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ABSTRACT 
 

Polysaccharides are natural polymers extracted from plants, algae, animals, fungi or obtained via 
fermentation that can be applied on a wide range of uses, from food to biomedical industries. 
Galactomannans are polysaccharides mostly extracted from the endosperm of leguminous seeds 
and responsible to perform functions of energy reservation and hydration. They have singular 
properties that direct their potential use as films/coatings, gel agents, a part of mixed systems such 
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as hydrogels, emulsion stabilizers, thickeners, and cosmetics. The characterization of 
galactomannans from conventional and nonconventional sources were reported as capable to 
produce the broad range of galactomannan matrices (films/membranes, coatings, gels and 
hydrogels). Matrices based on galactomannans, in addition, were explored as effective supports for 
immobilization of different functional compounds. The knowledge of the application of 
galactomannans as films and coatings is still limited compared with those already reported for other 
polysaccharides; moreover, the some publications brought new insights of the properties and 
characterization of edible films. The works in which galactomannan films are used as support for 
immobilization of biomolecules are still scarce, especially in health care. Due to their viscous and 
elastic properties, galactomannans have been widely investigated in mixed gels containing two or 
more biopolymers with the aim to improve cohesion, appearance, stability and durability of the gel. 
Studies involving the use of galactomannans in gels for immobilization of biomolecules have also 
been developed with the important purpose of evaluating the controlled release of suspensions 
contained in nanostructures. This review article aimed to approach the most recent literature 
dealing with galactomannan-based matrices and exposes the main strategies for the immobilization 
of biomolecules and their potential applications in industry. 
 

 
Keywords: Galactomannan; film; gel; hydrogel; immobilization; matrices. 
 
1. INTRODUCTION 
 
Medicines, foods, fibers, natural and essential 
oils, cosmetics, chemical compounds and 
biofuels are examples of products that can be 
manufactured from a broad class of chemical 
substances from plant and animal species. 
Polysaccharides represent one of the most 
important classes, since they are natural 
polymers extracted from plants, algae, animals, 
fungi, or obtained by fermentation, with a wide 
range of applications, especially in food, 
biomedical, pharmaceutical and cosmetic fields 
[1]. 
 
Galactomannans are polysaccharides mostly 
extracted from the endosperm of leguminous 
seeds (Fig. 1) and responsible to perform 
functions of energy reservation and hydration. 
They have special properties such as high molar 
mass, water solubility and non-ionic character 

[2], which direct their potential use as 
films/coatings [3-8], as gel agents [9], as a part of 
mixed systems such as hydrogels [10,11], as 
emulsion stabilizers [12], thickeners [13], and 
cosmetic materials [14]. 
 
The characterization of galactomannans from 
conventional [3] and nonconventional [15-17] 
sources were reported as capable to produce the 
broad range of galactomannan matrices 
(films/membranes, coatings, gels and hydrogels). 
Matrices based on galactomannans, in addition, 
were explored as effective supports for 
immobilization of different functional compounds, 
such as peptides [4], antioxidants [8], lectins [18], 
and medicines [19]. 
 
Regarding the formulation of galactomannans as 
films/membranes and coatings, it is important to 
note the differences between the terms: Films or 
membranes are formed by drying of a polymeric

 

 
 

Fig. 1. Seed of Leguminosae family: representation of the constituents hull, endosperm and 
germ 
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solution, while coating is a suspension that can 
be directly applied to the product. Films based on 
galactomannans have been used in several 
applications, including pharmaceutical field and 
food industry. The most common 
polysaccharides used for production of edible 
films are cellulose, chitosan, agar and starch; 
galactomannans emerge as alternative materials 
that can be used for the production of edible films 
based on their edibility and biodegradability 
[5,20].  
 
On the other hand, gel is considered a three-
dimensional network obtained by the linkage of 
macromolecules wrapped in a solvent, which 
support their own weight and maintain its shape. 
The presence of non-covalent cross-links 
complicates the description of physical properties 
from such networks due to the influence of 
temperature and time in the number and position 
of these connections [21].  
 
The gels generally exhibit viscous and elastic 
properties, with a predominance of the elastic 
mode. The functional properties of 
galactomannans are widely used in industry; 
then to optimize this industrial use, it is 
necessary to develop methods that would allow 
predicting the structure and the function of these 
polymers through the knowledge of their 
conformations.  
 
Among the physicochemical methods used in 
this evaluation are the rheological techniques, 
which describe the mechanical properties of 
materials under distinct deformation conditions, 
since they exhibit the ability to flow and/or 
accumulate reversible deformations [22]. 
 
Galactomannans have been widely investigated 
in mixed gels containing two or more 
biopolymers with the aim to improve cohesion, 
appearance, stability and durability of the gel. 
The synergy between galactomannans and other 
polysaccharides, such as agar and 
galactomannan [23,24], galactomannan and 
xanthan [25], pectin and galactomannan [26], 
galactomannan and k-carrageenan [11], and 
unconventional galactomannans with xanthan 
and carrageenan [9] have been described.  
 
This review article consider the most recent 
literature dealing with galactomannan matrices 
and emphasizes their potential use for the 
immobilization of distinct biomolecules. 
Moreover, their broad range of applications in 
industry was also exposed. 

2. INTRODUCTION TO GALACTO-
MANNANS 

 
Galactomannans are polysaccharides composed 
by a linear chain of β-1,4-D-mannopyranose to 
which α-1,6-D-galactopyranose units are 
attached. They could be obtained from microbial 
sources, in particular yeasts and other fungi, and 
from plants. In what concerns the vast majority of 
galactomannans derived from plants, those 
polysaccharides display a reserve function and 
their main source is the endosperm of seeds, 
especially from members of the Leguminosae 
family [27]. The legume species are spread 
throughout the world, especially in tropical and 
subtropical regions, ranging from emergent trees 
to tiny and ephemeral herbs [28]. 
 
Polysaccharides from seeds are examples of 
natural compounds that have contributed to the 
Leguminosae family classification, but special 
emphasis has been given to galactomannans 
[29]. According to Engler classification [30], the 
Leguminosae family is divided into the 
subfamilies Caesalpinioideae, Mimosoideae and 
Faboideae. The use of galactomannans as a 
taxonomic character has been proposed by 
many authors due to the yield of extraction from 
the endosperm of the seeds as well as the ratio 
between the residues of mannose and galactose 
in the molecule and the contents of these 
compounds in the seeds [31]. 
 
Another utility of the galactomannans considers 
the Leguminosae family as the second most 
important into the Dicotyledoneae class and the 
first in economic importance. Three possibilities 
for the fine structure of the molecule, 
corresponding to the distribution of galactose 
along the mannose main chain, have already 
being proposed (Fig. 2). 
 
To provide differences in density and viscosity of 
solutions, the proportion and distribution of 
galactose units has an essential role in solubility 
of galactomannans, its water solubility increasing 
with rising content of galactose (i.e. with 
decreasing M/G ratio). A polysaccharide chain 
composed of at least 85 to 95 % mannose units 
will provide intermolecular interactions like 
hydrogen bonds between cis hydroxyls of 
mannose, leading to formation of insoluble 
aggregates [32]. The presence of branched 
chains of galactose creates steric impediment 
between intermolecular hydrogen bonds, 
minimizing the formation of aggregates. 
Moreover, galactomannans with few side chains 
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(greater ratio mannose/galactose) may interact 
better with other polysaccharides due to the long 
unsubstituted regions [12]. For a better 
understanding of sources of galactomannans 
and their main properties, Table 1 summarizes 
those characteristics and the most important 
applicability of galactomannans from 
Leguminosae family. 
 

 
 

Fig. 2. Distribution of galactose units along 
the mannose main chain 

M: representation of mannose units linked by β(1�4); 
G: representation of substitution by galactose units 
with linked α(1�6). Based upon Dea and Morrison 

[27] 
 

3. BIOTECHNOLOGICAL APPLICATIONS 
OF GALACTOMANNANS 

 
The three main commercially used 
galactomannans in food and non-food industries 
are guar gum (Cyamopsis tetragonolobus), tara 
gum (Caesalpinea spinosa) and locust bean gum 
(Ceratonia siliqua) [27,33]. Other 
galactomannans commercially known are the 
gum extracted from Cassia tora [12] and the 
galactomannan from fenugreek Trigonella 
foenum-graecum, marketed on a smaller scale 
as well as that extracted from the seeds of 
Prosopis juliflora (Please see Table 1). 
 

In food industry, guar gum and locust bean gum 
are the most used species [34], while tara gum 
has been accepted as an alternative to those 
already used [35]. In general, galactomannans 
improve the texture and appearance of foods and 
increase its resistance to temperature changes, 
been especially applied as thickeners and fat 
substitutes; they also can be used in dairy 
products, desserts (especially ice cream), jellies, 
powders, cake mixes and frosting, spices, 
sauces, soups and canned and frozen foods [36]. 
 

Galactomannans enter into the composition of 
dietetic foods since they are not digested by the 

body. The addition of guar gum to meals that are 
rich in carbohydrates reduces the postprandial 
rise of glucose and insulin in the blood. 
Moreover, the use of pharmaceutical 
preparations of pure guar gum and the gum 
added to foods improved the metabolism of 
carbohydrates and lipids in insulin-dependent 
and insulin-independent patients. The 
physiological action of guar gum appears to 
depend mainly on their ability to rapid hydration, 
increasing the viscosity of the bolus in the 
stomach and small intestine. The high viscosity 
in the small intestine decreases both digestion 
and absorption of carbohydrates, which tends to 
reduce postprandial hyperglycemia. There are 
also studies demonstrating that guar gum is able 
to lower blood low density lipoproteins/ LDL [37]. 
Also as regards the food industry, studies related 
to the mechanical and thermal properties of films 
based on galactomannans have been widely 
exploited for biotechnological application 
especially as edible films [5], for example for 
tropical fruits [7] and ricotta cheese [38].  
 
In what concerns non-food industries, 
galactomannans are used as thickeners and 
stabilizers in pharmaceutical formulations, such 
as creams and lotions for cosmetic fields [39]. In 
addition, these polysaccharides have been 
applied as matrix in the controlled release of 
drugs, such as the formulation composed by 
galactomannan and xanthan gum, which has 
been used as controlled release drug carrier of 
sodium diclofenate and theophylline. 
Galactomannans were also employed as 
thickeners in effervescent tablets and formed a 
stable suspension, thus preventing the 
settlement of the particles and promoting a 
pleasant feeling in the mouth [40,41]. 
 
Galactomannans were also applied for the 
controlled release of drugs in the large intestine. 
The polysaccharide have been used as coating 
capsules and tablets in combination with 
proteins. Individually, these polysaccharides 
cannot be applied as drug carriers to the colon 
due to their solubility in water. However, the 
coating based on galactomannan and pectin in 
pH 7 becomes elastic and insoluble in gastric 
and intestinal fluids, thus able to pass through 
the upper gastrointestinal tract and allow the 
release just in the intestine [42]. 
 
Further, galactomannans are adsorbed by 
cellulose fibers and used in paper industry to 
improve the mechanical properties of paper by 
regulating the flocculation state of cellulosic fiber 
suspension [43]. 
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Table 1. Galactomannans from Leguminosae family and  their main properties including M/G ratio and appl ications 
 

Leguminosae family M/G ratio Applications Reference 
Subfamily Species 
Caesalpinioideae Cassia absus 3.0 Medicinal purposes. [44,45,46] 
 C. alata 3.3 - [47] 
 C. emarginata 2.70 - [27] 
 C. fistula 3.0 Possess antitumoral activity. [48,49] 
 C. grandis 2.44-3.15 - [15,50] 
 C. marylandica 3.76 - [51] 
 C. nodosa 3.5 - [52] 
 C. occidentalis 3.1 - [51] 
 C. tora 3.0 Disintegrant in the formulation of orodispersible tablets.  

Thickener or gelling agent. 
[12,53,54] 

 C. spectabilis 2.65 - [55] 
 C. spinosa 2.70-3.0 Possess protective colloidal properties and interfacial 

tension activity. 
Important agent of synergism with other polysaccharides. 

[12,56] 

 Caesalpinia pulcherrima  2.88 Used as coating for tropical fruits. [7,57] 
 Ceratonia siliqua 3.5-3.75 Binder, lubricator, and stabilizer.  

Provides heat-shock resistance in ice cream products. 
Speeds coagulation of cheeses. 
Used as beads for drug controlled release.  
Important agent of synergism with other polysaccharides. 

[33,34,51,56] 

 Caesalpinia cacalaco  2.5 - [12] 
 Delomix regia 4.28 - [27] 
 Gleditsia amorphoides 2.5 - [58] 
 G. triacanthos 2.82 Food industry purposes. 

Reduce intestinal absorption. 
[8,13,17,59] 
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Leguminosae family M/G ratio Applications Reference 
Subfamily Species 

Possess immunomodulatory activity and anti-inflamatory and 
antioxidant effects 

 Gymnocladus dioica 2.71 - [51] 
 Parkinsonia aculeata 2.70 - [51] 
Mimosoideae Besmanthus illinoensis  2.69 - [12] 
 Leucaena glauca 1.33 - [12] 
 Adenanthera pavonina 1.35 Used as coating for tropical fruits. [7,57] 
 Mimosa scabrella 1 Used as tablets for oral controlled drug delivery. [19,48] 
 Prosopis juliflora 1.1-1.6 Potential for use in the food industry. 35,60] 
     
Faboideae Sophora japonica  5.75 Food industry purposes. [17,61] 
 Trigonella foenum-graecum 0.95-1.1 Reduce surface tension. 

Possess anti-inflamatory and antioxidative effects. 
[56,62,63] 

 Cyamopsis tetragonoloba 1.8 Thickener, stabilizer, emulsifier, and firming agent. 
Important agent of synergism with other polysaccharides. 
Used as blends for food industry. 
Part of mixed gels for topical drug delivery. 

[51,56,64,65] 
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Several studies have been developed about the 
purification, description of the physical, chemical 
and biological properties, and use of 
galactomannans obtained from different and 
varied sources. Galactomannans of distinct plant 
species have been well characterized, such as 
the Prosopis ruscifolia [16], Senna tora [66], 
Cassia grandis [15,50], Dimorphandra 
gardneriana Tul. [1], Caesalpinia ferrea var. 
férrea [67], Caesalpinia pulcherrima, Gleditsia 
triacanthos and Adenanthera pavonina [57]. 
 
The degree of substitution of the galactose units 
in the mannose backbone is an important 
character in the interaction of galactomannans 
with other polymers. One of the first reports on 
the characteristics and properties of systems 
formed from binary mixtures of galactomannans 
and other polysaccharides were performed by 
McCleary et al. [68], who described rheological 
analysis between xanthan and the guar gum 
galactomannan and demonstrated that this 
interaction decreases with increasing the degree 
of substitution of galactomannans. Bresolin et al. 
[69] also evaluated the synergistic effect of 
xanthan and the galactomannans from Mimosa 
scabrella and Schizolobium parahybum. Grisel et 
al. [70] evaluated the synergistic effect of guar 
gum galactomannan and locust bean gum with 
xanthan and confirmed that the impact 
distribution of galactose units along the main 
chain of mannose is attached to the synergy 
mechanism. Lucyszyn et al. [23] applied gel 
mixtures of galactomannans and agar for plant 
cell cultures.  
 
Another widely studied gel comprises k-
carrageenan and galactomannan. Gonçalves et 
al. [71] observed that the addition of 
galactomannan improved the gel quality when 
compared to the pure k-carrageenan gel. In 
combination with galactomannan, the mixture 
became less brittle, stronger, and less vulnerable 
to syneresis. Pinheiro et al. [9] quantified the 
synergistic interactions between the 
galactomannans extracted from Sophora 
japonica and Gleditsia triacanthos with k-
carrageenan and xanthan and compared the 
results with the traditional guar gum 
galactomannan and locust bean gum. The 
results demonstrated once more that the 
synergistic effect of the system depends on the 
ratio of mannose and galactose; in addition, the 
fine structure of the galactomannan. 
 
There is a worldwide trend related to researches 
on purification, characterization and application 

of galactomannans, indicating the need to find 
seeds, which are alternative sources for the 
extraction of this polysaccharide, especially for 
industrial production. The possible sources for 
galactomannan extraction in Latin America are 
still unfamiliar despite the rich biodiversity of the 
local flora [1].  
 
Brazil has rich sources of diversified species for 
the extraction of galactomannans from seeds 
that could leverage the marketing of this 
polysaccharide. Considering the prices for 
commercial galactomannans including guar gum 
and locust bean gum (0,10 euros per gram, 
approximately) [72], it is important to note the 
potential of the Amazon as supplier of seeds with 
high potential for galactomannan extraction yield, 
which has important highlight in trade and 
promising scientific researches. 
 
3.1 Immobilization of Biomolecules in 

Galactomannan Supports 
 
Enzymes, antibodies, proteins, drugs and     
cellular receptors are examples of biomolecules 
already immobilized by chemical or                   
physical means in different biomaterials for 
applications ranging from diagnostic and 
therapeutic areas to separation methods and 
other bioprocesses. 
 
Among the different classes of biomaterials that 
can be used as carriers, polymers have special 
interest due to reactive groups on its surface or 
other derivative groups that may covalently bind 
to biomolecules. Moreover, an advantage of 
polymeric supports for biomolecules relates to 
distinct processes for manufacture these 
systems, including films, membranes, tubes, 
fibers, particles, gels, hydrogels, capsules and 
porous structures [73]. 
 
Several immobilization methods are based on 
physical or chemical linkages between the 
biomolecule and the polymeric support. The main 
used methods are physical adsorption 
(hydrophobic interactions, hydrogen bonds or 
van der Waals forces), chemical adsorption 
(covalent or ionic bonds), immobilization by 
containment matrix and crosslinks (Fig. 3). It is 
important to note that the term immobilization 
refers both for a transient location as a 
permanent immobilization of the biomolecule in 
or on the polymeric support. Moreover, if the 
polymeric carrier is biodegradable, the 
immobilized biomolecule can be released by 
degradation of the matrix [73]. 



 
Fig. 3. Immobilizations based on physical or 
chemical linkages; containment matrix and 
crosslinks between the biomolecule and the 

polymeric support are represented
 
Currently, polysaccharides are reported as 
efficient polymers for biomolecule immobilization, 
for example, chitosan films from animal and 
microbial sources, added to glycerol, were used 
for the immobilization of bromelain [7
results suggested that the films with low 
molecular weight chitosan are suitable for 
application in wine industry. Proteases were 
immobilized on chitosan films and demonstrated 
an excellent anti-biofilm effect, especially against 
Staphylococcus cultures [75]. Bioengineering 
and medicine fields also reported innovations 
such as the combination of chitosan, gelatin and 
alginate with carbon nanotubes for protein 
immobilization [76]. Biomolecule immobilizations 
in polymeric matrices has also been developed 
for micro scale, for example the development of 
a glucose biosensor by immobilizing glucose 
oxidase in chitosan particles [77], in addition to 
the microparticles of gel produced from alginate 
and lactoferrin [78]. 
 
Considering the above-mentioned results, one 
can note that galactomannans are still little 
explored in most research carried out with 
polysaccharides for immobilization of 
biomolecules. 
 
3.1.1 Galactomannan films/membranes as 

supports of immobilization  
 
The polymers, whether natural or synthetic, are 
molecules whose chains are longer and able to 
produce continuous matrices vital for 
structuration of films, membranes and coatings. 
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The polymers, whether natural or synthetic, are 
molecules whose chains are longer and able to 
produce continuous matrices vital for 
structuration of films, membranes and coatings. 

In order to avoid misinterpretations, it is 
important to distinguish the abo
terms: Films or membranes are formed by drying 
(casting) of a polymeric solution, which can later 
be applied to a product; the coating can be a 
suspension or emulsion applied directly to the 
product surface and, after drying, leads to the 
formation of a film. These terms have been 
improved by the food industry to clarify the 
difference between coatings and edible films 
[79]. 
 
The preparation of films from biodegradable 
materials such as natural polymers has aroused 
the interest of the scientific community in recent 
decades, especially due to the importance given 
to the replacement of synthetic polymers. Films 
developed from polysaccharides (Fig. 4) are 
excellent barriers to oxygen due to packing of 
molecules, forming a structural network ordered
through hydrogen bonds; however, there are 
hygroscopic characteristics that can reduce its 
potential for many applications [80].
 

 
Fig. 4. Representation of films based on 
polysaccharides obtained from natural 

sources 
 
The properties of films depend on 
polymer, the manufacturing conditions and 
environmental conditions, which are important 
factors due to the hygroscopic nature of the 
polymers [81]. The formulation of these products 
most often requires the use of plasticizers, since 
films without plasticizer addition exhibit a brittle 
and hard structure due to interact
polymer molecules [79]. 
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Plasticizers are low molecular weight agents that, 
once incorporated into films, are able to position 
themselves among the polymer molecules. They 
interfere with the polymer-polymer interactions 
and result in increased flexibility and processing 
capacity [82], as well as improve the product 
resistance to penetration of vapours and gases 
[40]. Water is a very effective plasticizer in the 
composition of films; other plasticizers are also 
hydrophilic and able to attract water molecules. 
Due to this feature, the relative humidity of films 
under storage becomes one of the main 
analysed properties especially due to the 
influence of water on the structure of the 
products [83]. 
 
Surfactants are considered amphipathic 
substances due to their hydrophilicity and 
hydrophobicity. They are usually added to 
enhance the emulsion stability of films. 
Surfactants could be incorporated to reduce 
surface tension of solutions, improving the 
wettability of the products [82]. 
 
The polysaccharides evaluated and/or employed 
to form films can be applied in the 
pharmaceutical field in encapsulation processes 
and release of active principles; as edible films in 
the food industry; in the cosmetic industry; in 
agriculture, such as pesticides and nutrients 
release agent; among other applications. The 
main polysaccharides reported on the production 
of films and coatings include: Starch [84,85], 
cellulose [86-88], alginate [89-91], carrageenan 
[92-94], chitosan [95-97] and natural gums, such 
as Policaju [98,99] and agar [100,101]. 
 
The knowledge of characterization and 
application of galactomannans as films is still 
limited compared with those already reported for 
other polysaccharides. Apart from this fact, the 
main publications brought new insights of the 
properties and uses of edible films, as reported 
below.  
 
Cerqueira et al. [7] studied the application of 
coatings constituted by galactomannans from 
different natural sources (Caesalpinia 
pulcherrima and Adenanthera pavonina) in five 
tropical fruits: acerola (Malpighia emarginata), 
cajá (Spondias lutea), mango (Mangifera indica), 
pitanga (Eugenia uniflora) and seriguela 
(Spondias purpurea). The surface properties of 
the five fruits were determined for different 
aqueous solutions of galactomannans plus 
glycerol. Lima et al. [102] also used the 
galactomannans obtained from C. pulcherrima 
and A. pavonina to coat fruits, but added 

collagen and glycerol to the filmogenic solutions 
and evaluated the application of the coatings on 
mangoes and apples. The influence of storage 
temperature on the gas exchange rate of cheese 
coated with galactomannan was also evaluated 
[38] and the study of the physicochemical 
properties of edible films with different 
concentrations of locust bean gum and k-
carrageenan was performed [3]. In general, 
edible films based on galactomannans tend to 
improve the appearance of the food and can be 
used as immobilizing media of nature 
preservatives in order to reduce microbial 
contamination, increasing the shelf life of foods 
coated with this polysaccharide. 
 
It is important to highlight that 
mannose/galactose ratio, degree of substitution 
and degree of polymerization have been reported 
to directly affect edible films [103]. In addition, 
the immobilization of compounds in 
galactomannan films must be evaluated by the 
impact on the functionality of the final product, 
since the immobilized molecule can affect 
functional properties of the polysaccharide [5].  
 
Martins et al. [4] developed a galactomannan film 
extracted from Gleditsia triacanthos with 
immobilized nisin and have been successful in 
preventing microbial contamination in cheese 
ricotta. Cerqueira et al. [8] used the same 
galactomannan from G. triacanthos to immobilize 
antioxidant extracts and implement the 
antioxidant activity of the final product. Valenga 
et al. [18] performed the immobilization of the 
lectin from Canavalia ensiformis seeds, ConA 
(glucose/ mannose binding), in galactomannan 
films obtained from the seeds of Leucaena 
leucocephala. They suggested that, as the 
backbone of the galactomannan is comprised of 
β-D-mannose units in which some α-D-galactose 
units are linked at the C-6 position, the 
recognition of ConA may occur through OH 
groups at C-3 or C-6 positions, if the latter 
mannose unit is free. These results demonstrate 
that the works in which galactomannan films are 
used as support for immobilization of 
biomolecules are still scarce, especially in health 
care. 
 
3.1.2 Galactomannan gels and hydrogels as 

immobilizing supports  
 
Gels are semi-solid systems in which small 
amounts of solid are dispersed in relatively larger 
quantities of liquid, a characteristic that provides 
a nature more solid than liquid to the system 
[104]. There is an inadequate interpretation in 
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polymer science under the use of the terms gel 
and hydrogel as synonyms. Even though gels 
and hydrogels are chemically similar polymeric 
networks (Fig. 5), they have distinct physical 
structures [105]. Hydrogels are characterized as 
crosslinked networks of hydrophilic polymers 
capable of absorbing large quantities of water 
and swell while retaining its three-dimensional 
structure. Sometimes hydrogels are also 
described as aqueous gels due to the hydro 
prefix, although the term hydrogel implies a 
material already swollen in water [106]. 
 

 
Fig. 5. Differential behavior of a polymer in 

aqueous solution 
The closed circles represent covalent bonds and the 

open circles represent virtual entangled links  
  
Although some gels are sufficiently rigid to 
maintain their structure under low stress, after 
exceeding a certain threshold value, the flow of 
the gel emerges as a characteristic linked to the 
loss in the polymer structure. Hydrogels can 
swell in aqueous medium for the same reason 
that a similar polymer can be dissolved in water 
to form a polymeric solution. Therefore, the 
central feature to form a hydrogel is its inherent 
crosslinking (ability to form cross-links). 
Conventional gels can also develop small levels 
of cross-links because of the energy gain under 
the influence of stress forces, but this process is 

reversible due to the involvement of weak 
physical forces [105]. 
 
Galactomannans themselves are nongelling 
agents, while some galactomannans are able to 
form gels with certain metal salts and others 
interact synergistically with different 
polysaccharides such as agar, xanthan, 
carrageenan, pectin and yellow mustard gum to 
form a three-dimensional gel network in 
appropriate conditions. Hydrated galactomannan 
molecules occupy a large hydrodynamic volume 
in aqueous solution and control the rheological 
behaviour of the entire solution [39]. The 
evaluation of this behaviour plays an important 
role in the characterization of galactomannan 
solutions, since these are often used to modify 
textural attributes [107]. This characterization can 
be performed through shear (steady and 
dynamic conditions) and extensional rheology 
[13]. 
 
Regarding the technical applications of 
galactomannan solutions, attention is drawn to 
the chemical behaviour of the different 
galactomannans. There are uses which benefit 
from the excellent viscosity formation of some 
galactomannans or their derivatives and there 
are utilizations which benefit from water 
absorption or from the formation of hydrogen 
bonds as well as gel formation [39].  
 
Biologically active molecules such as proteins, 
peptides, saccharides, lipids, drugs, hormones, 
cell surface receptors, conjugates, nucleotides 
and nucleic acids can be immobilized based on 
physical or chemical linkages on polymeric 
supports. Biomolecules can be immobilized on 
the outer surface of the gel or within the  
hydrogel polymer network [73]. Applications 
ranging from the food to the pharmaceutical 
industry have used gels based on 
galactomannans as matrices for controlled 
release of compounds.  
 
The galactomannan extracted from the seeds of 
Mimosa scabrella, for example, was prepared 
with xanthan and tested as hydrophilic matrix for 
controlled release of theophylline [40] and 
sodium diclofenac [41]. Koop et al. [108] utilized 
the galactomannan of the latter species as matrix 
for stabilizing ascorbic acid. The locust bean gum 
was mixed with xanthan and evaluated for 
promoting emulsion stability [109]. Rocha et al. 
[110] used silica and chitosan to immobilize 
Aspergillus and Penicillium fungal. 
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Studies involving the use of galactomannans in 
gels for immobilization of biomolecules have also 
been developed with the important purpose of 
evaluating the controlled release of suspensions 
contained in nanostructures [111,112]. 
Nanometric systems of polysaccharides have 
been studied intensively [113], especially in the 
biological field [114,115]. Nanocapsules, 
nanoparticles, liposomes, microspheres, 
microcapsules and nanospheres, belonging to 
the group of systems dispersed in nanometric 
scale, are pharmaceutical forms that intend to 
reduce side effects of many substances while 
increase its effectiveness after administration, 
even by different routes, including the cutaneous 
barrier. In this sense, the technological 
development of novel dosage forms in 
nanometric scale has been a promising strategy 
to increase the penetration of drugs through the 
skin in a controlled manner [116]. 
 
4. CONCLUSION 
 
The purpose of this review was to approach the 
most recent scientific literature dealing with 
matrices based on galactomannans. Moreover, 
this review emphasis the main strategies for 
immobilization of biomolecules and their   
potential industrial applications. Solutions of 
galactomannans are considered viscoelastic 
materials since they exhibit both viscous                  
(liquid) and solid (elastic) characteristics, which 
proposes its use as supports ranging             
from films/membranes to gels. This review article 
was motivated by the lack of adequate 
knowledge about the immobilization                            
of biomolecules in galactomannan matrices and 
the impact on the functionality of the final 
product, since the immobilized biomolecule              
can affect functional properties of the 
polysaccharide.  
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