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ABSTRACT 
 

In modern days of information security, much attention is drifted towards achieving the major 
security triad of privacy, authentication and availability. Pailiar homormophic encryption is one of 
the most widely area of pubic key encryption schemes researchers are exploring to enhance 
information security. In this paper, we presented an overview of the Pailiar cryptosystem. We 
further evaluated the security vulnerabilities in the cryptosystem. This was achieved through 
mathematical theorems and inductions. This is to present some open issues for further research to 
propose and implement a more robust security system based on the Pailiar homormophic 
encryption scheme.   
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1. INTRODUCTUON 
 
Recently, much research has been diverted 
towards information security (cryptography) due 
to the increasing rate of electronic data. 
Apparently, diverse form of cryptographic 
schemes is being applied in order to achieve the 
essential electronic data properties of privacy, 
anonymity, accuracy, verifiability, integrity and 
robustness. The Paillier cryptosystem based on 
computations over multiplicative subgroup Z

*
n
2
, 

where n is an RSA modulus (composite 
residuosity class problem) has received much of 
the research interest due to possessing some 
important properties useful in such areas. This 
scheme has some very useful properties, due to 
its homomorphic nature.  
 
Using Paillier cryptosystem, modern aims of 
cryptography for providing information security 
such as Data integrity, Data privacy and Data 
authentication in various computational settings 
are achieved. Cryptographic systems with 
additive homomorphisms of which Paillier 
cryptosystem is based are useful for a lot of 
cryptological protocols like electronic voting, 
multi-party computation, Digital signature, Zero-
knowledge proofs, Watermarking and 
fingerprinting schemes and Lottery protocols. 
 

2. RELATED WORKS 
 
In [1], Paillier, proposes a new probabilistic 
asymmetric algorithm for public key cryptography 
based on computation over Z*

n
2, n being RSA 

modulus. The scheme is based on the 
assumption that computing n-th residue classes 
is considered to be computational difficult. The 
scheme can be similarly traced to the earlier 
cryptographic algorithm proposed by Okamoto 
and Uchiyama [2], whereby the group Z

*
p

2
q is 

used, where p and q are large primes. It is also 
believed that the first threshold scheme proposed 
by Fouque, et al. [3] was a version of Pascal 
Paillier’s original scheme. Damgard, et al. [4], in 
their paper titled “A Generalization of Paillier’s 
Public-Key System with Applications to 
Electronic Voting” proposed useful application of 
the Paillier’s scheme in the area of Electronic 
Voting. Jurik [5], in his thesis titled “Paillier’s 
original scheme. Extensions to the Paillier 
Cryptosystem with Applications to Cryptological 
Protocols” proposed some useful length-
flexibility. This is based on the ability to extend 
the plaintext space at encryption time rather than 
at key generation time, when the public key is 
chosen which was only available for symmetric 

ciphers in literature. Sakurai and Takagi [6,7,8], 
analyzed M-Paillier cryptosystem proposed by 
Choi et al and one-wayness of it was proven as 
intractable as factoring the modulus n.  
 

3. PAILLIAR CRYPTOSYSTEM OVERVIEW 
 

Parameters: prime numbers p, q  
 

n = pq 
ʎ = lcm (p−1,q−1)  
g, with g ∈ Z

*
n

2
  and the order of g is a multiple of 

n 
Public key: n, g 
Private key: p, q, ʎ 
 
Encryption: plaintext m < n.  Select a random r < 
n such that r ∈ Z

*
n.  cipher text c = g

m
 r

n
  mod n

2 

 
Decryption: ciphertext c < n

2
.  Plaintext m = L (c

ʎ
 

mod n2) / L(gʎ mod n2) mod n 
 

3.1 Theoretical Overview Pailliar 
Cryptosystem 

 
Key Generation 
 

1. Pick two large prime numbers p and q, 
randomly and independently, such that gcd 
(pq,(p−1)(q−1))=1. If not, start again. This 
property is asserted if both primes are of 
equal length.  

2.  Compute n=pq, ʎ = lcm (p−1,q−1), where 
lcm stands for the least common multiple. 

3.  Select random integer g where g belong to 
Z*

n
2. 

4.  Calculate the modular multiplicative 
inverse μ = (L (gλ mod n2))-1 mod n. If μ 
does not exist, start again from step 1. 

5.  The public key is (n, g). For encryption. 
6.  The private key is λ. For decryption. 

[9,10,11] 
 
Encryption 
 
Compute ciphertext c = gm rn mod n2. Select a 
random r < n such that r ∈ Z

*
n., m < n. 

 
Decryption 
 
Compute plaintext m = L (cʎ mod n2) / L (gʎ mod 
n

2
) mod n. Ciphertext c < n

2
.   

 
4. EVALUATION OF THE PAILLIAR 

SCHEME 
 
The security of the pailliar scheme is based on 



Problem 1: Factorization of n, that’s 
multiplication of two large prime numbers 
(equivalent to RSA modulus)  
 
Problem 2: Deciding n-th composite residuosity. 
That is:  z = yn mod n2 

 
Our focus here is how we can recover the 
original message (m) without solving Problem 1 
and Problem 2 above.  
 
4.1 Choice of the Least and the Highest 

Value/Number of R ∈ Z*
N 

 

The first attack is on the choice of the least and 
the highest value/number of r ∈ Z
number for semantic security (r). 
 
Example 1: 
 
Let p=3, q=5 then 
n=15, n

2
 = 225 

 
The generator g, in most general form is given by
 
g = (1 + α.n) βn,     α, β ∈Zn

* 
If α=1 and β=1 then g=16 
Random number r < n such that r ∈ 
 
If we consider the Table 1 above, we have the 
message we will be transmitting on the first row 
starting from 0 to 14. 
 
We have all the possible values of r 
first column, starting from 1, 2, 4 ……, 14 in that 
order. 
 

The gray area of Table 1 indicates the 
cipher text. 

Table 1. The results of computing examp

Results of random values of r<n
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Factorization of n, that’s 
multiplication of two large prime numbers 

th composite residuosity. 

Our focus here is how we can recover the 
inal message (m) without solving Problem 1 

of the Least and the Highest 

The first attack is on the choice of the least and 
Z*

n as random 

The generator g, in most general form is given by 

 Z
*
n. 

the Table 1 above, we have the 
message we will be transmitting on the first row 

We have all the possible values of r ∊ Z*
n on the 

first column, starting from 1, 2, 4 ……, 14 in that 

The gray area of Table 1 indicates the resulting 

Analysis One: when we choose the least value 
of r ∊ Z*

n (which is 1) as our random number for 
semantic security. 
 
There is something unique (pattern) about the 
cipher text generated for all the messages, 0 
14, m < n when analysis one is true. Careful 
examination of the Table 1 above when r=1 
shows that the cipher text has a constant 
increasing growth (addition) by the value of n 
(n=15) for all m < n (all the possible cipher text). 
This is because the least value of r 
chosen as the random number for semantic 
security. 
 
How to recover the original message when 
analysis one is asserted: 
 
Firstly, take the least and the highest
message value that belongs to m < n. That
is 0 and 14 considering the example (Table 1) 
above. 
 
Secondly, encrypt them (0 and 14), which gives 1 
and 211 as the cipher text respectively. It means 
that 1 is the first valid cipher text if we are to 
transmit all the messages (0 – 14) and also 211 
is the last valid cipher text if we are to transmit all 
the messages (0 – 14). 
 
Once we get the first and the last valid ciphers, 
the remaining cipher text which will occur 
between them is just adding the value of n (15) to 
the remaining ciphers starting from the first valid 
cipher text. That is if we are to transmit the next 
message which is 1 in the Table above, we 
simply add n (15) to the value of the first valid 
cipher text which is one (1) resulting 16 as the 
next cipher text in that order.  

 
The results of computing example 1 with its valid cipher text

 

Results of random values of r<n 
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when we choose the least value 
(which is 1) as our random number for 

There is something unique (pattern) about the 
cipher text generated for all the messages, 0 – 

ne is true. Careful 
examination of the Table 1 above when r=1 
shows that the cipher text has a constant 
increasing growth (addition) by the value of n 
(n=15) for all m < n (all the possible cipher text). 
This is because the least value of r ∊ Z*

n is 
chosen as the random number for semantic 

How to recover the original message when 

Firstly, take the least and the highest               
message value that belongs to m < n. That               

g the example (Table 1) 

Secondly, encrypt them (0 and 14), which gives 1 
and 211 as the cipher text respectively. It means 
that 1 is the first valid cipher text if we are to 

14) and also 211 
ext if we are to transmit all 

Once we get the first and the last valid ciphers, 
the remaining cipher text which will occur 
between them is just adding the value of n (15) to 
the remaining ciphers starting from the first valid 
cipher text. That is if we are to transmit the next 

which is 1 in the Table above, we 
simply add n (15) to the value of the first valid 
cipher text which is one (1) resulting 16 as the 

text 
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Lastly, in recovering the message, subtract the 
first valid cipher text (1) from the cipher text you 
want to recover the original message and divide 
the result by n (15).  
 
Example: let’s say we want to transmit 7, 8, and 
10. You will get 106, 121 and 151 respectively as 
cipher text (note that r=1).  
 
Taking 106, 
 

106 – 1 = 105 
 105/n = 105/15 = 7 (which is the original 
message) 

 
Taking 121, 

 
121 – 1 = 120 
120/n = 120/15 = 8 (which is the original 
message) 
 

Taking 151, 
 

151 – 1 = 150 
150/n = 150/15 = 10 (which is the original 
message) 
 

Note: one (1) here is the first valid cipher text 
indicated above. 
 
Analysis Two: when we choose the highest 
value of r ∊ Z*

n (which is 14) as our random 
number for semantic security. 
 
There is also something unique (pattern)                
about the cipher text generated for all the 
messages, 0 – 14, m < n when analysis two is 
true. Careful examination of the Table 1 when 
r=14 shows that the cipher text has a constant 
decreased (subtraction) by the value of n (n=15) 
for all m < n (all the possible cipher text). This is 
because the highest value of r ∊ Z*

n is chosen as 
the random number for semantic security. 

 
How to recover the original message when 
analysis two is asserted: 
 
Firstly, take the least and the highest message 
value that belongs to m < n likewise. That is 0 
and 14 considering the example (Table 1) above. 
 
Secondly, encrypt them (0 and 14), which gives 
224 and 14 as the cipher text respectively. It 
means that 224 is the first valid cipher text if we 
are to transmit all the messages (0 – 14) and 
also 14 is the last valid cipher text if we are to 
transmit all the messages (0 – 14).  

Once we get the first and last possible               
cipher’s, the remaining cipher text which will 
occur between them is just subtracting the value 
of n (15) from the remaining ciphers starting from 
the first valid cipher text. That is if we are to 
transmit the next message which is 1 in the 
Table 1, we simply subtract n (15) from the   
value of the first valid cipher text which is                 
224 resulting 209 as the next cipher text in that 
order.  
 
Lastly, in recovering the message, subtract               
the cipher text you want to recover the               
original message from the first valid cipher text 
(224) and divide the result by n (15).  
 
Example: let’s say we want to transmit 7, 8, and 
10. You will get 119, 104 and 74 respectively as 
cipher text (note that r=14).  
 
Taking 119, 
 

224 – 119 = 105 
105/n = 105/15 = 7 (which is the original 
message) 
 

Taking 104, 
 

 224 – 104 = 120 
120/n = 120/15 = 8 (which is the original 
message) 
 

Taking 151, 
 

224 – 74 = 150 
150/n = 150/15 = 10 (which is the original 
message) 
 

Note: 224 here is the first valid cipher text 
indicated above. 
 

4.2 Mathematics of the Encryption 
Scheme 

 
The second attack is on the mathematics of the 
encryption scheme, g

m 
r
n
 mod n

2
. 

 
When we consider the Table 1 for                
multiplicative subgroup Z

*
15

2
 (Z

*
n
2
), the g

m
                 

mod n2 part of the cipher Text is a matter of 
increasing the cipher text by the value of n 
starting from the least cipher text which is                  
one (1) up to the highest which is 211 for                       
all the message space m < n. What                       
makes the difference is the value of                        
random semantic security append to g

m
, that is 

gm.rn. 
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Any cipher text you pick from the multiplicative 
subgroup Z

*
15

2
, apart from cipher text resulting 

from r=1 and r=14 (the least and the highest 
value of r) can be traced to the original message 
by solving the equation below: 
 

g
m 

r
n
 ≡ c mod n

2
                        (1) 

 

Where: 
 

g
m

 is the cipher text without random semantic 
security value rn is the random semantic security 
valuec is the cipher text you trying to recover the 
original message. 
 
From Eq.1, we can have: 
 

r
n
 ≡ (g

m 
)
- 1

 .c mod n
2
                        (2) 

 
Where r

n
 ∈ r < Z

*
n 

 

By solving Eq.2, you can extract the random 
semantic security part of the cipher text (c). 
 
This idea is based on the fact that any cipher text 
you pick from the multiplicative subgroup is just a 
combination of g

m
 and r

n
 mod n

2
  

 

Illustration: 
 

Let consider all the gm (gm mod n2) values in the 
Table 1. That is, 1, 16, 31, 46, 61, 76 …, 211. 
Note also that all the cipher text generated within 
the multiplicative subgroup are coprime to 225 
(Z*

15
2). 

 

Let also consider all the r
n
 (r

n
 mod n

2
) values in 

the Table 1. That is, 1, 143, 199, 118, 107…  
224. 
 
We will now pick a random cipher text from the 
multiplicative subgroup Z*

15
2, which is 94. This 

cipher text (94) we have selected consist of gm 
part and r

n
 part.  

 
We will now test the cipher we selected (94) 
against the values of gm (gm mod n2) using Eq.2 
until we get the first valid result belonging to r

n 
(r

n
 

mod n
2
).  

 
From Eq.2  
 
When g

m
 = 1, 

r
n
 ≡ (1)

-1
.94 mod 225 

(1)-1.94 mod 225 
94 ∉ r

n
 

When When gm = 16, 
r
n
 ≡ (16)

-1
.94 mod 225 

16
-1

.94 mod 225 

34 ∉ rn 
When g

m
 = 31, 

rn ≡ (31)-1.94 mod 225 
31

-1
.94 mod 225 

199 ∊ r
n 

 
When g

m
 = 31, we now have r

n
 = 199 which is 

part of r
n
 mod n

2
, r ∊ Z

*
n. This result implies that 

the cipher text 94, was simply a multiplication of 
g

m
 =31 and r

n
 = 199 all mod n

2
. Now to get the 

message m, we compute: 
 
g

m
 ≡ 31 mod n

2
 

16m ≡ 31 mod 225 
m=2 
 
The same method can be repeated for all the 
cipher text within the multiplicative subgroup to 
recover the original message.  
 
4.3 The Third Attack is on the Repetition 

of the Message (M) 
 
The third attack is on the repetition of the 
message (m) value as the cipher text for 
transmission. 
 
The system does not have any unique cipher 
representation for the highest message 
belonging to m < n for transmission when highest 
random semantic security value r ∊ Z

*
n is chosen 

other than the message itself. In other words, it 
would always produce a cipher text equal to the 
original message.  
 
Illustration: 
 
Let’s consider the Table 1, if we decide to 
transmit 14, which is the highest message of m < 
n and r (highest random semantic security value) 
= 14, it will produce the cipher text: 16

14
.14

15
 

mod 225 =14 which is the same as the message 
we are transmitting. 
 
Another example: 
 
Let p=7, q=11 n=77, n2 =5929, g=78, r=76  
 
Here the message m for transmission is 76 
(highest in m < n) and the highest value of r ∊ Z*

n 
is 76. The cipher text (c) then will be: 
 
C= 78

76
.76

77
 mod 5929 

 
C= 76 equal to the message we are transmitting. 
It must be noted here that, this findings are valid 
for all g (generator) = n +1 
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5. CONCLUSION 
 
The overview of Pailiar homormophic encryption 
scheme is presented. The security vulnerabilities 
of the scheme are shown using mathematical 
theorems and inductions. The results shows that 
the pailiar homormophic encryption is not robust 
and vulnerable to various attacks.  

 
Based on this problem, future work will pivot on 
finding a new secured cryptosystem that can 
enhance the security of Pailiar homormophic 
encryption. 
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