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Abstract

Aims / Objectives: To find the lifetime of the bubble by plotting the rate of mass flow rate
change against time.

Place and Duration of Study: Department of Mathematics and Applied Science, Catholic
University of Eastern Africa, Nairobi, Kenya, between February 2020 and March 2021.
Methodology: The maximum lifetime of the bubble is assumed to match the time when the
mass flow rate change is zero. The study also assumes the velocity of flow rate and other fluid
properties at the interface of fuel-surfactant constant other than Re. Re is varied from 0.01 to
100.

Results: The graphical plots show that for Re « 1, and Re » 1, the stability depends on diffusive
viscosity and linearized convection, respectively. The simulation suggested that the bubble formed
at the fuel-surfactant interface may have Re = 1 and its lifetime is ¢, ~ 0.28.

Conclusion: The lifetime of surfactant depends on Re while assuming other interface properties
constant.
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Recommendation: Future studies in the area need to consider the effect of variation in
temperature, velocity, and Reynolds number in determining the lifetime of a bubble in the thin
foam of the surfactant-fuel interface.
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1 Introduction

Surfactants help in many human activities such as coating, cosmetics, environmental protection,
food, and medical industry [1]. Surfactants, for instance, on fuel, allow multi-phases and formation
of colloids [2]. The thin film spread specifically on fuel has numerous advantages, such as the
prevention of fuel explosion. Of importance is the determination of the lifetime of the thin film
given the real-world problem of fuel spillage [3]-[20].

Surfactants thin film spread on fuel is governed by surface tension [21], which spread uniformly across
the surface of the fuel spill. The surface tension induces shear stresses at the fuel-air interface [22].
The stresses distribute the surfactants evenly over the surface of the fuel from low to high areas
of surface tension. The variation in surface tension due to variation in stresses results in variation
in spill heights, known as Marangoni flow [23, 24, 25]. Surfactants spreads are fundamental in the
attainment of this phenomenon by fuel spillage. Literature on Marangoni flow are covered in a lot
of existing materials [23, 24, 25, 26, 27, 28, 29].

Marangoni stresses causes non-uniform spreading hence depletion of the thin spread [30, 31]. These
stresses cause the bubbles on the thin film surfactants on fuel (see Fig. 1). The spread depletion is
analogous to the life of the bubble formed on the fuel due to surfactant spread on the fuel surface
during spillage [32].

Cavitation is the formation and dynamic life of bubbles in or on the surface upon destabilization
due to pressure difference causing stresses [33]. Bremond et al. [34], Chahine [35], Golykh [36],
Kiyama et al. [37], Kyriazis et al. [38], and Reynolds [39] widely studies cavitation under various
configurations like near the solid walls, and gas-liquid interface, and so on. Existing studies on
the dynamics of bubbles growth and collapse in thin film or liquid are presented in the following
literature [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. A recent study by Li et al. [50] studied the effect
of surfactant and evaporation on the thin liquid film spreading in the presence of surface acoustic
waves. Li et al. [50] study is based on a theoretical model of liquid film flow in the presence of
surface acoustic waves (SAWs). Li et al. [50] assumed SAWs affect insoluble surfactant and leading
to evaporation on the spreading process of the partially wetting thin liquid film. However closer
review of Li et al. [50] study on cavitation reveal that the study it did not consider a lifetime of
bubble on thin foam or surface of fuel. Nonetheless, none of the existing studies have modeled a
lifetime of bubble based on fuel-surfactant thin film layer, which has prompted the proposed study
[51]-[70].

The first research on cavitation by Reynolds [39] suggested that the lifetime of a bubble depends
on the boundary or surface actions of fluids, which is affected by viscosity, velocity, temperature
difference, and Reynolds number. The bubble rises due to buoyancy force at the free surface leading
to the ejection of aerosols into the surface, making their use dynamic in many fields [71, 72]. This
tendency makes bubble formation important in fuel-surfactant thining since its lifetime determines
the time before the potential explosion [73]-[100]. Thus, the proposed paper takes an interest in
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lifetime of bubbles on a thin layer between fuel and surfactant. The paper focuses on modeling the
lifetime of the bubble without considering the fuel-surfactant properties. The paper considers the
variation in Reynolds number in the thin film to model the life of the bubble on the surfactant-fuel
interface. Modeling the lifetime of the bubble is essential in estimating the time before fuel vapor is
released into the atmosphere. Thus, the proposed research seeks to inform firefighters on the time
needed to prevent explosions after surfactant spread.

The rest of the paper is organized as follows. Section 2 presents the dynamics of the model
formulated and parameter transformation. The parameters were transformed into dimensionless
form and contains fluid flow governing equations and interface coupling conditions for the bubble.
Section 3 presents graphical simulations and results in line with the discussion of the findings.
Section 4 presents findings conclusion and possible future studies.

2 Problem Formulation Model

We consider bubbles formed on thin layer of the surfactant-fuel foam (see Fig. 1). The fluids have
constant density g5, and v, velocity component us, and us ., viscosity vy, and vy, where subscript
s and f stand for surfactants and fuel respectively. We assume the two components of velocity Uy
by us,, Ubg and Vy by v, U, SO that the fluid velocity in all the coordinates are described by

d
d—f =u=w(z,y,2,t), )
then,
df d
o = Us = o f| (. (@) w2, ,1)) |, ®

where t is time. The atmospheric pressure leading to buoyancy forces are all assumed constant at g.
We also assume a uniform spread of surfactant over the fuel spillage. We consider the dimensional
form of incompressible Navier-Stokes equations

0Up
o 0 (3a)
0Up a(ubs Ub ¢ ) 0Dy 1 [ ops
= —— 42— — == = b
ot 0Xp * Vaxb p \ 0xpb b (3b)
0 2
_ (Ubsubf) 0% uyp 1 Opb —a). (3¢)
0Xp 0xp? p \ 0xb
with the Non-dimensionalized parameters as
t* = % (4a)
T
Ty = fb (4b)
¥« _ P
P e (4¢)
1 gL
= =7 4
Fr u? (4d)
U
up = u—z (4e)
*
s Ty 0
Po s + s = | o | (41)
an 62ub
2—— = 4
oxp oz} (4g)

22



Felistus et al.; ARJOM, 17(4): 20-33, 2021; Article no.ARJOM.69258

Non-dimensionalized mass conservation equations
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Atasi et al.[101] established that the largest single drainage bubble has a thickness of h; of the thin
film. The bubble decays at an exponential rate due to competition between stresses arising from
drainage forces.

(6)

where hy, is the initial film thickness, ap is thinning rate, ¢, bubble lifetime and 7, = o is the
extensional flow based on viscous-gravity forces. p is the density at the interface, g is gravitational
1
acceleration, and Ry is the bubble assumed radius also defined as Ry = (%me) 3 with V being
the bubble volume [102, 101]. We combine (5) with (6) to obtain bubble non-dimensionalized mass
conservation equation as
0P,
_ ). 7
aa;;;) (7)

The pressure at the interface leading to bubble failure at time ¢ is derived by assuming divergence

%
g g

u
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of the non-dimensionalized momentum equation and invoking continuity equation, that is,
such that,
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The discretized wall functions Hy, € Hy,, Hy, are Navier-Stokes equation in 2D. The vector product
of the normal vector to the wall and momentum equations helps us establish the boundary conditions
for the pressure. Assuming the bubble is formed due to the change in momentum equation in the
fuel f and surfactant s.
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Fig. 1. (a) Thin film foam on fuel. (b) Microscopic view of thin film bubble of (a).
(c) extract of the largest bubble formed on the surfactant-fuel thin film with
thickness h, and exponential decay postulated in (6)

If we assume a constant velocity, the momentum equations describe the homogeneous Neumann
boundary conditions on the interface of the surfactant and fuel. Thus, Hp_ describes the momentum
equation on the surfactant at the interface while Hy, is for the fuel. The Hp, and Hp, can be
described by derivatives of velocity fields as

_ 0 1 9up 2 2 1 Qup
He, =5 (E e —’“bs) + . (E T —ubsubf) (11a)
Hy =2 (L2 2 + =2 DL (11b)

by T ay Re oz, by yp Re dyy bytos |
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where

up, = sin (a1p, ) sin (a2ys, ) (11c)
up, = sin (asxsp, ) sin (ays,)- (11d)
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The problem presented in (1)-(11b) present diffusion Neumann boundary conditions within the
fuel-surfactant interface. Assuming that the matrix equation of continuity of mass conservation is
represented by

Appy = B, (12a)
where
oP, Ao oP, “
=y, o= ZI: Vs + 6711,) Vap,
5 % (120
= I’IbS Vyb + Hbf Vap.
€p M

There is no Dirichlet boundary condition; thus, the rank of A, is enforced to n?> — 1 showing that
(12b) is singular and an infinite number of solutions exists. In order to avoid fluctuations in bubble
pressure during flow, the pressure value is assumed to be zero at the center of the bubble and
maximum at the highest thickness, hy. This translates to

H,, = —asin (azs, ) cos (ays, )
Hy, = —acos (aws, ) sin (ayp, ) (13)
Paccurate = COs (Oéx(bs,bf)) COs (ay(bf,bs>)

In order to solve (12b) taking note of (13), we employ the explicit Euler time-series method to
estimate the velocity of the bubble on the thin film assuming t, = (mp + 1)

oP
Ubgbo)mysr = Wbpba)m, + Vb (H”S h 9z(zs,bf>)
m 14
» (14)

Y(bs,by) oy ’

v(bfvbs)nzb+l = /U(bfvbs)m,b + vtb (Hbf -
The stability condition of the system depends on the time step in the Euler series. Conrad, and
Molnar [103], Molnar et al. [104] and Smith [105] established that stability for Re « 1 depends on
diffusive viscosity, while Re » 1 stability depends on linearized convection. Therefore, the stability

criterion for bubbles depends on small change in time, V¢, small change in horizontal distance V.

The bubble is assumed to cease when the continuity equation is a change in flow rate, VM, =
% + V(pu(v,,b,)) ~ 0. This indicates that the Poisson equation for the velocity field is assumed to
diverge freely as

0
3, (Veueas) = V-Hupp) — V2 Pb. ) (15)

Equation 15 suggests a luck of local mass conservation arises due to linear growth of local continuity
errors. At the time of bubble cease (bust), that is, at hy, the local conservation continuity is small
by continue to grow. This means that simulations for the possible plot of local continuity against
time can take several days before conclusion is drawn. In order to avoid this, the pressure must be
suited with time-series step to match the growth in errors and stop when h; is attained so that

1
2
VPt pmyr1 = Vb my + o (Ve by, )- (16)

3 Results

3.1 Numerical simulation and discussion

The paper focuses on modeling the lifetime of the bubble without considering the fuel-surfactant
properties. The paper considers the velocity and Reynolds number of the thin film to model the life
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of the bubble on the surfactant-fuel interface. The paper focuses on the effect of varying Re numbers
in a bubble due to surfactant and fuel thin film interface. The simulations are important in helping
to estimate the time before bubble bust, which analogously fuel vapor purportedly released into the
atmosphere. We assume the velocity of the surfactant-fuel thin layer is constant and has A plot of
change in VM, given (16), (14), and (15) considering varying Re = [0.01,0.1, 1,10, 100, 1000] and
ap = 0.2 yield the graphical representations in Fig. 2a-2e.

Fig. 2a indicate rate of change of mass flow rate of the bubble as thickness of the bubble approaches
hy, when Re = 0.01. The graph indicate the rate of change of mass flow rate reduces uniformly from
ty = 0. The change began steeply then decelerates.
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Fig. 2. Rate of change of mass flow rate at: (a) Re = 0.01; (b) Re = 0.1; (¢) Re =1; (d)
Re = 10;and (e) Re = 100
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Fig. 2b indicate rate of change of mass flow rate of the bubble as thickness of the bubble approaches
hy when Re = 0.1. The graph indicate the rate of change of mass flow rate posses an almost similar
trend as that of Fig. 2a.

Fig. 2c indicate rate of change of mass flow rate of the bubble as thickness of the bubble approaches
hy, when Re = 1. The graph indicate the rate of change of mass flow rate reduces uniformly from
ty = 0. Unlike Fig. 2a and 2b, here, the graph indicate the hy will be reached when ¢, = 0.28s. The
observation proved the notion by [103], Molnar et al. [104] and Smith [105] that for Re « 1 the
stability depends on diffusive viscosity, hence plot may take longer to obtain when thickness value
becomes hp.

Fig. 2d indicate rate of change of mass flow rate of the bubble as thickness of the bubble approaches
hy when Re = 10. The graph indicate the rate of change of mass flow rate reduces uniformly from
ty = 0. Similarly as in Fig. 2a and 2b and unlike in Fig. 2c the graph indicate it will take longer
time for thickness to reach hy. The observation proved the notion by [103], Molnar et al. [104] and
Smith [105] that for Re » 1 the stability depends on linearized convection, hence plot may take
longer to obtain when thickness value becomes hp.

Fig. 2e indicate rate of change of mass flow rate of the bubble as thickness of the bubble approaches
hy when Re = 10. The graph indicate the rate of change of mass flow rate reduces uniformly from
ty = 0. Similarly as in Fig. 2a and 2b and unlike in Fig. 2c the graph indicate it will take longer
time for thickness to reach hy. The observation proved the notion by [103], Molnar et al. [104] and
Smith [105] that for Re » 1 the stability depends on linearized convection, hence plot may take
longer to obtain when thickness value becomes hp.

4 Conclusion

Surfactants are important in many activities, such as the prevention of fuel explosion. The determin-
ation of the lifetime bubble, which depends on its thickness, is a real-world problem of fuel spillage.
The proposed study aimed to establish the lifetime of the bubble. The study assumes that the
rate of change of mass flow rate is proportional to the thinning rate. The study, thus, aims to
find the lifetime of the bubble by plotting the rate of mass flow rate change against time. The
maximum lifetime of the bubble is assumed to match the time when the mass flow rate change is
zero. The study also assumes the velocity of flow rate and other fluid properties at the interface of
fuel-surfactant constant other than Re. Re is varied from 0.01 to 100.

The graphical plots suggest that for Re « 1, and Re » 1, the stability depends on diffusive viscosity
and linearized convection, respectively. These findings are similar to those of [103], Molnar et al.
[104] and Smith [105]. The simulation suggested that the fuel-surfactant interface may have Re = 1.
However, since no study has modeled a lifetime of bubble based on fuel-surfactant thin film layer, the
proposed study lacks no comparison of results with existing studies. Therefore, we will assume the
bubble formed at the interface of fuel-surfactant thin foam has Re = 1 and its lifetime is ¢, ~ 0.28.
Future studies in the area need to consider the effect of variation in temperature, velocity, and
Reynolds number in determining the lifetime of a bubble in the thin foam of the surfactant-fuel
interface.
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