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ABSTRACT
Aims/ Objectives: The objective of this paper is to introduce a class of probability spaces that
include several exceptions introduced by Dieudonné [3], Anderson and Jessen [4], and Doob and
Jessen [5]. The class of alternative probability space is called the Universal Probability Space
(UPS). The UPS consists of Borel sets, elements of which are tensors. It is proven that indeed
such tensor sets represent a more general probability space. Given the properties of tensors, it
is shown that the exceptions introduced by Dieudonné, Anderson, Jessen, and Doob are merely
special events that can occur in the UPS.
Study Design: Methodological study.
Place and Duration of Study: Research Unit of Economics Traffic Clinic - ETC, Paris, France,
between June 2015 and September 2015.
Methodology: Borel tensor sets were used in constructing a more general probability space.
Results: Some basic definitions and properties of Borel tensor sets in the context of the UPS are
given. It is shown that the UPS has a defined metric. Some elements of the UPS are given such
as conditional probability and independence property.
Conclusion: The UPS is a more generalized probability space.
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1 INTRODUCTION

Kolmogorov [1] describes a model for probability
theory, which is based on a probability measure
(P ), and on a Borel field (B) of subsets of a
space (Ω). This model is universally accepted
and used in probability and statistic works.
However few researchers since have produced
examples that show that the Kolmogorov’s model
is too general, and there is a need for a more
restricted probability space, Blackwell [2]. Such
examples are given by Dieudonné [3], Anderson
and Jensen [4], and Doob and Jensen, [5], [6].
Dieudonné [3] states that there exists a pair (Ω,
B), a probability measure (P ) on (B), and a Borel
subfield (A ⊂ B), for which there is no function
Q(ω,E) defined for all (ω ∈ Ω) and (E ∈ B) with
the following properties: (Q) is for fixed (E) an
(A-measurable) function of (ω) and for fixed (ω)
a probability measure on (B), and for every (A
∈ A), (E ∈ B), we have

P (A ∩ E) =

∫
A

Q(ω,E)dP (ω). (1.1)

To explain the Dieudonné’s example, he mainly
states that the probability of the occurrence
of two events as is defined in (1.1) strictly
depends on the existence of Borel sets, the
existence of probability measure on Borel sets,
and the existence of measurable (real-valued)
functions on Borel sets. Borel sets must be both
countable and closed, and continuous and open
so that both events could occur in any two Borel
sets of a Borel field (B) of a probability space
(Ω). In general, a standard probability space is
considered to be isomorphic to interval [0,1] with
a Lebesgue measure for a finite or countable
set of events or a combination (disjoint union)
of both. In the probability space thus defined,
the probability measure of occurrence of two
countable sets can not be found by a continuous
measure.

The only feasible space that contains both closed
and open sets is the tensor space which is a
mapping or transformation of any event (ω ⊂ R)

to a space (Rd), where (d < ∞) represents a
finite dimension. This means that an event is
considered to be made of several dimensions.
For example any event (ω ⊂ Rd) in (i, j)th
dimension is written as (ωi

j = ωij · eij) and in
(k, l)th dimension as (ωk

l = ωkl · ekl). Thus the
concept of open and closed sets is transformed
into tensor sets which are both open and closed.
Open tensor sets contain manifolds (M ) made
out of linear combination, or inner and/or outer
product of tensors. An example of such a
manifold would be [ωij

kl = (ωij ⊗ ωkl) · (eij ⊗
ekl)]. Since open tensor sets form modules in
tensor space, they satisfy the closure condition
and therefore contain closed sets. Closed tensor
sets contain tensors themselves, for example a
tensor set (ωi

j , ω
k
l ) is a closed set since tensors

are considered to be affine manifolds and by
themselves respect the closure condition. The
transformation of an event (ω ⊂ R) from (R) to
(Rd) has repercussions on how the probability of
that event is calculated and this is a significant
evolution.

The second example comes from Anderson and
Jensen [4], who show that given a sequence
of probability spaces (Ωn) and Borel fields
(Bn), (Ωn,Bn), there exist probability measures
(Pn) for all sets (An) where (An) is in the
multiplicative probability space (

∏n
i=1 Ωi), given

as (An ⊂
∏n

i=1 Ωi), and where the Borel fields
(Bn) are also in the multiplicative probability
space (

∏n
i=1 Ωi), given as (Bn ⊂

∏n
i=1 Ωi) such

that the probability measure (Pn) is countably
additive on each set (An) but not on the union
of the sets (∪An). The observations of Anderson
and Jensen are similar to Dieudonné. They
observe that even though individually probability
measures may exist, they may not exist for
the whole probability space (Ω) where (Ω =∏n

i=1 Ωi).

The third example is provided by Doob and
Jensen [5], [6]. They state that given any pair
(Ω,B) and a probability measure (P ), on a Borel
field (B), then for any real-valued B-measurable
functions (f ) and (g) such that (f ⊂ F ⊂ B ⊂ Ω)
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and (g ⊂ G ⊂ B ⊂ Ω), where (F ) and (G) are two
linear Borel sets, the following exists:

P [ω : f ∈ F, g ∈ G] ̸= P [ω : f ∈ F ]×P [ω : g ∈ G].
(1.2)

Expression (1.2) states that the probability of
occurrence of an event (ω) in two continuous
sets with two B-measurable functions (f(ω)) and
(g(ω)), (P (ω) : ω ∈ f(ω)

∩
g(ω)) is not equal

to the probability of occurrence of the event
(ω) in (f(ω)) multiplied by the probability of
occurrence of the event (ω) in (g(ω)), ([P (ω) : ω ∈
f(ω)

∩
g(ω)] ̸= [P (ω) : ω ∈ f(ω) ⊂ F ] × [P (ω) :

ω ∈ g(ω) ⊂ G]). The existence and occurrence
of each example is proved by Doob, Kolmogorov
and Hartman [7] for the case when the probability
space (Ω ⊂ ∪n

i=1Bi) contains the union of Borel
sets and the Borel field (B ⊂ Ω ⊂ ∪n

i=1Bi)
consists of the union of Borel subsets (Bi). All (3)
examples suggest that the probability space (Ω)
is not well defined and more specific probability
spaces should be identified.

Gnedenko and Kolmogorov [8] propose the
perfect probability space (Ω,B, P ) with real-
valued B-measurable function (f ); where given
a linear set(A) there exists a (ω) such that (ω :
f(ω) ∈ A⊂ B). There exists a Borel subset (B ⊂
A) such that ([P (ω) : f(ω) ∈ B] = [P (ω) : f(ω) ∈
A]). The perfect probability space proposed
by Gnedenko and Kolmogorov, provides a more
restricted probability space that does not allow
for special cases such as the (3) examples
introduced. The proof of this is given in Doob.
Blackwell identifies a more restricted probability
space, called the Lusin space (Ω,B) which is
more restricted than the perfect probability space
of Gnedenko and Kolmogorov. The Lusin space
is based on Gnedenko and Kolmogorov’s perfect
probability space. The particularities of Lusin
space are: (1) The Borel field (B) is separable
and contains all sub-sets (Bn), (2) the range
of any real-valued B-measurable function (f ) for
which (ω : f(ω) ∈ B ∈ Ω) is an analytic set. An
analytic set is a continuous image of the set of
irrational numbers [2]. The advantage of analytic
sets is that all the elements of these sets are
separable.

In essence, the Lusin space restricts the Borel
field (B) to sets of irrational numbers where
the probabilities are in continuous real sets (B).

Blackwell uses the properties of the analytic sets
to prove the existence of the Lusin space (Ω,B)
and the existence of a metric in this space.
This metric constitutes the probability measure.
Since the Lusin space contains countable and
separable subsets that determine the set of Borel
fields, therefore, the (3) probabilities discussed
earlier can occur in this space. The Lusin space
is Homomorphism to the perfect Kolmogorov
probability space, thus is not an evolution of
the perfect space but rather an extension. The
concept of mapping introduced by Blackwell
is the right approach, but the use of analytic
sets to solve the (3) examples is somewhat
ambiguous, since the analytic sets are naturally
included in the Gnedenko and Kolmogorov’s
perfect probability space.

A new angle to pursue would be to find out
whether it is possible to have a probability space
where an event can occur if it is in a Borel
tensor field (B) that contains a group of finite
Borel sets that are mappings in a tensor space
(Ω), i.e. (B =

∪M
l=1 B

i
l ) and (B =

∏M
l=1 B

i
l ),

the superscript (i) represents the tensor indexing
of coordinates, and (l) represents the number
of Borel tensor sets contained in a tensor field
(B). Each Borel tensor set can be identified
as (B i ∈ Ω : B i = B ir

js
⊗ ej1,....,jsi1,....,ir

), where
(ej1,....,jsi1,....,ir

) constitutes the basis in the tensor
space (Ω). The advantage of each Borel set
to be a mapping in a tensor space is that it
acquires the following properties; (a) closure, the
product of every two mappings of the Borel set
(B ) is a mapping of the Borel set; (b) Inverse:
for every mapping of the Borel set, there is an
inverse mapping that is in the Borel set. The
class of such alternative probability space is
called the Universal Probability Space (UPS).
The UPS consists of Borel sets, elements of
which are mappings or tensors. It can be argued
that indeed such tensor sets represent a more
general probability space. Given the properties
of tensors, it is shown that the exceptions
introduced by [3], [4], [5] are merely events that
can occur in the UPS. Some basic definitions and
properties of Borel tensor sets in the context of
the UPS are given. It is shown that the UPS
has a defined metric. Some elements of the
UPS are given such as conditional probability,
and independence property.
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2 THE UNIVERSAL PROBABI-
LITY SPACE, UPS: SOME
BASIC DEFIN - ITIONS

Borel tensor sets (B i) make up a Borel field
(B ). It is relevant to give some definitions
and properties of such sets. The advantage
of a Borel set as a mapping or a tensor is
that both the countable-separable sets and the
continuous sets are in the same Borel field.
In this section it is illustrated that any space
consisting of Borel tensor fields (Ω,B) is a
complete space. Furthermore, it is demonstrated
that the complete space of Borel fields has a
metric that is equivalent to a probability measure
(P ). A complete space of Borel fields with
probability measures is a UPS.

Theorem 2.1. If (Ω) is a tensor space, where a
class of Borel tensor fields (B) can be defined,
then the ensemble (Ω,B) constitutes a complete
space.

Proof. It suffices to show that the class of Borel
tensor field (B) is convex, [9], [10], [11], [12], [13].
Convex sets are complete; therefore a class of
convex Borel tensor sets constitutes a complete
tensor space. Divide (B) into (m) partitions. Let
a partition be represented by (Ki; i = 1, ...,m).
Let each partition contain a set of tensor points
or weights (λi ∈ Ki) such that (λi =

∑
α lα · eα).

(eα) is a basis for the Borel tensor field,(lα) is a
set of non-negative integers. Since each Borel
set is the smallest set with a minimum (0), and
a maximum (1), then the partition that contains
(0) has a weight (λ0 < λi : i = 1, ...,m). The
partition that contains (1), has a weight (λ1 > λ0)
and (λ1 > λi : i = 1, ....,m − 1). Any partitions
between the two partitions (K0)and (K1) must
be convex partitions such that for any set of
non-negative integers (nα) not equal to (lα), the
following inequality exists: (

∑
α lα · eα <

∑
α nα ·

eα). Thus the tensor field (B) is convex, and
the ensemble (Ω,B) constitutes a complete or
universal space.

Theorem 2.2. Given that (Ω,B) is a complete
space, then there is a metric on the tensor field
(B ), [14], [15], [16], [17]. This metric is the
probability measure (P ). The complete space
(Ω,B) with the probability measure (P ) is a UPS.

Proof. Let (cα =
∑

α lα · eα) with be a tensor
event point on a Borel tensor set (B i ⊂ B). An
event point is an event in tensor space. (eα) is
a standard basis for tensors in (B i). A metric
on (B i) is defined as the distance between the
tensor point (0), and (cα), (P(cα ≥ 0)), such
that it is the greatest lower bound of the length
of all pairs of points (d((cα, µα)) belonging to
the Borel tensor set (B i). The metric (P(cα)) is
equal to (P(cα) = | cα |) satisfies the standard
axioms of probability. 1) The metric is between
(0) and (1), (0 ≤ P (cα) ≤ 1). 2) To Each
set (B i ⊂ B) is assigned a non-negative metric
P(cα) which is called the probability of a tensor
event point (cα). 3) P(

∪
B i) is equal to 1. 4)

P (cα+µα)= P(cα) + P(µα), if (cα) and (µα), the
two tensor event points are not on a same linear
transformation. If the tensor set (B i) contains a
manifold, then the probability P(cα, µα) must be
positive (P (cα, µα) ≥ 0), symmetric (P (cα, µα) =
P (µα, cα)), and (P (cα, µα) ≤ P (cα) + P (µα)),
and is non degenerate, if (P (cα, µα) = 0), then
(cα = µα) due to the continuity of the Borel tensor
set(B i).

Theorem 2.3. Given that (Ω,B) is a UPS, and
let (B i) and (Bj) for (i ̸= j) be two Borel tensor
subsets such that (B i ∩B j = 0), the two tensor
subsets are separable, then there exists a sub
Borel tensor field (C ⊂ B) such that ((B i∪Bj) ∈
C ) the union of the two Borel tensor subsets is
in the sub Borel tensor field (C ). Let (cα =∑

α lα · eα) be any tensor event point in either
one of the Borel tensor sets (B i) or (Bj), such
that (cα ∈ B), then (cα) is also in the sub Borel
tensor field (C ), i.e. (cα ∈ C ).

Proof. Let (cα =
∑

α lα · eα) be a tensor event
point on a Borel tensor set (B i). (eα) is a
standard basis for tensors in (B i). Now let (να

ᾱ =∑
(α,ᾱ) n(α,ᾱ) · (eα, eᾱ)), be a tensor event point

constructed from the basis of (B i) and (B j).(eᾱ)
is a standard basis for the Borel tensor set (Bj).
The tensor event point (cα)can be modified by
(να

ᾱ ) in the following way: (cα = det(να
ᾱ ) ·

∑
α lα ·

eα), where the determinant of (να
ᾱ ) is positive

(det(να
ᾱ) ≥ 0). The modified (cα) is in the union

of the two Borel tensor sets (B i) and (Bj), (cα ∈
(B i ∪B j)), and since ((B i ∪Bj) ∈ C ), then
(cα ∈ C ).

Corollary 2.4. Given that (Ω,B) is a UPS, and if
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two Borel tensor sets (B i) or (Bj), contain the
same tensor event points, then the two tensor
sets (B i) and (Bj), are identical.

Corollary 2.5. Given that (Ω,B ) is a UPS, then
any Borel tensor set (B i) that consists of all event
points that are affine transformations is in the
Borel tensor field (B).

Corollary 2.6. Given that (Ω,B) is a UPS, and
let the Borel tensor field (D) be a group set
of all tensor event points (ctα ∈ D), such that
(ctα =

∑
α fα(t) · eα), where (fα(t) ∈ Rd; d < ∞),

is a manifold, and (t) is a real-valued parameter in
(t ∈ [0, 1]). The Borel tensor field (D) is a subset
of (B); (D ⊂ B ), and (Ω,D) is a UPS.

Proof. Let (Z ) Be a Borel tensor set in the Borel
tensor field (D), (Z ⊂ D). Let the tensor event
point (ctα =

∑
α fα(t) · eα) be in the Borel tensor

set (Z ), (ctα ∈ Z). If the manifold (fα(t)) is
affine, then it is possible to find (t=t*) such that
(Z

∩
B i) = (cα, c

t∗
α )) for some (B i ∈ B ), and

(ct
∗
α =

∑
α fα(t

∗) · eα) . By Corollary 2.5, the
tensor event points, (cα), and (ct

∗
α ) are identical,

and thus the two Borel tensor sets (Z ) and (B i)
are identical. Since (Z ⊂ D), the couple (Ω,D)is
a UPS. If (fα(t)) is a non-linear manifold, then let
(fα(t)) be a tensor multiplicity product (fα(t) ∈
(B i ⊗Bj), i ̸= j). (ctα) is in the intersection of the
two Borel tensor sets with (Z ), [ctα ∈ (Z

∩
(B i ⊗

Bj))]. Since ((B i ⊗ Bj) ⊂ B), then (Z ∈ B).
Since (Z ∈ D), then (D ⊂ B), and (Ω,D) is a
UPS.

3 CONDITIONAL PROBABI-
LITY DISTRIBUTION UNDER
THE UNIVERSAL PROBAB-
ILITY SPACE

In this section the example introduced by
Dieudonné is represented as a theorem in the
UPS.

Theorem 3.1. Given that (Ω,B) is a UPS. Let (P )
be a probability measure on the Borel tensor field
(B ). Let (A) be a Borel tensor subfield (A ⊂ B).
Let (M ) be a manifold on (B) such that (A ⊂ M ),
then there exists a function (γ(ω,E) ∈ A) defined

for all (ω ∈ Ω) and any other Borel tensor subfield
(E ⊂ B). We have

P (A ∩ E) =

∫
ω∈A

γ(ω,E) · Tα(γω), (3.1)

where (Tα(γω)) is a tangent tensor in the Borel
tensor field (B) for a tensor type (α).

Proof. Let (Ω,B) be a UPS. Let (P ) be a
probability measure on the Borel tensor field (B).
(B) contains the union and the intersection of
non-empty Borel tensor sets (B i ∈ B). It is given
that the Borel tensor subfield (A ⊂ B) is a subset
of (B), and (M ∈ ℜd) is a manifold in (B), (M ⊂
B). Since (A ⊂ B), then (A ⊂ M ). By Corollary
2.6, there exists a function (γ(ω,E) ∈ M ), where
(E ∈ B ) is any other Borel tensor field. By
Theorem 2.3, (E ⊂ B) and (A ⊂ B ⊂ M ),
then (E ⊂ M ) and ((A ∩ E) ⊂ M ). The
change in the probability measure (dP ) for (ω) is
a tangent tensor (Tα(γω)) for a tensor type (α) in
the Borel tensor field (B). The probability of the
intersection of the two Borel tensor fields (A) and
(E ) can be formulated by (3.1).

4 INDEPENDENCE UNDER
THE UNIVERSAL PROBABI-
LITY SPACE

Theorem 4.1. Let (Ω,B ) be a UPS. Let (Ωn,Bn)
be a sequence of UPSs. Let (An ⊂ (B1 ⊗
B2..... ⊗ Bn)). The probability measure (P ) on
(B) is countably additive for (∪An), i.e., P(∪An)
= P(A1)+ P(A2)+......+P(An) where (A1 =
B1),(A2 = (B1⊗B2), and (An = (B1⊗B2......⊗
Bn)).

Proof. (∪An = A1+A2+....+An = B1+(B1⊗
B2)+.....+(B1⊗B2......⊗Bn)). By Theorem 2.2,
there exists a metric equivalent to a probability
measure for the UPS (Ω,B), therefore there
exists a probability measure for each sequence
of UPSs (Ωn,Bn). Let (ωi) be a sequence of
event points, such that (ωi ⊂ Ai). Let (Pn)
be a sequence of probability measures for the
sequence of Borel tensor subfields (An). By
Corollary 2.6, if all sequences of event points (ωi)
are identical, then all the Borel tensor subsets
(An) are identical. By Corollary 2.5, (Pn(∪An) =
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∑n
i=1 Pi(ω

i, ωj) = n.c : i ̸= j) for (Pi(ω
i, ωj) =

c), where (c) is a real-valued constant between
[0,1]. Since (P(A1)+ P(A2)+......+P(An))=n.c,
then the probability measure (P ) is countably
additive. If all sequences of event points (ωi) are
not identical, then Pn(∪An) = (max[| ωi − ωj |
] : i ̸= j). (P1(A1) + P2(A2) + .... + Pn(An) =
P1(B1)+P2(B1⊗B2)+ .....+Pn(B1⊗B2......⊗
Bn) = 0+max[| ω1−ω2 |]+....+max[| ωi−ωj |]).
The probability measure (P ) is countably additive
in the case where the event points (ωi) are not
identical.

Theorem 4.2. Let (Ω,B) be a UPS, and (P ) a
probability measure on (B). Let (f ) be an affine
transformation of a tensor event point (ω) in a set
of all affine transformations Borel tensor set (F ⊂
B), and let (g) be another affine transformation
of the same event point (ω) in a set of all affine
transformations Borel tensor set (G ⊂ B ). Let
(ω : F ⊗ G), then the following exists and the
probability measure (P (ω)) is:

P [ω : F ⊗G] = P [ω : f ∈ F ]× P [ω : g ∈ G].
(4.1)

.

Proof. From Corollaries 2.5, and 2.6, and
Theorem 2.3, the two affine transformations (f ),
and (g) are duel basis. Given the duality of basis,
let ((ω =

∑
i li · e

i) ∈ f : ei = (e1, ......., eI))
and ((ω =

∑
j nj · ej) ∈ g : ej = (e1, ...., eJ)).

The two basis (ei), and (ej) are the dual basis,
(⟨ei, ej⟩ = δji ), where (δji ) is the Kronecker delta.
The probability measure (P [ω : f ∈ F ]) is then
equal to (P [ω : f ∈ F ] =|

∑
i li · e

i |), and the
probability measure (P [ω : g ∈ G]) is then equal
to (P [ω : g ∈ G] =|

∑
j nj · ej |). The product

of the two probability measures is equal to (P [ω :
f ∈ F ]×P [ω : g ∈ G] =|

∑
i li ·e

i | · |
∑

j nj ·ej |:
i ̸= j). The left hand side of (4.1), by definition is
equal to (P [ω : F ⊗G] = (|

∑
i νi ·e

i) ·ej |: i ̸= j).
Therefore (4.1) exists.

5 CONCLUSIONS

In both the perfect space of Gnedenko and
Kolmogorov, and the Lusin space discussed in
the introduction an event (ω) is considered to
be (ω ∈ ℜ) in the space of real numbers. This
implies that each event is an abstract, and the

occurrence of the event is always in an abstract
environment, and this is why it is possible to find
exceptions to the rule. Now consider an event
not as an abstract entity, but in all its dimensions
which are in fact the reasons for the existence
of that event. In this context, an event point is
a mapping or transformation in a tensor space
consisting of Borel tensor fields. The probability
measure is the metric in a tensor space. The
advantage is that this modification allows us
to calculate a more accurate probability of an
occurrence of an event. The objective in this
paper is to suggest that by considering an event
to be a tensor, this makes it possible to have
a more in-depth view of the event, and thus
be able to calculate a more realistic probability
measure for that event. Where the probability of
an event in a regular probability space may not
exist, in a tensor space, due to mapping into a
finite multidimensional space and the properties
of tensor sets, the probability measure would
exist. This opens a whole new set of insights into
the occurrences of probabilities of events that are
more realistic.
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