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Abstract 

 
Sarason did pioneer work on reflexive operator and reflexivity of normal operators, however, he did not used 

the word reflexive but his results are equivalent to say that every normal operator is reflexive. The word 

reflexive was suggested by HALMOS and first appeared in H. Rajdavi and P. Rosenthals book `Invariant 

Subspaces’ in 1973. This line of research was continued by Deddens who showed that every isometry in 

B(H) is reflexive. R. Wogen has proved that `every quasi-normal operator is reflexive’. These results of 

Deddens, Sarason, Wogen are particular cases of theorem of Olin and Thomson which says that all sub-

normal operators are reflexive. In other direction, Deddens and Fillmore characterized these operators acting 

on a finite dimensional space are reflexive. J. B. Conway and Dudziak generalized the result of reflexivity of 

normal, quasi-normal, sub-normal operators by proving the reflexivity of Vonneumann operators. In this 

paper we shall discuss the condition under which m-isometries operators turned to be reflexive. 
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1 Introduction 
 
A bounded linear operator T on a complex separable Hilbert space H is reflexive if Alg T = Alg Lat T, where 

Alg Lat T and Alg T denote respectively the weakly closed algebra of operators which leave invariant every 

invariant sub-space of T and the weakly closed algebra generated by T and I. 

 

An operator T has double commutant property if {T}" = Alg T. 

 

J. Agler and M. Stankus introduced an m-isometry [1,2,3,4]. Let H be a complex Hilbert space and B(H) be a set 

of all bounded linear operators on H. Let m C K   be the binomial coefficient. 

 

An operator T ∈ B(H) is said to be an m-isometry if ∑ (−1)km
k=0  m C K  T ∗m−k T m−k = 0. It is known that for m=1 

it is an isometry (m = 1). m-Isometries are not only a natural extension of an isometry, but they  also play a very 

important role in the study of Dirichlet operators and some other classes of operators [5,6,7]. 

 

Let σ(T), σp(T) and σap(T) denote spectrum, point spectrum, approximate point spectrum respectively, of T. Also 

D and ∂D represent, respectively, the open unit disc and its boundary. 

 

Definition: m-isometric unilateral weighted shifts. An operator T is called a unilateral weighted shift, if there 

exists an orthonormal basis {en : n ≥ 0} and a sequence {wn}n=0
∞  of bounded complex numbers such that Ten = 

wnen+1 for all n ≥ 0. The iterates of T are given by    T0 = I, and for k>0,  

 

Tken = (∏ wn+i 
k−1
i=0 ) en+k       (n ≥0). 

 

It is known that T is an isometry if and only if wn ∈ ∂D, for all n ≥ 0. [8,9,10] Characterized all  

 

 2-isometric unilateral weighted shifts that are not isometries in terms of their weight sequences. Recall that a 

unilateral weighted shift T is unitarily equivalent to a weighted shift operator with a non-negative weight 

sequence. So we can assume that wn ≥ 0 for every n ≥ 0. Furthermore, if T is injective, it can be assumed that wn 

> 0 for every n ≥0 [11,12,13,14]. 

 

In [15] it was shown that contraction operators whose essential spectrum in D, σe(T), the essential spectrum of 

T, is dominating for ∂D (i.e., almost every point of ∂D is a non-tangential limit point of σe(T) ∩ D) are reflexive. 

Afterwards, in [16], the reflexivity of some contractions with rich spectrum was discussed. In fact, it was shown 

that, if T is a contraction on a Hilbert space H so that I − T∗T is a trace class operator and σ(T)=D, then T is 

reflexive. Now a question arises that if T is a contraction so that D ⊆ σp(T), is T necessarily reflexive? In this 

direction some developments have occurred in [17] by giving sufficient conditions for an arbitrary contraction to 

be reflexive. Especially, it is shown that if T is a contraction so that σ(T) contains ∂D, then either T is reflexive 

or has a nontrivial hyper invariant subspace. The reflexivity of a contraction whose spectrum is the closed unit 

disc D and non-negative integer powers of hypo normal m-isometries will be established.  

 

Lemma 1. Let T be an m-isometric unilateral weighted shift with weight sequence {wn}n=0
∞  and put f(n) = 

(−1)m−1 +∑ (−1)
m−1

k=1
 m−k−1 (m−1

k
) ∏ wk−1

i=0 n+i
2 

 

If f(0) = 0, then f(n)=0 for all non-negative integers n. 

 

Proof- We can prove the above lemma by using mathematical induction. The result is true for     n = 0. Let it is 

true for n = j. Since T is an m-isometry   

 

∑ (−1)
m

k=0
 m−k (m

k
) || Tkx ||2 = 0    ∀ x ∈ H 

 

 for x = en states that, for every non-negative integer n, 

 

(−1)m−1 +∑ (−1)
m

k=1
 m−k-1 (m

k
) ∏ wk−1

i=0 n+i
2 = 0 
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for n = j 

(−1)m−1 +[∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 J+i
2] + [∑ (−1)

m−1

k=1
 m−k-1 (m−1

k−1
) ∏ wk−1

i=0 J+i
2]- (m−1

k−1
) ∏ wm−1

i=0 J+i
2 = 0 

{(−1)m−1 +[∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 J+i
2] + [∑ (−1)

m−1

k=1
 m−k-1 (m−1

k−1
) ∏ wk−1

i=0 J+i
2]- (m−1

k−1
) ∏ wm−1

i=0 J+i
2 = 0} × 

wj
-2  

(−1)m−2 +[∑ (−1)
m

k=2
 m−k-1 (m−1

k−1
) ∏ wk−1

i=1 J+i
2] = 0 

(−1)m−1 +[∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 J+i+1
2] = 0 

 

So the result is true for n=j +1.Hence by the principal of mathematical induction the result will be true for any 

value of n. 

 

 Theorem-1[18]. Suppose that T is a unilateral weighted shift operator with weights {wn}n=0
∞   Then T is an m-

isometry which is not an m−1-isometry if and only if the following hold for every nonnegative integer n 

 

(−1)m +[∑ (−1)
m

k=1
 m−k (m

k
) ∏ wk−1

i=0 n+i+
2] = 0 

 

And 

 

(−1)m−1 +[∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 n+i
2] ≠ 0  

 

Athavale [2] showed that, in general, not all m-isometries are isometries but under some conditions m-

isometries turned to be isometry. 

 

Theorem 2. Let T ∈ B(H) be a unilateral weighted shift which is an m-isometry. If for some non-zero x ∈H , || x 

|| =||Tx||= ···=||Tm−1x|| 

 

then T is an isometry.  

 

Proof. Suppose that{en}n=0
∞  is an orthonormal basis for H and Ten = wnen+1 for all n ≥ 0. Put x =∑ β∞

0 nen. Then 

we may have 

 

0=∑ (−1)
m−1

k=0
 m−k-1 (m−1

k
) || Tkx ||2 =  ∑ |n=∞

n=0 βn|2[(-1)m-1+∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 n+i
2]  

=∑ |n=∞
n=0 βn|2< ∆Ten,en > .  

 

Since x ≠ 0, βn  ≠0  for some n0. So the positivity of Δ T implies that 

 

< ∆Teno,eno > = (-1)m-1+∑ (−1)
m−1

k=1
 m−k-1 (m−1

k
) ∏ wk−1

i=0 no+i
2 = 0 

 

Thus, by the negation of condition in Theorem 1 T must be an m−1-isometry. Now, using same technique as 

above and using Theorem 1, m − 1 times, T must be an isometry.  

 

Theorem-3 [19]- If T is an injective unilateral weighted shift operator and T∗ has a non-zero eigenvalue, then 

for every positive integer n, the operator Tn  is  reflexive 

 

It is known that every contraction m-isometry is an isometry [20,21] and so is reflexive.          

 

 Let T ∈ B(H) and K be a compact subset of C. By || f || K we mean sup {|f(x)| : x ∈ K}. The set K is said to be a 

spectral set for T if σ(T) ⊆ K and || f(T) || ≤ || f ||K for every rational function f with poles off K. If σ(T) is a 

spectral set, we say that T is a von Neumann operator. Subnormal operators are well-known examples of von 

Neumann operators [22]. Conway and Dudziak [23] have shown that every von Neumann operator is reflexive. 

Hyponormal operator T with σ(T)={z : |z|≤r(T)}, where r(T) is the spectral radius of T, is a Von Neumann 

operator and so is reflexive.  

 

Theorem 4- If T ∈ B (H) is a contraction so that σ (T) = D, then T is a reflexive operator. 
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Proof- The hypotheses imply that T = 1. Let f be a rational function with poles off D. Choose R>0 so that D ⊆ 

D(0,R) := {z : |z| <R }, and f is analytic on D(0,R). Suppose that ∑ ak 
k=∞
k=o zk denotes the power series 

representation of f. Then the sequence of its partial sum, defined by pn(z)=∑ ak 
k=n
k=o zk converges uniformly to f 

on compact subsets of D(0,R). By Von Neumann’s inequality [18, Problem229], pn(T) ≤sup{|pn(z)| : z ∈ D}. 

Thus, using Riesz functional calculus we get f (T) ≤ sup{|f(z)|: z ∈ D}. So T is a Von Neumann operator and so 

is reflexive.  

 

Theorem 5- Every non-negative integer power of a hyponormal m-isometry T, is reflexive. 

 

Proof. Since T is hyponormal, r (T) = T and m-isometry, σ (T) =D or ∂D, and so r (T) = 1. Hence, T is a 

contraction m-isometry, so is an isometry [20]. This, in turn, implies that Tn is reflexive for n ≥0. 

 

2 Conclusion 

 
Now we may conclude that every hyponormal m-isometric operator with non-negative integer power is 

reflexive. Further an open question may be raised that if condition of ‘non negative integer power’ is dropped 

will it still be reflexive operator?  
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