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ABSTRACT 
 

Aims : In this study a time series modeling was developed to predict the annual warming trend at 
coast Libya in the second decade of the 21st century using ARIMA model, and performing an 
evaluation for the results significance. 
Study Design:  Utilizing Box-Jenkins method through, the stage of identification, parameter 
estimation and diagnosis, finally, a forecast of the annual surface temperature trend on Libya in the 
second decade of the 21st century was assembled, together with an evaluation of the significance 
of the predicted warming trend.  
Place and Duration of Study:  Annual surface absolute temperature (ASAT) from 16 stations 
belonging to the coast of Libya during the period of (1892-2010) was used.  
Results:  The most optimum two prediction models obtained for the above data, are non-seasonal 
linear trend model ARIMA (3-1-2) and quadratic trend model ARIMA (3-2-3). We found that the 
forecasted values followed the upward trend present in the data and the pattern of results almost 
followed the pattern predicted with a correlation value of approximately 80% for both models. 
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According to linear Trend model, an increase in temperature of 0.12°C/decade and according to 
quadratic model, an increase of 0.53°C/decade had be en predicted until the year 2020. This 
increase in temperature is the same as what was predicted by the United Nations (from 1.3°C to 
5.8°C between the year 1990 and 2100).  
Conclusion:  The two models, individually, produced the best overall performance in making short-
term (∼10-year) predictions of annual surface absolute temperature in Libya. It can be used as a 
supplemental tool for environmental planning and decision making concerned with other 
environmental models. 
 

 
Keywords: Time series analysis; ARIMA model; climate change; surface air temperature; forecasting 

trends. 
 
1. INTRODUCTION 
 
Global warming has already been observed over 
the last several decades. Future temperatures 
are projected to change in future. Predictions are 
also made that ground-level air temperatures are 
predicted to continue in the future to warm over 
land more rapidly as compared to oceans. The 
global warming rate deduced from the adjusted 
temperatures since 1980 is about 
0.14±0.02°C/decade. The warming rate reported 
in the IPCC assessment report 4 based on 
observed global surface temperature set is about 
20% higher, due to the warming by the Atlantic 
multi-decadal oscillation additional to the 
anthropogenic warming. Moreover, the predicted 
temperature evolution based on long time 
changes of CO2 and the Atlantic multi-decadal 
oscillation index shows that the Northern 
Hemispheric temperatures are modulated by                
the Atlantic multi-decadal oscillation influence 
and will not change significantly to about 2040, 
after that they will increase speedily, just                        
like during the last decades of the past century 
[1]. The changes in surface air temperature on 
small spatial scales, like sub-continent or 
regional scale, show different features. In 
comparison with the global mean climate, 
regional climate has more complex variability 
since it is influenced by ocean-atmospheric 
circulation, land cover, and associated              
feedback processes. Regional climate is   
relevant to the environment and economic 
production, and deserves more attention                   
[2]. Some world regions are also expected                
to see larger atmospheric temperature              
increases in the future in relation to the global 
average. 
 
Time series analysis and forecasting has 
become a major tool in numerous applications in 
meteorology and other environmental areas to 
understand the phenomena, like rainfall, 
humidity, temperature, draught etc. Balyani et al. 

[3] used spectral analysis technique and ARIMA 
model in a 50-year time period (1955-2005) for 
Shiraz. Their results show that the cycles of 2.5 
and 4 years are predominant on temperature in 
Shiraz, furthermore, according to their modeling 
of temperature in ARIMA models, ARIMA (1-1-3) 
was selected as the optimal model, the model 
predicted 0.2°C increase in annual temperature 
in Shiraz. Babazadeh et al. [4] used ARIMA 
model to forecast monthly precipitation and the 
mean of monthly temperature at Shiraz, south of 
Iran, They found that despite of a continuing 
drought, it is likely that the precipitation will 
improve, and as regards to the mean monthly 
temperature, the trend of increasing temperature, 
especially in recent years, has continued and the 
finding of the forecasting show increase in 
temperature along with a narrowing of the range 
of variations. Anitha et al. [5] used seasonal 
autoregressive integrated moving average 
(SARIMA) model to forecast monthly mean of 
maximum surface air temperature of India, their 
results show that there is an increasing trend in 
the monthly mean of maximum SAT in India. 
Suteanu [6] used daily minimum and maximum 
temperature records from Canada stations in the 
Atlantic region and suggested a new approach to 
study surface air temperature pattern variability. 
Muhammet [7] also used ARIMA method to 
predict the temperature and precipitation in 
Afyonkarahisar Provincei, Turkey until the year of 
2025, he found an increase in temperature of 
1.2°C according to quadratic trend model and an 
increase of 0.5°C according to linear trend 
model. Khedhiri [8] studied the statistical 
properties of historical temperature data of 
Canada for the period (1913-2013), he 
determined seasonal ARIMA model for the series 
and predicted future temperature records. 
Muhammad et al. [9] used ARIMA model for 
forecasting and analyze the air pollution index 
(API) in Johar, Malaysia. It is caused that this 
method has been proven as an effective way in 
most of research area. 
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Here ARIMA (Auto Regressive Integrated Moving 
Average) models have been setup and used to 
carry out short-term predictions of annual surface 
air temperatures in Libya.  
 
2. DATA 
 
Libya is a North African country, which shares a 
border with the Mediterranean Sea to the north, 
Egypt to the east, Niger, Chad and Sudan to the 
south, and Algeria and Tunisia to the west. Both 
the Mediterranean Sea and the desert affect 
Libya's climate. In most of the coastal lowland, 
the climate is Mediterranean, with warm 
summers and mild winters. Rainfall is scanty, 
and the dry climate results in a year-round 98-
percent visibility. The weather is cooler in the 
highlands, and frosts occur at maximum 
elevations. Along the coast, the Mediterranean 
climate is characterized by a cool, rainy winter 
season and a hot, dry summer. The warmest 
months are July and August, when Benghazi and 
Tripoli, in the Mediterranean zone, experience 
average monthly temperatures of 22°C to 29°C 
and 17°C to 30°C, respectively. The coolest 
months are January and February; Benghazi has 
winter monthly temperatures of 10° to 17°C, and 
Tripoli has 8° to 16°C. Surface air temperature 
data from nineteen locations covering coastal 
Mediterranean regions in Libya are applied 
throughout this work. Data series are provided by 
the European Climate Assessment & Dataset-
KNMI Climate Explorer, throughout the link 
http://climexp.knmi.nl/start.cgi?id=someone@so
mewhere 
 
Fig. 1 shows each station’s locations at coast 
Libya referenced to their latitude and longitude. 
The specifications of monitoring stations are 
listed below in Table 1, with location’s name, 
longitude, latitude, elevation and the periods. The 
annual surface absolute temperature (ASAT) has 
been calculated throughout taking averages over 
the sixteen stations. 
 
3. METHODOLOGY 

 
The time series approach used in this study is 
based on Box-Jenkins model. Box-Jenkins is 
referred as Autoregressive Integrated Moving 
Average (ARIMA) method. Until nowadays, a lot 
of researchers still use this model in many area 
of research because of its resulting effectiveness 
in forecasting field [10-12]. 
 
There are three basic components to an ARIMA 
model: auto-regression (AR), differencing or 

integration (I), and moving-average (MA). In its 
simplest form, an ARIMA model is typically 
expressed as: ARIMA (p-d-q) where p is the 
order of auto-regression, d is the order of 
differencing (or integration), and q is the order of 
moving-average involved. The first of the three 
processes included in ARIMA models is auto- 
regression. In an autoregressive (AR) process, 
each value in a series is a linear function of the 
preceding value or values. In a first-order 
autoregressive process, only the single 
preceding value is used; in a second-order 
process, the two preceding values are used, and 
so on. These processes are commonly indicated 
by the notation AR(p) or ARIMA(p-0-0), where 
the number in parentheses indicates the order. 
The differencing or integration component of an 
ARIMA model tries, through differencing, to make 
a series stationary. The moving-average (MA) 
component of an ARIMA model tries to predict 
future values of the series based on deviations 
from the series mean observed for previous 
values. In a moving-average process, each value 
is determined by the weighted average of the 
current disturbance and one or more previous 
disturbances. The order of the moving-average 
process specifies how many previous 
disturbances are averaged into the new value. In 
the standard notation, an MA(q) or ARIMA (0-0-
q) process uses q previous disturbances along 
with the current one. 
 
A pth-order of autoregressive or AR (p) model 
can be written in the form Eq. 1: 
 

Yt= Φ 0 + Φ1Yt-1+ Φ 2Yt-2 +….+Φ pYt-p +ϵ t   (1) 
 

Yt-1, Yt-2, ...., Yt-p are the previous observation 
values of the sequence, 
Ф1, Ф2, Фp.... are coefficients for previous 
observation values, 

 
The current value of the series yt is a linear 
combination of the p most recent values of itself. 
The coefficient Φ0 is related to the constant level 
of series. For AR models, forecast depend on 
observed values in previous time periods. 
Meanwhile, the dependent variable yt of Moving 
Average (MA) depends on the previous values of 
errors rather than on the variable itself. MA 
models provide forecasts of Yt based on linear 
combination of a finite number of past errors. The 
errors involved in this linear combination move 
forward as well. A moving average with qth-order 
or MA (q) model takes the form Eq. 2: 
 

Yt =µ+ ϵt - Ө1ϵt-1 - Ө2ϵt-2 -…….- Өq ϵt-q         (2) 
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error terms ϵt , ϵt-1  , ϵt-2 , ……. ϵt-q 

error term multiples   θ1, θ2, .... θq 
µ gives the average of the series belonging 
the process. 

 

A mixed autoregressive and moving average 
terms develop Autoregressive moving Average 
Model (ARMA). The notation is ARMA (p, q) 
where, p is the order of the autoregressive part 
and q is the order of the moving average part 
which represents this models. 
 

The ARMA (p,q)) is in the form below Eq. 3: 
 

Yt= Φ 0 + Φ1Yt-1+ Φ 2Yt-2 +….+Φ pYt-p + ϵt -
Ө1ϵt-1  - Ө2ϵt-2 -…….- Өq ϵt-q                  (3) 

Set of data could be a non-stationary time series 
data patterns since the data did not fluctuate 
around a constant level or mean. One way to 
make the data stationary is by taking the 
difference. Therefore, the series of data generally 
donated as yt after difference is said to follow an 
integrated autoregressive moving average 
model, ARIMA (p- d-q). An ARIMA model can                         
be viewed as a “filter” that tries to separate                      
the signal from the noise, and the signal is                    
then extrapolated into the future to obtain 
forecasts.  
 
SPSS program was used in the conducted 
analysis. 

 

 
 

Fig. 1. Map of Libya showing the coastal stations 
 

Table 1. Information of observation stations at coa st of Libya 
 

        Location’s name Longitude Latitude Elevatio n (m) Period 
1      Pisida 11.72E 33.12N 10 m 1919-1938 
2      Zuara 11.08E 32.88N 3 m 1954-2011 
3      Tripoli 13.20E 32.90N 112 m 1892-2011 
4      Wheelus 13.28E 32.90N 84 m 1949-1967 
5      Tarhuna 13.58E 32.43N 430 m 1961-1970 
6      Azizia 13.02E 32.53N 72 m 1913-1951 
7      Gar Abulli 13.75E 32.73N 40 m 1961-1970 
8      Elkhoms 14.30E 32.63N 22 m 1912-2011 
9      Misurata 15.05E 32.42N 32 m 1954-2011 
10    Tummina/Crispi 15.10E 32.20N 25 m 1951-1960 
11    Ben Gazi 20.08E 32.13N 25 m 1891-1936 
12    Benina 20.27E 32.10N 132 m 1945-2011 
13    Shahat 21.85E 32.82N 625 m 1945-2011 
14    Derna 22.58E 32.78N 26 m 1913-2011 
15    Surt                                  16.58E                 31.20N                14 m               1946-2011 
16    Eladem/Nasser                 23.92E 31.85N 155 m 1945-1980 
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4. RESULTS AND DISCUSSION 
 
By using time series of the annual surface 
absolute temperature (ASAT) belonging to the 
coast of Libya for the period (1892-2010). First 
temperature data were statistically analyzed to 
determine the presence and to identify the 
temporal patterns of any trend and/or periodic 
oscillation. Second, the temperature signal, after 
the trend and periodicity had been accounted for, 
was modeled using a non-seasonal Auto 
Regressive Integrated Moving Average (ARIMA) 
process, following the Box-Jenkins approach 
[13]. Finally, a prediction of the surface 
temperature on Libya in the second decade of 
the 21st century was made, together with an 
evaluation of the significance of the predicted 
warming trend. To obtain the model by the Box-
Jenkins methodology, there are four steps that 
must be considered after data preparation, which 
are identification, parameter estimation, 

diagnostic checking, and finally model is used in 
prediction purposes.  
 
4.1 Data Preparation 
 
To prepare data for statistical modeling, data are 
transformed to stationary series by different 
ways. A stationary series has the same mean 
and variance throughout. The most common 
transformation is differencing, which replaces 
each value in the series by the difference 
between that value and the preceding value. The 
time series (ASAT) of Libya and its 
autocorrelation Fig. 2(a,b) shows non-stationary 
series since the upward trend, present in the 
original series. We take the first order of 
differencing (d=1) accounts for linear trends and 
a second order differencing (d=2) accounts for 
quadratic. Fig. 3(a,b) shows the time series after 
taking the first and second order differencing. 

 

 
 

 

(a) 
 

(b) 
 

Fig. 2. a) Time series of  annual  surface absolute  temperature(ASAT) for the period  
[1892-2010] 

b) Autocorrelation for annual  surface absolute tem perature(ASAT) 
 

  
 

(a) 
 

(b)           

 
Fig. 3. a) Plot of time series for annual surface a bsolute temperature (ASAT) after difference(1) 

b) Plot of time series for annual surface absolute temperature (ASAT) after difference(2) 
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4.2 Identification 
 
The first and most subjective step after data 
preparation is the identification of the processes 
underlying the series. It must determine the three 
integers p, d, and q, representing respectively 
the number of autoregressive orders, the number 
of differencing orders, and the number of 
moving-average orders of the ARIMA model. The 
autocorrelation (ACF) and partial autocorrelation 
functions (PACF) are used, as basic instruments, 
to identify the orders of ARIMA model.  
 
At the identification stage, Figs. 4 and 5 show the 
ACF and PACF functions of the difference 
transformed for the linear and quadratic models. 
After taking the difference d=1 for the initial 
dataset, The ACF and PACF plots (Fig. 4) show 
exponential declines with three significant peaks 
on each of them with p and q values of 1, 2 and 3 
indicating mixed ARIMA. And with respect to the 
quadratic one d=2, both ACF and PACF plots 

(Fig. 5) also show exponential declines with three 
and four significant peaks on ACF and PACF 
respectively indicating mixed ARIMA with the p-
values of 1, 2, 3 and 4 while the values of q are 
1, 2 and 3. We found that ARIMA linear model 
(3-1-2) is the best for fit and forecast the dataset 
(ASAT) of Libya. Autoregressive order of 3 (p=3) 
specifies that the value of the series three time 
periods in the past be used to predict the current 
value. While moving-average orders of 2 specify 
that deviations from the mean value of the series 
from each of the last two time periods be 
considered when predicting current values of the 
series. For the quadratic mode, we choose 
ARIMA (3-2-3) to fit and forecast ASAT of Libya 
This means that the predicted value for the next 
year depending on the data 3 years before and 3 
years earlier error. 
 
After establishing the identification of the model 
temporarily, then the estimation of parameters 
AR and MA should be established. 

 

  
 

(a) 
 

(b) 
 

Fig. 4. a)  ACF for long absolute temperature (ASAT ) after difference (1) 
b) Partial ACF for annual surface absolute temperat ure (ASAT) after difference (1) 

 

  
 

(a) 
 

(b) 
 

Fig. 5. a) ACF for annual surface absolute temperat ure (ASAT) after difference (2) 
b) Partial ACF for annual surface absolute temperat ure (ASAT) after difference (2) 
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Table 2. Parameter estimates of a) ARIMA (3-1-2), b ) ARIMA (3-2-3) 
 

(a) (b) 
 

 Estimates Std error t Approx sig 
Non-Seasonal   AR1 -.467 .092 -5.086 .000 
Lags                  AR2 -.444 .093 -4.792 .000 
                          AR3 -.404 .090 -4.497 .000 
                          MA1 -.771 .055 -14.140 .000 
                          MA2 -.908 .057 -16.044 .000 
Constant .009 .030 .293 .770 

Melard's algorithm was used for estimation 
 

 Estimates Std Error t Approx sig 
Non-Seasonal   AR1 -.342 .108 -3.174 .002 
Lags                  AR2 -.439 .105 -4.193 .000 
                          AR3 -.403 .098 -4.136 .000 
                          MA1 .393 .130 3.034 .003 
                          MA2 -.175 .130 -1.345 .181 
                          MA3 .704 .131 5.390 .000 
Constant .001 .001 .556 .579 

Melard's algorithm was used for estimation 
 

Table 3. ACF of the residuals for a) ARIMA (3-1-2) and b) ARIMA (3-2-3) 
 

(a) (b) 
 

Autocorrelations 
Lag  Autocorrelation  Std. error a Box -Ljung Statistic  

Value df Sig. b 
1 -.093 .091 1.046 1 .306 
2 -.020 .091 1.094 2 .579 
3 -.069 .090 1.684 3 .641 
4 -.154 .090 4.612 4 .330 
5 .126 .089 6.608 5 .251 
6 -.173 .089 10.395 6 .109 
7 .076 .089 11.127 7 .133 
8 -.173 .088 15.002 8 .059 
9 -.047 .088 15.284 9 .083 
10 .100 .087 16.602 10 .084 
11 -.084 .087 17.534 11 .093 
12 .020 .087 17.586 12 .129 
13 -.009 .086 17.598 13 .173 
14 .099 .086 18.926 14 .168 
15 .008 .085 18.935 15 .217 
16 .037 .085 19.121 16 .262 
a. The underlying process assumed is independence (white noise), b. Based on the asymptotic 

chi-square approximation 

Autocorrelations 
Lag  Autocorrelation  Std. error a Box -Ljung Statistic  

Value df Sig. b 
1 -.003 .091 .001 1 .978 
2 .079 .091 .758 2 .684 
3 -.077 .090 1.490 3 .685 
4 -.056 .090 1.874 4 .759 
5 .165 .090 5.271 5 .384 
6 -.222 .089 11.430 6 .076 
7 .063 .089 11.925 7 .103 
8 -.150 .088 14.816 8 .063 
9 -.081 .088 15.658 9 .074 
10 .039 .088 15.854 10 .104 
11 -.029 .087 15.965 11 .142 
12 .041 .087 16.185 12 .183 
13 -.081 .086 17.054 13 .197 
14 .077 .086 17.865 14 .213 
15 .041 .086 18.089 15 .258 
16 .089 .085 19.183 16 .259 

a. The underlying process assumed is independence (white noise), b. Based on the 
asymptotic chi-square approximation 
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4.3 Estimation of Parameters 
 
There are several techniques to estimate model 
parameters such as conditional lease squares, 
but SPSS employs maximum likelihood (Melard’s 
algorithm) for model estimation. Estimated 
values for ASAT are presented in Table 2 for 
best fitted ARIMA models. A t test is performed 
to test the statistical significance. The estimated 
coefficients are significantly different from zero. 
By using Ljung-Box test [14] and checking the p-
value of the coefficient, then the significant model 
can be determined. 
 
4.4 Diagnosis 
 
Diagnosing an ARIMA model is a crucial part of 
the model-building process and involves 
analyzing the model residuals. A residual is the 
difference, or error, between the observed value 
and the model-predicted value. In this step, the 
residual is tested for evaluation purposes and 
goodness of the fit statistics is provided. Fig. 6 
(a,b) shows the  ACF and PACF for the residuals 
of ARIMA (3-1-2) and ARIMA (3-2-3) models, it 
can be seen that no significant correlation are 
appear  at any lag. The results in Table 3 show a 
non-significant correlation values, confirms that 
the residuals for both models are random, which 
means that the models are a good fit for the 
series and no essential components have been 
omitted from the models. 
 
Table 4(a, b) shows a goodness of the fit 
statistics of ARIMA models (3-1-2) and (3-2-3) for 

the data set (ASAT). R-squared represents an 
estimate of the proportion of the total variation in 
the series that is explained by the models. The 
values of 0,8 and 0.79 means that both models 
do an excellent job explaining the observed 
variations in the series. Mean percentage error 
(MAPE) for the models (3-1-3) and (3-2-3) are 
1.012% and 1.071% respectively, a measure of 
how much a dependent series varies from its 
model-predicted level and provides an indication 
of the uncertainty in our predictions. Maximum 
Absolute Percentage Error (MaxAPE) represents 
the largest forecasted error, expressed as a 
percentage. This means that the largest errors 
are 4.6% and 4.7% for the two models. Also the 
prediction errors of the two models were the least 
as expressed in terms of the root-mean-squared 
error (RMSE), the mean absolute error (MAE) or 
the mean absolute percentage error (MAPE). 
 
The model’s fitting performance was measured 
using the adjusted coefficient of determination 
(R2), Akaike’s Information Criterion (AIC) [15], 
Schwarz’s Bayesian Criterion (BIC) [16]. The 
results on Table 5(a,b) shows that the two 
models fit the temperature data well. 
 
4.5 Forecast 
 
The annual surface absolute temperature (ASAT) 
of Libya during the second decade of the 21st 

century was forecasted using linear ARIMA (3-1-
2) model and quadratic ARIMA (3-2-3) model. 
Fig. 7(a,b) shows a good agreement between 
predicted and observed values for both models, 

 

  
 

(a) 
 

(b) 
 

Fig. 6. ACF and PACF for the residual of  (a) ARIMA  (3-1-2) (b) ARIMA (3-2-3)  horizontal lines 
indicate the 95% confidence interval within which t he ACF or PACF values are not significantly 

different from zero. The lags are given in the numb er of years on the x-axis                 
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Table 4. Model statistics-testing the model for a) ARIMA (3-1-2), b) ARIMA (3-2-3) 
 

(a) 
 

Model fit 
Fit Statics  Mean SE Minimum  Maximum  Percentile 

5 10 25 50 75 90 95 
Stationary  
R-squared 

.408 . .408 .408 .408 .408 .408 .408 .408 .408 .408 

R-squared .802 . .802 .802 .802 .802 .802 .802 .802 .802 .802 
RMSE .286 . .286 .286 .286 .286 .286 .286 .286 .286 .286 
MAPE 1.012 . 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 
MaxAPE 4.655 . 4.655 4.655 4.655 4.655 4.655 4.655 4.655 4.655 4.655 
MAE .207 . .207 .207 .207 .207 .207 .207 .207 .207 .207 
MaxAE .944 . .944 .944 .944 .944 .944 .944 .944 .944 .944 
Normalized 
BIC 

-2.259 . -2.259 -2.259 -2.259 -2.259 -2.259 -2.259 -2.259 -2.259 -2.259 

 

(b) 
 

Model fit 
Fit statics  Mean SE Minimum  Maximum  Percentile 

5 10 25 50 75 90 95 
Stationary  
R-squared 

.647 . .647 .647 .647 .647 .647 .647 .647 .647 .647 

R-squared .790 . .790 .790 .790 .790 .790 .790 .790 .790 .790 
RMSE .296 . .296 .296 .296 .296 .296 .296 .296 .296 .296 
MAPE 1.071 . 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 
MaxAPE 4.720 . 4.720 4.720 4.720 4.720 4.720 4.720 4.720 4.720 4.720 
MAE .218 . .218 .218 .218 .218 .218 .218 .218 .218 .218 
MaxAE .957 . .957 .957 .957 .957 .957 .957 .957 .957 .957 
Normalized 
BIC 

-2.148 . -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 

 

  
(a) (b) 

                                                                                                                                                    
Fig. 7. a) The observed, fit and forecasting values  of absolute surface air temperature (ASAT) 

using ARIMA (3-1-2) 
b) The observed, fit and forecasting values of abso lute surface air temp (ASAT) using 

ARIMA (3-2-3) 
 

indicating that the models have satisfactory 
predictive ability. A model captures well a                 
trend of the data. The annual surface 
temperature of Libya was found to rise at                     
a steady rate of 0.12°C per decade during                        
the forecast period according to linear model      

Fig. 8(a), and at a rate of 0.53°C/decade 
according to quadratic model Fig. 8(b). These 
results are consistent with United Nations that 
predicted increases in temperatures as                   
from 1.3°C to 5.8°C between the year 1990 and 
2100. 
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(a) (b) 

 

Fig. 8. a) Prediction trend of the ASAT on the peri od (2010-2020) using ARIMA (3-1-2) 
         b) Prediction trend of the ASAT on the per iod (2010-2020) using ARIMA (3-2-3) 
 

Table 5.  Residual diagnostics for a) ARIMA (3-1-2) , b) ARIMA(3-2-3) 
 

(a) 
 

(b) 

Residual diagnostics 
Number of Residuals 118 
Number of Parameters 5 
Residual df 112 
Adjusted Residual Sum of Squares 9.029 
Residual Sum of Squares 10.733 
Residual Variance .078 
Model Std. Error .279 
Log-Likelihood -15.798 
Akaike's Information Criterion (AIC) 43.596 
Schwarz's Bayesian Criterion (BIC) 60.220 

 

Residual diagnostics 
Number of Residuals 117 
Number of Parameters 6 
Residual df 110 
Adjusted Residual Sum of Squares 9.942 
Residual Sum of Squares 14.957 
Residual Variance .087 
Model Std. Error .295 
Log-Likelihood -21.803 
Akaike's Information Criterion (AIC) 57.606 
Schwarz's Bayesian Criterion (BIC) 76.942 

 

 

However, our result in the linear predicted 
warming is considerably lower not only than 
IPCC’s prediction of 0.2°C per decade [17] but 
also lower than the prediction made by [18] in 
which anthropogenic influences and natural 
variability were explicitly considered. Yet it is 
consistent with [19] where their model predicts 
with moderate confidence that the global 
temperature will likely continue to rise during the 
second decade of the 21st century at a rate of 
0.12°C per decade.  
 

5. CONCLUSION 
 

This paper focuses on forecasting the warming 
trend for the annual surface temperature of Libya 
in the second decade of the 21st century using 
Box and Jenkins method to find the best fitted 
ARIMA model. The best two prediction models 
obtained for the above data, are non-seasonal 
linear trend model ARIMA (3-1-2)  and quadratic 
trend model ARIMA (3-2-3) with Maximum 
Absolute Percentage Error (MaxAPE) of 4.6% 
and 4.8% for the two models respectively. This 

means that the predicted value for the next year 
depending on the data 3 years before, 2 years 
earlier error for the linear model and on the data 
3 years before and 3 years earlier error for the 
quadratic one with largest errors of 4.6% and 
4.7% respectively. According to linear model, an 
increase in temperature as 0.12°C and according 
to quadratic model, an increase in temperature 
as 0.53°C has been forecasted until the year 
2020. This increase in temperature is the same 
as what was predicted by the United Nations 
(from 1.3°C to 5.8°C between the year 1990 and 
2100). The modeling results show that linear 
ARIMA (3-1-2) model and quadratic ARIMA (3-2-
3) model had the best overall performance in 
making short-term (∼10-year) predictions of 
annual absolute temperature in Libya. It can be 
used as a supplemental tool for environmental 
planning and decision making. 
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