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ABSTRACT 
 
The catalyst can speed up the chemical reaction and increase the selectivity of the target product, 
playing an important role in the chemical industry. By improving the performance of the catalyst, the 
economic benefits can be greatly improved. Artificial Neural Network (ANN), as one of the most 
popular machine learning algorithms, has parallel processing and self-learning capabilities as well 
as good fault tolerance, and has been widely used in various fields. By optimizing the catalyst 
through ANN, time and resource consumption can be greatly reduced, and greater economic 
benefits can be obtained. This article reviews how CNN technology can help people solve highly 
complex problems and accelerate progress in the catalytic world. 
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1. INTRODUCTION 
 
In recent decades, Artificial neural network (ANN), 
as a non-linear fitting algorithm, has become one 
of the most popular machine learning techniques 
due to its advantages of easy-training, adaptive 

structure, and tunable training parameters [1,2]. 
With the development of algorithms, there are 
currently a large number of ANN methods, such 
as the back-propagation neural network (BPNN) 
[3,4], general regression neural network (GRNN) 
[5], and extreme learning machine (ELM) [6]. 
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More recently, the deep neural network (DNN) 
has raised broad interests due to its strong 
learning capacity and the popular concept of 
deep learning techniques. Previous studies have 
shown that different neural network algorithms 
have different advantages for practical 
applications. 

 
However, as far as we know, few review studies 
have summarized the application of neural 
networks in catalysis research. Therefore, it is 
necessary to discuss in detail the potential 
applications of neural networks in experimental 
and theoretical catalysis. This article summarizes 
the application progress of neural networks in 
catalysis in recent years from an experimental 
point of view.  

 

2. ARTIFICIAL NEURAL NETWORKS 
 

2.1 Overview of Artificial Neural Networks  
 
Artificial Neural Network, which is abbreviated as 
Neural Network, is an abstraction and simulation 
of the human brain. It is an interdisciplinary 
discipline involving biology, computer science, 
and mathematics. It is widely used in artificial 
intelligence and machine learning. It abstracts 
the neural network of human brain from the 
perspective of information processing, 
establishes some simple model, and forms 
different networks according to different 
connection modes. Artificial neural network is a 
parallel interconnected network with self-adaptive 
self-learning adjustment function composed of 
the most basic unit group neurons. Artificial 
neural networks can simulate the response of the 
biological nervous system to specific objects 
through training and learning. The basic unit 
neuron is a simplification and simulation of 
biological neurons. Artificial neural network is 
based on the simplification and simulation of 
these biological neurons [7].  

 
The network system of artificial neural network is 
very complex, it is composed of many and single 
basic neurons, the neurons simulate the human 
brain to process information, and connect with 
each other, carrying on the nonlinear change to 
process information [8]. By training the 
information sample, the artificial neural network 
information processing information is input into 
the neural network, so that it has the memory 
and recognition function of human brain, and all 
kinds of information processing is completed. 
Artificial neural network has good non-linear 
transformation ability, parallel processing ability, 

self-learning and self-adaptation ability and good 
associative memory ability, but also avoid 
complex mathematical derivation, to ensure that 
the sample defect and parameter drift can ensure 
stable output [9].  
 
As an important part of artificial intelligence, 
artificial neural network has the advantages of 
super robustness, fault tolerance, full 
approximation of any complex nonlinear 
relationship, parallel processing, learning and 
self-adaptation. There is a broad space for 
development in many fields involving the 
processing of nonlinear and complex problems. 
The main application areas are auxiliary 
assembly system [10,11], intelligent driving 
[12,13], Chemical product development [14-16], 
auxiliary medical diagnosis [17-19], image 
processing [20-22], automatic control of power 
systems [23-25], signal processing [26-28], 
process control and optimization [29-31], 
troubleshooting [32,33], game theory [34,35], etc. 

 
2.2 Classification 
 
Artificial neural network can be divided into 
feedback network and forward network in terms 
of structure, and can be divided into random 
network or deterministic network in terms of 
performance, which can also be called discrete 
network and continuous network. It can also be 
divided into management network and free 
network according to the method of learning. 
According to the nature of connection, it can be 
divided into first order linear correlation network 
and high order nonlinear correlation network. 
This paper focuses on the analysis of the 
topology of artificial neural network [36].  
 
(1) Feedback network: Feedback network mainly 
includes BAM, Hamming, Hopfield, etc. 
Feedback networks with feedback between 
neurons can be represented by an undirected 
complete graph.  The state of the neural network 
in the aspect of information processing is 
transformative and can be processed by using 
the dynamic system theory. The associative skill 
function of the system is closely related to the 
stability of the system, and Boltzmann machine 
and Hopfield network belong to this type. 
 
(2) Forward network includes BP, multi-layer 
perceptron, single-layer perceptron, adaptive 
linear network, etc. In a forward network, each 
neuron in the network receives input from the 
previous level and outputs it to the next level. 
The network can be represented by a directed 
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acyclic graph, which has no feedback. The 
network converts signals from the input space to 
the output space, and the multiple combinations 
of its information processing capabilities are 
derived from simple nonlinear functions. The 
network structure is easy to implement and 
relatively simple. Back propagation network is a 
typical forward network [37]. 

 

2.3 Artificial Neural Network Learning 
Rules  

 
The learning rules of artificial neural networks are 
actually a network training method. The purpose 
is to modify the weight of the neural network and 
adjust the threshold of the neural network so that 
the neural network can better complete certain 
specific tasks. Currently, neural networks have 
two different learning methods: tutored learning 
(also called supervised learning) and 
unsupervised learning (also called autonomous 
learning) [9]. 

 

2.3.1 Supervised learning 
 

The so-called supervised learning refers to the 
process in which the neural network needs to 
supervise the training data during the training 
process. This process is the process of 
continuously adjusting the weights under the 
influence of the expected output, that is, when 
the training data is input to the neural network 
after training [38]. After learning the output, the 
network compares the output with the expected 
output. If the error of the output of the neural 
network relative to the expected output is within 
the allowable range, it can be considered that the 
neural network learning has been completed. If it 
is not an error within the allowable range, the 
weight of the neural network must be 
continuously adjusted to reduce the error, so that 
the output of the neural network is close to the 
expected output, until the error is within the 
allowable error range, and the training ends. It 
can be seen that the learning process with a tutor 
is a process of weight adjustment under 
supervision and expectations. In this process, the 
changes in the weights of the neural network 
reflect the learning process of the entire network. 
The last adjusted weight is this nerve. In this way, 
after continuous supervised learning, a neural 
network model with preliminary intelligence is 
basically established [7,39]. 

  

2.3.2 Unsupervised learning 
 

Unsupervised learning is also called autonomous 
learning and supervised learning. The difference 

is that unsupervised learning has no external 
supervision mechanism. It has no expected 
output. After the training data is input to the 
network through the input layer, it is not included 
in the output. The entire neural network checks 
the characteristics and rules of the training input 
data, and formulates judgment criteria1. The 
network adjusts the weight according to this 
standard. This kind of unsupervised learning can 
be regarded as a kind of self-organized learning. 
The discrimination standards established before 
training are also pre-set rules, such as 
competition rules. Through the collaboration 
between neurons, the weights of the          
network are constantly adjusted to respond         
to the excitation of the input pattern until           
the entire neural network forms an orderly state 
[39]. 

 

2.4 Schematic Structure of an ANN 
 
A complete traditional ANN algorithm structure 
consists of at least three different layers: input 
layer, hidden layer and output layer (Fig. 1) [1]. 
Each layer is composed of a certain number of 
neurons. Each neuron is connected to all 
neurons in the next layer. Each connection 
represents a weight that contributes to the 
accessory. Under the appropriate activation 
function, the optimized combination of weights 
can generate predictions for the dependent 
variable: 

 

 (1) 

 

Where  represents the weight value of a 

connection,  represents an inputted 

independent variable, and b represents a bias. 
For the activation function (f (NET)), the sigmoid 
function is one of the most popular forms that 
can introduce a smooth non-linear fitting to the 
training of an ANN (Equation (2)). The training of 
ANN is essentially based on the optimization of 
each weight contribution based on the data set in 
the training set. The most commonly used weight 
optimization method is the backpropagation 
algorithm, which iteratively analyzes the error 
and optimizes each weight based on the error 
generated by the next layer. As we mentioned 
above, there are some other types of networks, 
such as GRNN and ELM. Although there are 
some differences in weight training and algorithm 
structure, the basic principles, as well as the 



training and testing process are very similar. 
More details about their principles can 
in the references [38]. 
 

2.5 Model Development  
 

The rational development of knowledge
artificial neural network model includes two 
parts :(I) training and (Ⅱ) testing. The training 
process is a so-called "learning" process from 
the database, while the testing process is the 
validation of the training model using data sets 
that have not previously participated in the 
training process. See sections 2.5.1 and 2.5.2 for 
a detailed discussion. It should be noted that the 
training and testing process applies not only to 
the topics discussed in this review, but also to 
ANN model development in many other areas.

 

2.5.1 Model training 
 

The training of the ANN includes the preparation 
of the database and the selection of variables. 
The size of the database should be large enough 
to avoid overfitting. For each variable (especially 
the dependent variable), the data range should 
be wide enough to ensure good training. If the 

 

 
Fig. 1. Algorithmic structure of a typical artificial neural network (ANN)
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training and testing process are very similar. 
More details about their principles can be found 

The rational development of knowledge-based 
artificial neural network model includes two 

) testing. The training 
called "learning" process from 

database, while the testing process is the 
validation of the training model using data sets 
that have not previously participated in the 
training process. See sections 2.5.1 and 2.5.2 for 
a detailed discussion. It should be noted that the 

ing process applies not only to 
the topics discussed in this review, but also to 
ANN model development in many other areas. 

The training of the ANN includes the preparation 
of the database and the selection of variables. 

the database should be large enough 
to avoid overfitting. For each variable (especially 
the dependent variable), the data range should 
be wide enough to ensure good training. If the 

data range is too narrow, the trained model may 
only have good predictive ability in very local 
areas. In numerical prediction, the dependent 
variable is usually a property that is difficult to 
obtain in conventional measurement or 
calculation. On the other hand, the independent 
variable should be easy to measure and have a 
potential relationship with the selected 
dependent variable. More details about the 
training standards can be found in the references 
[40]. 

 
2.5.2 Model testing  

 
In order to verify the trained ANN, a testing 
process is necessary. The test of the model 
should use the data set not used in the 
training process. With the input of the test set, 
the output data can be compared with the actual 
data of the test set, and the root mean 
square error (RMSE) can be calculated by 
Equation (3): 
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where  represents the predicted value 

outputted by the ANN,  is the actual value, 

and  represents the total number of samples. If 

the calculated RMSE from the testing set is 
relatively small, it means that the ANN is well-
trained. It should be noted that for the training 
and testing of an ANN, a cross-validation process 
should be performed using different components 
of the training and testing datasets. If the 
database is relatively large, a sensitivity                      
test can be performed to replace the cross-
validation, in order to avoid a high computational 
cost [41]. 

 
It should be noted that for typical ANN algorithms 
(such as BPNN), the entire neural network 
structure needs to be optimized before 
determining the final number of hidden layers 
and hidden nodes. Use different ANN structures 
for repeated training and testing. On the one 
hand, if the number of hidden layers and/or 
hidden neurons is too high, there is a risk of 
overfitting; on the other hand, if their number is 
too small, it will cause inappropriateness. 
Generally, the best ANN algorithm configuration 
can be defined by comparing the average 
RMSEs of the test set during cross-validation or 
sensitivity testing [42]. 

 

3. APPLICATIONS OF ANN FOR 
CATALYSIS 

 
Generally speaking, the comprehensive 
evaluation indexes of industrial catalysts are 
activity, selectivity and service life, and the 
catalyst for specific reaction may also have good 
heat resistance, mechanical strength and anti-
carbon properties, so the development cycle is 
often very long. When it comes to specific 
reactions, the preparation methods and operating 
conditions of catalysts depend more on practical 
experience. In order to further study the micro-
reaction mechanism of catalysts, there are often 
multiple mechanism models for the same 
reaction, but these models often have their 
limitations. However, there are many factors 
affecting the properties of the catalyst. On the 
one hand, there is interaction between its own 
properties, such as active metal, preparation 
method, preparation conditions and activation 
conditions, and on the other hand, reaction 
conditions will also affect its activity. If all the 
experimental verification will consume huge 
energy. The nonlinear mapping ability of BP 
neural network can achieve certain precision 

prediction with less data in a short period of time, 
which is particularly efficient. 

 

3.1 Prediction of Catalytic Activity 
 
In 1994, Kito et al. [43] did one of the earliest 
catalytic applications. They predicted the 
distribution of ethylbenzene oxidative 
hydrogenation products. The product 
components were styrene, benzaldehyde, 
benzene + toluene, CO and CO2 as the network 
Output. In terms of the input of the neural 
network, they used 9 different independent 
variables, which are potentially related to the 
productivity and selectivity of the catalytic 
reaction, including: abnormal valence, catalyst 
surface area, catalyst dosage, typical valence, 
ionic radius, coordination Number, 
electronegativity, partial charge of oxygen ions, 
standard heat generation of oxides. Their results 
found that in a good experimental database, a 
single hidden layer neural network can perform 
accurate predictions of product selectivity. Sasaki 
et al. [44] first proposed that ANN can be used to 
predict catalytic activity and optimize 
experimental conditions. The experimental 
results show that a well-trained neural network 
can accurately predict the yield and by-products 
of the Cu/ZSM-5 molecular sieve catalyst 
decomposing NO. For other more complex 
reactions, such as polymer-supported Mo (VI) 
complexes catalyzed by the 1-hexene 
epoxidation reaction, Mohammed et al. [45] 
showed that neural networks have a strong 
ability to predict its catalytic activity. The 
experimental conclusions are very consistent. 
For photocatalysis, neural networks also show 
strong predictive capabilities. Frontistis et al. [46] 
studied the photocatalytic degradation of 17-
ethinyl estradiol (EE2) with different 
concentrations of TiO2 catalyst. Taking the 
reaction time, TiO2 concentration, EE2 initial 
concentration, matrix dissolved organic carbon 
(DOC), and matrix conductivity as inputs, they 
found that the average RMSE of a single hidden 
layer ANN was the smallest during the test. In 
terms of biotechnology catalysis, Rahman et al. 
[47] also found that with temperature, reaction 
time, substrate molar ratio, and enzyme amount 
as input, the optimized ANN structure can be 
used for lipase-catalyzed synthesis of dioctyl 
adipate. Yield prediction. In recent years, with the 
development of data mining concepts, Gunay 
and Yildirim [48] successfully used 1,337 data 
points from 20 studies on selective CO oxidation 
on copper-based catalysts. They concluded that 
ANN modeling can be used to extract valuable 
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experimental results from previous literature data 
and provide strong guidance for future 
experimental design. In addition to catalysis, 
Raccuglia et al. [49] further discovered that 
similar concepts can even help discover 
materials from failed experimental data. It can be 
seen from these typical studies that for different 
types of reaction systems, catalysis and data 
sets, the optimal ANN prediction structure is 
significantly different. We can see that different 
response types have very different input 
variables and output indicators. This means that 
each prediction task should be predicted by a 
specific model with optimal weight contribution 
and network structure. 

 
This article is based on the modeling of Fe3O4 
composite oxide catalyst formulation based on 
artificial neural network. In this article, the 
selection of two auxiliary elements, the ratio of 
elements, and the drying temperature and 
roasting temperature in the preparation of the 
catalyst are the keys to the final catalyst service 
life and hydrogen generation rate. Factors, the 
auxiliary element M1, the auxiliary element M2, 
the ratio of the auxiliary element M1 and Fe M/Fe, 
the ratio of the auxiliary element M2 and Fe 
M2/Fe, the drying temperature T1 and the 
roasting temperature T2 are selected as the input 
units of the artificial neural network, and the 
output units are catalyst life (CL) and hydrogen 
generation rate (formation rate of hydrogen, 
FRH). 
 
Based on the above analysis, the orthogonal 
design method is used to design a six-factor, 
five-level orthogonal experiment table, and the 
obtained samples are tested in the micro-
reaction system using the experimental method 
described above. The experimental results are 
shown in Table 1. 
 
From the experimental results of the initial 
sample, it can be seen that the life of the 
prepared Fe3O4 composite oxide is generally 
poor, and the hydrogen generation rate obtained 
is also uneven. Therefore, a suitable method 
must be used to obtain a better formula. For the 
system studied in this paper, the catalyst life of 
the output layer can be converted into a relative 
life (divided by 100), and the hydrogen 
generation rate is divided by 1.20, so that the 
data obtained are all between 0 and 1. Choose a 
relatively simple Sigmoid function as the 
activation function of each layer is conducive to 
the convergence of the learning algorithm. 
 

In order to choose a faster learning algorithm, 
use the initial catalyst formulation sample set 
obtained in Section 2.1 to test several learning 
algorithms, and select the most appropriate 
method from them. As shown in Table 1, the 
traditional BP algorithm, moment method. The 
convergence performance of the improved BP 
algorithm and the improved BP algorithm of the 
Levenberg-Marquardt method are investigated. 
The networks used in Fig. 1(a)~(c) are all 6-12-4-
2 type BP networks, and the training samples 
used are all 25 catalyst formulations and their 
evaluation results in Table 1. The difference is 
the training method. Among them, the learning 
rate (step size) of the traditional BP algorithm is 
0.01; in the BP algorithm improved by the 
moment method, the learning rate (step size) is 
0.01, the learning rate is increased by 1.05, the 
reduction is 0.7, and the moment is 0.9; In the 
training process of BP algorithm improved by 
Levenberg-Marquardt method, the initial input 
value is 0.001, the input increase rate is 10, and 
the decrease rate is 0.1. Since the convergence 
speed of the traditional BP algorithm and the 
improved BP algorithm of the moment method is 
slow, the criterion of whether the network has 
been trained (that is, the root means square error 
that can be allowed by training) is set to 0.01; 
while the Levenberg-Marquardt method, The 
method converges quickly, so the criterion is 
adjusted to 0.0000001. 
 
From the comparison of Fig. 1 (a) and (b), it can 
be seen that the Levenberg Marquardt method 
only needs 141 times to converge to 10-7; the 
traditional BP algorithm requires about 200,000 
iterations to converge to 0.01; the moment 
method requires 2 About ten thousand iterations 
converge to 0.01. From the time required for 
each iteration, the Levenberg-Marquardt method 
is longer than the traditional BP algorithm and 
the moment method, which is caused by a large 
number of matrix operations in the calculation. At 
the same time, as the number of input samples 
(input mode) increases, the number of iterations 
of the Levenberg-Marquardt method will increase 
accordingly. The time required for each iteration 
will also become longer. Error) should also be 
appropriately relaxed (but the highest cannot be 
greater than 0.001), which is related to the 
increase in the amount of calculation caused by 
the increase in the number of input samples 
(input mode). But it should be noted that even 
when the number of input samples (input mode) 
increases, the convergence speed of the 
Levenberg-Marquardt method is still much faster 
than that of the traditional BP algorithm. 
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Therefore, the Levenberg-Marquardt method is 
used for modeling. 
 
In order to determine the number of nodes in the 
hidden layer of the network, the aforementioned 
25 catalysts are used as training samples 
(training set), and networks of different structures 
are tested to find the best structure. The 
evaluation index mainly depends on the 
generalization ability of the network. For this 
reason, 12 catalysts are prepared and evaluated 
by a random method, and their formula and 
experimental results are used as the sample (test 
set) to test the generalization ability of the 
network. Due to the small number of samples in 
the training set, the generalization ability of the 
trained network is generally unsatisfactory. The 
structure with relatively good generalization 
ability can be selected as the modeling network. 
The test results are shown in Fig. 2. 

From the results in Fig. 2, it can be seen that due 
to the small number of hidden layer nodes in Net 
1, the simulation of the relationship between 
influencing factors and response results is not 
accurate enough; the number of hidden layer 
nodes in Net 2 reaches 40, and the experimental 
data is Overfitting, the test results reflect its poor 
generalization ability; although the total number 
of hidden layer nodes of Net 3 is the same as 
that of Net 4, one hidden layer is added, and the 
test results are not Obtained too much 
improvement, but increased the amount of 
calculation; Net 4 meets the requirements both 
from the test results and the number of hidden 
layer nodes, and is similar to the conclusion 
drawn by the selection method of previous 
studies. According to the above analysis, Net 4 
was selected to model the formula of the 
methane hydrogen production reaction system 
based on Fe3O4 composite oxide. 
 

Table 1. All experiments were performed on the same reaction conditions 
 

Catalyst Influencing factors Experimental results 
M1 M2 M1/Fe M2/Fe T1/℃ T1/℃ CL/h FRH/mmol·min

-1
·(g Fe)

-1 

MH1-1 Cu Cr 2 2 120 500 1.59 0.23 
MH1-2 Cu W 6 6 135 540 1.58 1.07 
MH1-3 Cu Al 10 10 150 580 0.41 0.97 
MH1-4 Cu V 14 14 165 620 0.29 1.13 
MH1-5 Cu Ti 18 18 180 660 0.14 0.83 
MH1-6 Ni Cr 6 10 165 660 0.44 0.99 
MH1-7 Ni W 10 14 180 500 1.77 1.12 
MH1-8 Ni Al 14 18 120 540 1.41 1.13 
MH1-9 Ni V 18 2 135 580 1.04 0.65 
MH1-10 Ni Ti 2 6 150 620 1.12 0.68 
MH1-11 Zr Cr 10 18 135 620 2.12 0.96 
MH1-12 Zr W 14 2 150 660 0.18 0.75 
MH1-13 Zr Al 18 6 165 500 0.57 0.48 
MH1-14 Zr V 2 10 180 540 2.23 0.34 
MH1-15 Zr Ti 6 14 120 580 2.15 0.26 
MH1-16 Pd Cr 14 6 180 580 0.13 0.49 
MH1-17 Pd W 18 10 120 620 2.51 0.18 
MH1-18 Pd Al 2 14 135 660 2.72 0.55 
MH1-19 Pd V 6 18 150 500 2.05 0.46 
MH1-20 Pd Ti 10 2 165 580 0.36 0.29 
MH1-21 Co Cr 18 14 150 540 2.51 0.85 
MHl-22 Co w 2 18 165 580 2.91 1.04 
MH1-23 Co Al 6 2 180 620 0.02 0.12 
MH1-24 Co V 10 6 120 660 1.81 1.03 
MH1-25 Co Ti 14 10 135 500 1.83 0.35 
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Fig. 2. Comparison of three training methods 
 



 
Fig. 3. Optimization modeling that combines both experimental and computational steps

 

3.2 Optimization of Catalysis 
 
In addition to activity prediction, more importantly, 
how can we use the predictive power of neural 
networks to design new catalysts? Because we 
know that artificial neural networks can 
accurately predict the catalytic performance of 
various catalytic systems, we can set new inputs 
and perform practical simulations with well
trained neural networks to obtain their catalytic 
performance and optimization methods. A 
general algorithmic flow chart of catalyst 
optimization summarized by Maldonado and 
Rothenberg is reconstructed in Figure. 
 
Optimization is more challenging than catalyst 
prediction. Corma et al. [50], who first applied 
ANNs for the optimization of potential catalyst 
compositions for the oxidative dehydrogenation 
of ethane (ODHE). It should be noted that in this 
catalysis optimization, a genetic algorithm (GA) 
was introduced as the promoter
generation. Omata and Yamada [51] developed 
an ANN to predict an effective additive for Ni/ 
Activated carbon (AC) catalysts for methanol gas 
phase carbonylation by using a trained network 
and discovering that tin is an effective element 
that improves catalyst performance. Hou et al. 
[52] first proposed a computer-aided framework 
for catalyst design based on ANN. They found 
that this method can effectively design promising 
propane ammoxidation catalysts. In addition, in a 
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Optimization is more challenging than catalyst 
et al. [50], who first applied 

ANNs for the optimization of potential catalyst 
compositions for the oxidative dehydrogenation 
of ethane (ODHE). It should be noted that in this 
catalysis optimization, a genetic algorithm (GA) 
was introduced as the promoter of design 

[51] developed 
an ANN to predict an effective additive for Ni/ 
Activated carbon (AC) catalysts for methanol gas 
phase carbonylation by using a trained network 
and discovering that tin is an effective element 

roves catalyst performance. Hou et al. 
aided framework 

for catalyst design based on ANN. They found 
that this method can effectively design promising 
propane ammoxidation catalysts. In addition, in a 

similar catalytic system for propane 
ammoxidation, Cundari et al. [53] combined 
neural networks with genetic algorithms to 
achieve rapid catalyst selection. Using genetic 
algorithms, the catalyst can be designed more 
reasonably by optimizing the input of the artificial 
neural network. Similarly, Umegaki et al.
combined GA and ANN with parallel activity 
testing to optimize the Cu-Zn-Al-Sc oxide catalyst 
for methanol synthesis. Rodemerck et al.
promoted the ga-assisted neural network method 
and proposed a general framework 
screening of new solid catalytic materials, which 
is in good agreement with their experimental data. 
Baumes et al. [56] further developed an "ANN 
filter" for high-throughput screening (HTS) for 
heterogeneous catalysis discovery based on the 
previous ga-assisted ANN method. Taking the 
water vapor shift (WGS) reaction as an example, 
they showed that although the optimization 
method developed by Corma et al. is successful 
for ODHE (as described at the beginning of this 
section), it cannot accurately estimate the activity 
of the WGS reaction. However, using a well
trained neural network classifier as a filter to help 
define "good" and "bad" catalysts, WGS catalysts 
can be rationally designed, and ga
methods can be used. 
 
Based on the BP neural network, Baroi et al. [57] 
established a correlation model for the structural 
properties of the supported H-Y zeolite catalyst, 
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such as the micropore area, mesopore area, 
pore size and loading amount, and the 
esterification reaction activity. Only 8 models 
were simulated and the reliable results were 
obtained. Wu et al. used momentum factor-
adaptive learning rate to improve BP neural 
network model and orthogonal design to adjust 
the process parameters of high-energy ball 
milling WC-MgO to control its grain size., BP 
model through item by item, intensive scanning 
techniques, diameter of grinding ball, ball mill 
speed and ball material ratio in the operating 
range value, ensure the comprehensive forecast 
samples. The experimental verification results 
show that the optimal catalyst particle size 
training times designed by the BP improved 
model with the optimal structure is only 38 times, 
and the prediction accuracy is also better than 
that of the orthogonal design. Huang Kai et al. 
improved BP neural network by using L-M 
algorithm and matrix algorithm respectively, and 
proposed a hybrid model based on improved BP 
and genetic algorithm to optimize Fe3O4 
composite oxide catalyst to improve methane 
hydrogen production performance. In this model, 
the catalyst life and hydrogen generation rate are 
composed of target parameters, and GA 
algorithm is used for global optimization, which 
improves the convergence rate, accuracy and 
generalization ability of the network. The 
hydrogen generation rate of catalyst with 
auxiliary element ratio and preparation conditions 
is higher than that of the same experimental 
conditions, and its lifetime is extended by up to 
150%. Similarly, Abbasi et al. also designed nan-
modified perovskite catalysts using a mixture 
model of GA and BP (Ann-GA), and predicted the 
reaction performance of CH4-CO2 with only 20 
groups of experimental data for the metal molar 
ratio of the catalyst. The predicted value of 
catalyst designed by the global optimization of 
genetic algorithm is in good agreement. Hadi et 
al. [58] used AN-GA model and RSM to design 
bimetallic catalyst for MTP reaction, the 
propylene selectivity of the catalyst prepared by 
the former is higher than that of the latter in 
terms of the Ce load, calcination temperature 
and calcination time, and the prediction accuracy 
is also satisfactory. 
 
4. CONCLUSION AND PROSPECTS 
 
Since the establishment of artificial neural 
network in the 1930s, neural network theory has 
achieved extensive success in many research 
fields such as pattern recognition, automatic 
control, signal processing, assisted decision 

making and artificial intelligence.  In the past two 
decades, artificial neural networks have been 
widely used in chemical fields, especially in the 
field of catalysis.  As we all know, in the field of 
catalysis, the design and optimization of catalyst 
is the most important research direction. Artificial 
neural network (ANN) has become a hot topic in 
catalytic field because of its good nonlinear and 
easy training.  
 

Although artificial neural networks have achieved 
great success and can facilitate the development 
of catalytic systems, there are some common 
challenges that need to be addressed in future 
research. For example, a large number of 
relevant researches are completed by BP neural 
network. We hope to apply the most advanced 
network model to the field of catalysis. Compared 
with other research fields, the application of 
neural network in the field of catalysis is not 
popular and the research is not in-depth enough.   
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