. Metrics for the ProDiMES cruise testing dataset, averaged for abrupt and rapid faults (Stage 1
and Configuration 3, comparison with [23]).

Method TPR TNR Latency Kappa

SVM 60.10% 94.51% 3.9 0.58
RELM 58.20% 96.07% 3.8 0.60

RELM-SRC 62.10% 94.16% 3.7 0.60

4.2. Stage 2: Comparison with Other Diagnostic Frameworks Using Self-Generated Cruise Dataset

This stage considers a comparison with seven machine-learning techniques evaluated
by Jaw et al. [8]: Naïve Bayes (NB), Decision Tree (DT), K-Nearest Neighbors (KNN),
Linear Support Vector Machine (LSVM), nonlinear SVM (NSVM), a hierarchical linear SVM
with kernel sliced inverse regression called HSVMkSIR, and a non-linear version called
NSVMkSIR. To that end, the authors generated through ProDiMES a dataset with 49,900
flights (998 engines × 50 flights per engine) working with 10 abrupt fault cases for cruise
and take-off. A subset consisting of 13,880 data points was used for training, and the entire
dataset was employed for validation.

Table 8 summarizes the metric results of all seven techniques and the best three
analyzed in Stage 1, Configuration 3, for cruise regime and abrupt faults. As a point
of clarification, some metrics are not reported in the paper [8]. The table highlights the
best results for 10 and 19 fault scenarios. At first sight, one can say that HSVMkSIR
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surpasses the others in TPR and latency, while KNN is the best option for TNR; however,
these approaches only take into account a reduced number of fault cases. Given that the
performances of the seven algorithms will significantly worsen when a full classification of
19 scenarios is adopted, the superiority of the proposed framework becomes more evident.

Table 8. Metrics for self-generated and ProDiMES testing datasets for abrupt faults (Stage 2, compari-
son with [8,23]).

Algorithm TPR TNR Latency CCR Faults

NB 31.58% 80.33% - -

10

DT 37.20% 92.40% - 38.76%
KNN 45.30% 96.10% - 44.95%
LSVM 23.87% 85.55% - -
NSVM 70.50% 72.80% - 53.50%

HSVMkSIR 77.06% 75.70% 0.70 62.93%
NSVMkSIR 58.30% 96.00% 1.35 57.83%

SVM 68.50% 94.51% 1.80 63.81%
19RELM 66.50% 96.07% 1.70 62.95%

RELM-SRC 71.00% 94.16% 1.60 65.69%

Figure 6 shows the correct classification rates for HSVMkSIR and RELM-SRC, and it is
visible that the former only surpasses the hybrid approach in only 3 out of 10 scenarios, of
which the first seven classes (ID 0-6) are the most detectable. If classes more difficult to
recognize are also considered, then the complexity of the classification increases, and the
total CCR of HSVMkSIR will drop even more, as reported in the literature [21].

Figure 6. Correct classification rates of the proposed hybrid approach and the best technique from
paper [8] for abrupt faults under cruise regime (Stage 2).

The second comparison in this stage addresses the results obtained by Borguet et al. [22],
who developed and validated an anomaly detection algorithm using their cruise dataset
generated from ProDiMES. This dataset works with 518 convergent engines, originally
simulated for 250 nominal engines and 270 faulty engines covering all the 18 scenarios for
abrupt and rapid cases. Each engine considers 300 flights, leading to a total number of
155,400 flights in the database. To build the required models, flights 1–50 in each engine
are used for training (25,900 total flights) and flights 51–100 for validation (25,900 flights).
Faults occur randomly after flight 250. Flights 201–300 (103,600 total flights) are employed
to test the monitoring capabilities of the algorithm.

Table 9 presents the metrics of the compared algorithms for abrupt and rapid faults
under the cruise regime. The anomaly detection algorithm does not outperform the rest
except for TNR. To ensure the condition set by ProDiMES, the authors adjusted the detection
threshold, achieving a false-alarm/false-positive rate better than 1 per 1000 flights (a TNR
of 99.9%) but losing in TPR as a result. Since this condition was not the purpose of the
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other three techniques in this stage, they have higher TPR, and RELM-SRC is the best
option based on this metric. In all cases, the rapid faults have lower TPR than abrupt ones
because the former is more difficult to detect due to their slow evolution rate in many
engines. For that reason, the detection latency values for rapid cases are higher than those
in abrupt faults and depend on the increasing fault magnitude. RELM-SRC detects rapid
faults almost one flight cycle sooner than the anomaly detection algorithm.

Table 9. Metrics for self-generated and ProDiMES cruise testing datasets averaged for abrupt and
rapid faults (Stage 2, comparison with [22,23]).

Algorithm Type of Fault TPR TNR Detection Latency

Anomaly
detection
algorithm

Abrupt 45.50% 99.90% 1.7
Rapid 27.10% 99.90% 6.7

SVM
Abrupt 68.50% 94.51% 1.8
Rapid 51.70% 94.51% 6.0

RELM
Abrupt 66.50% 96.07% 1.7
Rapid 49.90% 96.07% 5.9

RELM-SRC
Abrupt 71.00% 94.16% 1.6
Rapid 53.20% 94.16% 5.8

4.3. Stage 3: Comparison with Other Diagnostic Frameworks Using ProDiMES Dataset and
Multipoint Analysis

To this point, only cruise data has been used to diagnose engine faults; however,
ProDiMES’ authors recommend using both cruise and takeoff measurements for better
diagnostic performance. Following this recommendation, the proposed algorithm was
adapted to work with a multipoint mode. The algorithm also considers satisfying the
condition set by ProDiMES mentioned before, which consists of a reduction of a false-alarm
rate (false-positive detection rate) of once per 1000 flights (TNR ≥ 99.9%). To meet this
requirement, the number of healthy engines in the training stage needs to be increased.
This follows the idea that in practice, the number of non-fault scenarios in an engine fleet is
by far superior to those registered as faults.

Figure 7 displays the variation of the number of training healthy engines for RELM-
SRC and its influence on the metrics using the ProDiMES testing dataset. The selection
of the optimal point is based on the TNR metric. One can see that the first point does not
satisfy the condition, and increasing the number of engines to produce a TNR of 100%
worsens the other metrics. Thus, the optimal number of healthy engines is 1200 engines
(second point). Other parameters in RELM-SRC are tuned as well: the value of smoothing
coefficient is 0.3, the number of hidden neurons L in RELM is 1000, the threshold τ = 0.1,
and the value of k in the adaptive sub-dictionary formation is 2.

Table 10 presents the results of the algorithms that have used the same ProDiMES test
dataset (see Table 5) and the multipoint diagnosis. The first two rows are the metrics from
the diagnostic framework given as an example solution by the ProDiMES’s authors in the
paper [19] and the user’s guide [20]. One can see from the table that the hybrid approach
outperforms the other techniques in three out of four metrics. For example, considering
abrupt faults, RELM-SRC produces an improvement of 6.4% in TPR and a reduction of
almost half the detection latency in comparison with the example solution [19]. Despite
that RELM-SRC is not the best option in TNR, the difference between the first and second
place is only 0.032%, and both techniques satisfy the condition TNR ≥ 99.9%. Comparing
the methods in rows 2–4, none of these algorithms can be considered the best or the worst
according to all the metrics. Each algorithm gains in some metrics but loses in the others,
and in general, their results are very close. Since the SVM-based algorithm loses a little to
the example solution by two metrics (TNR and kappa for abrupt faults) but gains in four
metrics, it is clear that the former slightly outperforms the latter. Therefore, SVM is a good
option after RELM-SRC and RELM, which is in the second place.
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Figure 7. Variation of the number of training healthy engines in RELM-SRC to satisfy TNR ≥99.9%
(Stage 3).

Table 10. Metrics for ProDiMES testing dataset and multi-point analysis averaged for abrupt and
rapid faults (Stage 3, comparison with [19,20,23]).

Algorithm Faults TPR TNR Latency Kappa

ProDiMES
solution

Abrupt 50.5% 99.896% 2.6 0.29
Rapid 37.4% 99.896% 7.0 0.21

ProDiMES
user’s guide

Abrupt 61.0% 99.997% 2.5 0.73
Rapid 41.9% 99.997% 6.8 0.56

MLP
Abrupt 62.8% 99.931% 1.8 0.69
Rapid 46.6% 99.931% 6.0 0.50

SVM
Abrupt 61.0% 99.965% 1.4 0.71
Rapid 46.2% 99.965% 5.6 0.57

RELM
Abrupt 66.6% 99.965% 1.3 0.75
Rapid 46.9% 99.965% 5.8 0.57

RELM-SRC
Abrupt 67.4% 99.965% 1.2 0.76
Rapid 48.3% 99.965% 5.7 0.59

4.4. Stage 4: Blind Test Case (Multi-Point Analysis)

In this final stage, a more objective comparison between multiple participants is
carried out by solving the same problem, the same conditions, and the same metrics
through the blind test dataset that has the following characteristics: not every engine
experiences a fault, no-fault appears in the first 10 flights of every engine, faults can
randomly initiate in the flight interval 11–41, both rapid and abrupt faults are considered,
the engine only experiences one type of fault during its time history, and the true fault
condition is not available for users. The dataset follows the same specifications given in
Table 5 for the ProDiMES test set except for the number of samples used. It consists of
9991 total engines and 50 flights per engine, from which only flights 11–50 are considered
for diagnosis according to ProDiMES. Thus, the total number of flights under analysis is
399,640. Considering this dataset, the optimal number of healthy engines in the training
data for both RELM and RELM-SRC was found to be 2000.
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Table 11 contains the blind test case results averaged for abrupt and rapid faults for the
compared methods as well their rankings for each performance metric. One can observe
from the table that the proposed algorithm based on two techniques outperforms all other
solutions in all the metrics. RELM-SRC is superior in four out of six metrics, and RELM
wins in two metrics (tied with SVM in one metric). For example, the RELM-SRC increases
the TPR by 3.5% (ULST2-FLS), 3.8% (GE), and 7.2% (KNN) compared to the best results
from other authors and up to 11% in the worst scenario (WLS). For TNR, all the algorithms
under analysis satisfied the requirement of TNR ≥ 99.9%, and the difference between
them is small. In the case of the first and last place, this difference is only 0.054%, which
represents half of the permitted false alarms in ProDiMES.

Table 11. Metrics for ProDiMES blind test dataset and multi-point analysis, averaged for abrupt and
rapid faults (Stage 4).

Algorithm TPR TNR CCR MCR Latency Kappa

WLS 44.7%
9th

99.908%
3rd

43.4%
9th

1.35%
4th

4.86
8th

0.588
10th

PNN * 44.7%
9th

99.908%
3rd

43.7%
8th

1.04%
3rd

4.86
8th

0.590
9th

PATKF 50.9%
6th

99.908%
3rd

46.7%
4th

4.15%
9th

4.02
3rd

0.627
5th

GE 51.9%
5th

99.906%
4th

45.2%
6th

6.78%
10th

4.24
4th

0.617
6th

PNN ** 48.5%
7th

99.908%
3rd

45.2%
6th

3.29%
7th

4.70
7th

0.595
8th

KNN 48.5%
7th

99.908%
3rd

46.1%
5th

2.37%
5th

4.70
7th

0.605
7th

PNN-
Adapt

48.5%
7th

99.908%
3rd

45.0%
7th

3.51%
8th

4.70
7th

0.595
8th

ULST2-
FLS

52.2%
4th

99.904%
5th

49.4%
4th

2.72%
6th

4.45
6th

0.647
4th

WMFLS 45.7%
8th

99.902%
6th - - 4.30

5th
0.517
11th

SVM 52.5%
3rd

99.904%
5th

52.2%
3rd

0.3%
2nd

3.30
1st

0.660
3rd

RELM 53.6%
2nd

99.958%
1st

53.6%
2nd

0
1st

3.45
2nd

0.670
2nd

RELM-
SRC

55.7%
1st

99.916%
2nd

55.4%
1st

0.3%
2nd

3.30
1st

0.685
1st

* [21]; ** [13].

Regarding CCR, the improvement is more evident since the best result of the proposed
algorithm advantages the fourth and ninth places in 6% and 12%, respectively. To see in
more detail the behavior of this metric, Figure 8 shows a further breakdown of CCR for all
abrupt and rapid faults and each of the best six algorithms. From this analysis, one can
extract the following observations:

1. As in the case of TPR, abrupt faults present higher CCR than rapid ones since the
former are easier to detect.

2. RELM-SRC wins in 12 rapid and 12 abrupt fault scenarios; the rest are draws and
some wins with RELM, SVM, and ULST2-FLS.

3. The algorithms have problems identifying VBV actuator faults and three sensor faults
related to Nc, P2, and Pamb, as also reported in papers [13,21]. Some present slightly
better performance than others except for PNN and KNN, which effectively recognize
the Pamb fault, but in general, the CCR values are low, especially for rapid faults.
This identification problem occurs due to the nature of the faults and the possible
combination of the following reasons:

(a) The false-negative rate (FNR or omitted faults) and the false-positive rate (FPR
or false alarms) are interconnected, i.e., when FNR reduces, FPR increases. This
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is precisely the case when the ProDiMES condition of false alarms (one false
alarm per 1000 flights or FPR < 0.1%) is applied to the algorithm, increasing the
probabilities of omitted faults. In other words, the column of FNR values in the
confusion matrix contains a big number of incorrect diagnosis decisions due
to the great influence of the no-fault class, demonstrating that the algorithm
misclassifies the actual faults as healthy cases. Figure 9 displays the FNR for
each rapid and abrupt fault class obtained by the three techniques. It is visible
that Nc, P2, and especially Pamb have the highest FNR values (greater than
80%) since they are highly confused as the healthy class;

(b) The low magnitudes assigned to these faults in ProDiMES affect the recognition
task since the faults are contained in same the region of the healthy class,
causing their misclassification as healthy cases; and

(c) The problematic faults present low signal-to-noise ratios, and according to [13],
the sensor noise levels averaged for an engine fleet and implemented in
ProDiMES are much higher compared to other references that use the same
type of turbofan engine, producing a significant challenge to correctly perform
the diagnosis. Simon et al. [21] reported the use of additional logic to help
improve the diagnosis in these fault scenarios, while in the case of [13], the
improvement was associated with a fault detector based on calculated Mach
value monitoring. The implementation of both types of approaches to increase
the probabilities of these particular faults at expense of other classes is not
the objective of the benchmarking analysis but to have a global performance
(meeting the requirement of FPR < 0.1%). Thus, in general terms, it is neither
an advantage for the algorithms in [13,21] nor a deficiency in our proposed
methodology;

(d) With other faults presenting FNR values of 50%, the total number of fault sce-
narios, the amount of testing samples, and the total level of fault classification
accuracy is impacted negatively.

Figure 8. Correct classification rates for abrupt and rapid faults (Stage 4).
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Figure 9. False-negative rate (omitted faults) of three techniques for abrupt and rapid faults (Stage 4).

Continuing with the analysis of Table 11, MCR is computed as TPR minus CCR not
considering the misclassifications due to the healthy class (omitted detections). From the
table, one can see that the proposed algorithm reduces the misclassification rate by 1.04%
in comparison with the third-best algorithm (PNN) and up to 6.78% with the last place
(GE). RELM shows an MCR of 0 (averaged off-diagonal probability is negligible), and SVM
and RELM-SRC are tied in second place with only 0.3%. Authors of WMFLS [25] did not
report any value of MCR.

For detection latency, the difference between techniques is small. However, the
proposed system detects faults 0.72 and 1.5 fight cycles sooner than those for the third
(PATKF) and last place (WLS, KNN), respectively. Finally, as a reflection of global fault
classification performance, RELM-SRC, RELM, and SVM win the first positions for the
kappa coefficient. For example, RELM-SRC improves the performance in 0.038, 0.08, and
0.168 compared to ULST2-FLS, KNN, WMFLS, respectively.

5. Discussion
5.1. About the Stages of Comparison

The comparison section helped analyze the behavior of metrics and provided informa-
tion about the diagnostic capabilities of the algorithms. The analysis became more objective
and relevant from stage to stage. The first three stages allowed for adjusting the proposed
algorithm and preparing it for the fourth stage, the blind test case.

Stage 1 enabled a preliminary comparison between techniques using different sizes
of training datasets under the cruise regime. Additionally, smoothing in both training
and testing deviations was considered to produce a significant increase in the diagnostic
accuracy for all the techniques.

In Stage 2, the present study used the dataset provided in ProDiMES, while the authors
in [8,22] generated their own test dataset. However, both types of sets were computed for
the same engine, the same operating point, and the same structure of faults. For this reason,
the differences between the sets cannot significantly change the algorithms’ performances
and comparison results.
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In Stage 3, the successive development of two versions of the algorithm, one-point
and multipoint, had the following reasons. First, a simpler one-point version allowed a
better adjustment of each algorithm element to debug the entire software. Second, the
availability of a cruise version allowed the comparison of the proposed algorithm with
known diagnostic solutions also using ProDiMES; such a comparison enabled a greater
number of candidate algorithms and made the study more comprehensive.

The comparison in Stage 4 can be considered the most reliable because all the algo-
rithms employed the same input data and passed through the blind test. However, the
previous stages were also useful as far as they showed that none of the available infor-
mation contradicts the superiority of RELM-SRC, nearly followed by RELM. Thus, one
can state that the proposed framework has the best accuracy performances among all the
diagnostic solutions that have been tested by ProDiMES so far.

5.2. About the Factors in the Algorithm That Contributed to the High Performance

The high performance achieved by the proposed system might be related to diverse
factors that can be seen as clear advantages. First, in the majority of the compared frame-
works, the faults are detected by an anomaly detection algorithm based on a threshold
applied to a deviation vector length. Such a procedure provokes delays in diagnostic
decisions, and the healthy engine class is limited in the diagnostic space by a decision
boundary with a rigid form. In contrast, our algorithm computes anomaly detection and
fault identification diagnostic at once by the same machine-learning technique and adapt-
ing the mentioned boundary to each fault. All the metrics confirm this, especially the
detection latency.

Second, the hybrid scheme in RELM-SRC gives a second opportunity for the noisy
samples to be reclassified with a noise-robust method to reduce the possibility to be
misclassified as healthy cases or faults with small magnitude.

Third, the optimization of the proposed diagnostic algorithm is a complex process
that requires taking into account not only the tuning of the machine-learning techniques
but also all peculiarities and requirements of the ProDiMES methodology. For that reason,
the algorithm was adjusted in each stage considering the optimal selection of the reference
set for average baseline model and model correction; the size of the training dataset; the
deviation smoothing coefficient; the internal parameters in the techniques (regularization
parameter ξopt and number of hidden neurons for RELM, threshold τ, and k in the adaptive
sub-dictionary); and the number of healthy engines to meet the condition of no more than
one false alarm per 1000 flights. As a result, the optimized algorithm produced a diagnostic
accuracy P that is two times greater than the value of the algorithm from [28], and the
number of healthy engines were reduced significantly from 14,000 to 2000 engines in the
blind test case to meet the requirement of one false alarm per 1000 flights compared to
paper [23].

5.3. About Some Advantages and Disadvantages of the Compared Fault Identification Techniques

The proposed hybrid approach has the advantage that the RELM block is simple
to construct and fast to train. The SRC block does not have a training stage, and the
use of adaptive sub-dictionaries (formed with training classes) instead of over-complete
dictionaries helps to enhance signal sparse representation, reduce classification errors, and
decrease testing time. However, a clear disadvantage is that RELM does not handle noisy
signals well, producing misclassifications, and SRC based on sub-dictionaries still presents
considerable computational costs.

Compared to WMFLS, which is based on a type-1 fuzzy logic system and considers
up to 1814 rules extracted automatically, ULST2-FLS exploits the capabilities of the type-2
fuzzy logic system to model and deal with sensor uncertainties. The method works with
max-product composition, product implication, Gaussian membership functions, and has
the advantage of employing a reduced number of rules (76 rules) in the inference engine to
classify the engine faults. In addition, ULST2-FLS reduces the training stage complexity
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by avoiding the Karnik–Mendel algorithm [24]. In general, the drawbacks in fuzzy logic
systems are that the diagnostic accuracy depends on rules, which in turn are dependent on
the knowledge and expertise of the subject expert, and also a great amount of training data
and rules is required [7].

For the case of PNN, it is simple to construct, with low execution time, and has the
advantage of providing probabilistic confidence with every diagnostic decision [13]. In a
direct comparison with WLS, which is linear in nature and requires a fault influence matrix
from a physics-based model, PNN is a data-driven method that captures the non-linear
behavior of the system [21]. However, PNN yields to other ANNs in recognition accuracy
and requires elevated computational resources when the number of samples is increased
(the number of radial basis functions as hidden neurons increases in the same quantity) [23].

As for SVM, it has a good generalization performance with a small number of samples,
it is not limited to the computational memory as in the case of PNN, and the technique has
a unique and global solution in comparison with ANNs that struggle with multiple local
minima. Nevertheless, one disadvantage of SVM is the elevated training time compared to
ANNs when the number of samples is increased [12].

5.4. About Future Areas of Research

During the benchmarking process, we identified the following areas of research
intended for improving the algorithm using ProDiMES in the future:

- A more robust algorithm that reduces deviation errors through the adaptation of
baseline models according to the current level of engine deterioration.

- A more complete and integrated approach that considers all the stages of feature ex-
traction, anomaly detection, fault identification, lifetime prediction, and fault-severity
estimation.

- The use of operating conditions along with monitored variables as inputs to the fault
recognition technique to provide more information about the engine operation.

- The need for a method addressing imbalanced fault classification.

6. Conclusions

In this paper, a gas turbine monitoring and diagnostic algorithm was developed and
examined on the ProDiMES software. One of the new characteristics of this algorithm is
the use of a hybrid approach that uses the advantages of extreme learning machines and
sparse representation as well as simultaneous fault detection and identification by the same
recognition technique. Such a structure of a diagnostic process and careful optimization
of all of the diagnostic steps resulted in high algorithm performances. Four stages of
comparison with all the other diagnostic solutions using the ProDiMES platform showed
that the proposed algorithm has the highest diagnostic performance. These salient features
make the algorithm a promising tool for real gas turbine monitoring systems. The paper
describes the algorithm and its tuning in detail so that the reader can repeat the calculations
and verify the results. We hope that this information and high performance of the algorithm
proposed in the paper will stimulate the competition between diagnostic solutions and
their further development.
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Abbreviations

Asub Adaptive sub-dictionary for SRC
b Bias in RELM
CCR Correct Classification Rate
C-MAPSS Commercial Modular Aero-Propulsion System Simulation
DT Decision Tree
EFS Engine Fleet Simulator
EMA Exponential Moving Average
FNR False-negative rate
FPR False-positive rate
GE Generalized Estimator
GUI Graphic user interface
GPA Gas-Path Analysis
H Hidden layer output matrix in RELM
HSVMkSIR Hierarchical SVM with kernel sliced inverse regression
K Average correction coefficient
KNN K-Nearest Neighbors
L Number of hidden neurons
m Number of monitored variables Y
MCR Misclassification rate
MLP Multi-Layer Perceptron
N Total samples for network training
NB Naïve Bayes
NSVMkSIR Non-linear version of HSVMkSIR
o Output vector in RELM
odi f f Difference between the two largest values in the output o
PATKF Performance Analysis Tool with Kalman Filter
PNN Probabilistic Neural Network
P Weighted mean probability for global diagnostic accuracy
ProDiMES Propulsion Diagnostic Method Evaluation Strategy
RELM Regularized Extreme Learning Machines
rd Residual or reconstruction error in SRC
SRC Sparse Representation Classification
SVM Support Vector Machines
T Target matrix in RELM
TCR True Classification Rate
TNR True-negative rate
TPR True-positive rate
ULST2-FLS Upper and lower singleton type-2 fuzzy logic system
→
U Vector of operating conditions
w Hidden layer weight matrix in RELM
WLS Weighted Least Squares
WMFLS Wang–Mendel Fuzzy Logic System
x Non-zero scalar coefficients in SRC
→
Y Vector of gas-path monitored variables
→
Y I0 Vector of individual baseline values
Z Vector of normalized deviations (feature vector)
ZL, ZV , ZT Learning, validation, and testing sets
β Output weight matrix in RELM

δ
→
Y
∗

Vector of monitored variable deviations
λ A trade-off between sparsity and signal reconstruction in SRC
τ Threshold for reclassification
ξ Regularization parameter in RELM
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Subscripts and superscripts
0 Baseline
* Measured value
i Monitored variable index

Appendix A

Figure A1. Two-spool turbofan engine layout [20].
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