
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: ali.sever@pfeiffer.edu; 
 
 
 

British Journal of Applied Science & Technology 
18(4): 1-10, 2016; Article no.BJAST.30676 

ISSN: 2231-0843, NLM ID: 101664541 
 

SCIENCEDOMAIN international 
            www.sciencedomain.org 

 

 

A New Efficient Machine Learning Algorithm to 
Solve Facility Location Selection Problem of 

Geoinformatics 
 

Ali Sever 1* 
 

1Department of Computer Information Systems, Pfeiffer University, Charlotte, NC 28109, USA. 
 

Author’s contribution  
 

The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/BJAST/2016/30676 
Editor(s): 

(1) Xu Jianhua, Department of Geography, East China Normal University, China. 
(2) Harry E. Ruda, Stan Meek Chair Professor in Nanotechnology, University of Toronto, Director, Centre for Advanced 

Nanotechnology, University of Toronto, Canada. 
Reviewers: 

(1) Hassan A. Karimi, University of Pittsburgh, USA. 
(2) Helmi Zulhaidi Mohd Shafri, Universiti Putra Malaysia (UPM), Malaysia. 

(3) V. J. Rehna, Visvesvaraya Technological University, India. 
(4) Jiang Minlan, Zhejiang Normal University, China. 

(5) Oyeranmi Adigun, Yaba College of Technology, Nigeria. 
Complete Peer review History: http://www.sciencedomain.org/review-history/17503 

 
 
 

Received 25 th  November 2016  
Accepted 5 th January 2017 

Published 12 th January 2017  
 

 
ABSTRACT 
 
The problem of selecting store locations has received increased attention in the literature during the 
past decade, and varieties of models have been promoted to select those sites. In this paper, we 
address the problem of finding the optimal deployment of site locations in a certain geographic area 
with a given wide range of factors affecting decision making. This problem is complex and should be 
tackled as a multiple-objective problem. The combination of several criteria in the selection of store 
location must be considered. It should be noted that facility location problems require knowledge of 
a key parameter, “aggregated degree of importance” (ADI) indicator. This is where the discrete 
inverse problems can help. In this article, we discuss existing models on this problem and sketch 
how inverse problems (IP) can be formulated to yield a smooth ADI indicator surface. The latter is 
very useful both in the accurate locating of facilities as well as in computing sensitivities. A 
computational analysis on a non-spatial and spatial data set describing the algorithm in the site 
selection problem illustrates the effectiveness of the approach. Application of the facility location 
model is demonstrated using an example of a drug store’s selection problem in a given area. 
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1. INTRODUCTION 
 
Geographic facility location selection is 
commonly defined as the process of: 
”determining the probable spatial location of a 
store within the context of the locations of, and 
the spatial and non-spatial relationships 
between, the various existing store sites” ([1,2 
and 3]). 
 
Facility location selection decision is a critical 
element in decision making with regard to the 
success of management for a wide range of 
organizations. The goal of this process is to 
determine the most appropriate location to 
provide good customer service, to attain a 
competitive advantage, to improve the 
distribution network, and to create new 
businesses and markets.  Facility location 
selection is vitally important with regard to the 
success of companies. Location of the facility is 
one of the most important variable factors 
affecting the profitability of a business. Due to its 
vital importance, the decisions of facility location 
selection have to be made. 
 
1.1 Related Work 
 
The selection of location problem has been an 
important research topic during the last several 
years. Some studies classify facility location 
problems as a single objective supply chain 
design problem ([4,5 and 6]). Bhatnagar and 
Sohal  in their empirical study show that it is a 
multi-objective problem influenced by a wide 
range of decision making factors such as 
business services, cost, infrastructure, 
government, labor, customers, suppliers, and 
competitors. Nwogugu [7] discussed approaches 
for retrieval of input data for a new facility 
location model created specifically for a retail 
store location. In [8,9,10,11 and 12], Literature 
Review on Selection Criteria of Store Location is 
studied extensively. Therefore, the facility 
location problem should be tackled as a multi-
objective problem and a wide range of factors 
should be included in any successful design.     
 
In [13], it was indicated that the facility location 
problem is, even in medium-sized problems, a 
computationally difficult problem, and solving it 
directly often would not produce any meaningful 
results. Many existing models use continuous-
attributed data, not semantic data ([14]). Similar 
problem in manufacturing systems with 

stochastic demand is studied in [15]. Here, we 
developed an alternative approach to solve the 
facility location problem described below.  
 
1.2 Our Contribution 
 
The inverse problem approach to machine 
learning provides for a bottom-up approach 
where our goal will be to express a 
generalization based on a known conclusion-that 
is, the existing store location data points and an 
ADI indicator surface- through the application of 
inverse resolution and inverse implication.  
Inverse problems, like most of the inverse 
problems encountered in science and 
engineering may be reformulated as an 
optimization problem. Therefore, many available 
techniques of solving the optimization problems 
are available as methods of solving the IPs. 
 
A reasonable and realistic approach is to think of 
the aggregated degree of importance (ADI) 
indicator as a surface, σ = σ(x), rather than a 
constant. Here we assume that one cluster (set 
of locations) Ω contains existing locations while 
another cluster Ωk contains locations, which are 
potential.  
 
There are many typical selection criteria and 
factors for the selection criteria for the selection 
of facility location. We will recap a literature 
review on a selection criteria of store Location 
and implementation of data gathering process in 
Table 1 ([16,17,18,19 and 20]). 
 
Table 1. The classification of factors relevant 

to facility location  
 

Factor  Data 
type 

Source 
type 

Economic Factors  Non-
spatial 

Commercial 

Saturation Level Spatial Public 
Business services  Non-

spatial 
Commercial, 
field work 

Competitive 
Condition  

Spatial Commercial, 
field work, 
public 

Store 
Characteristics  

Non-
spatial 

Public, 
commercial 

Customer/market  Spatial  Public, 
commercial 

Suppliers/resources  Spatial  Commercial, 
field work 
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In our study, the main criteria have been 
identified in compliance with the most suitable 
facility location definition objective. The most 
convenient main criteria has been defined with 
regards to economic factors, saturation level,  
competitive conditions, population structure, 
physical features for the stores,  and the location 
of preferred site for the most suitable facility 
location selection. 
 
To be able to produce facility location selections, 
we use and modify the model discussed in [13], 
using a manageable subset of a dataset, 
assuming that a relationship between a facility 
location selection and some of its various 
attributes exists.  As discussed in [13], we will 
treat this problem as an inverse problem of 
finding the  σ = σ(x1) >0 in 
  

-div (σ∇u) = δ (-x2) in   ℜ2                      (1) 
 
where δ is the Dirac delta function,  and σ  is a 
bounded and measurable reconstruction of 
volatility of the ADI (Aggregated Degree of 
Importance) indicator function. We assume Ω 
(includes existing facility locations) is a bounded 
domain in ℜ2 and  σ  = 1 + σ 1   with suppσ 1  ⊂ Ω. 
The solution u(x1, x2) is given for x1, x2Є Ωk  
(potential new locations),  which is a bounded 
domain in   ℜ2,  whose closure does not 
intersect. Notice that this imposed constraint 
incorporates prior knowledge about the problem.  
We refer to [13] for the detailed formulation of 
Eq. (1).  In Eq. (1), u is the ADI indicator function 
(i.e., what we are trying to determine in Ω -
potential locations with a degree of importance 
and what is known in Ωk – existing locations. A 
value of  σ  is required before Eq. (1) can be of 
practical value.  One should notice that σ is not 
directly observable but can be determined in two 
different ways. The first is to use a 1-dimensional 
regression problem. But this does not yield the 
actual facility location for any known ADI 
indicators for existing locations. The second 
approach is to calculate implied volatility to yield 
a value for σ. Implied volatility is determined by 
solving an inverse problem involving similar 
facility locations on the same underlying complex 
ADD indicator infrastructure. Implied volatility is 
thus that the value ofσ, when substituted in to 
Equation (1), yields known facility location.  
Hence, for each facility location, there is a 
corresponding implied volatility, and one such 
value can be used to determine the “close” 
approximation of a new facility location on the 
same underlying complex ADD indicator 
infrastructure.  

However, in this model, there are problems with 
implied volatility use as explained in [13]. These 
kinds of inverse problems are usually “ill-posed.” 
The choice of σ can become very important for 
the sensitivity calculation and so an arbitrary 
choice may not lead to a desired results. 
Therefore we will treat volatility as a surface 
rather than constant. Thus, we may think of an 
inverse problem of facility location selection 
problem as determination of the distribution of 
expected store locations implied by known store 
locations.  
 
There are many challenges to solve these kinds 
of problems due to their nonlinearity, for most 
computational methods, we assume that a linear 
problem is a good approximation to a nonlinear 
one. Here we modified the solution that was 
suggested in [13] to split the inverse problem into 
a simpler, ill-posed problem with an integral 
equation of a Riesz-type kernel and a well-posed 
problem. This will allow us to isolate and better 
control the propagation of errors due to the ill-
posedness. 
 
In order to compute the aggregated degree of 
importance indicator for existing facilities, a 
weighted sum of individual facility goodness 
indicators is computed. Importance of each 
indicator can be determined according to the 
results of empirical studies on practical 
importance of different facility location criteria. 
The model presented below uses just five facility 
location criteria although other criteria mentioned 
in [8] can be incorporated, if necessary. The 
main difference of the proposed model from the 
traditional discrete facility location models is that 
ADI indicator is not specified by discrete data 
points and these data points are not assigned to 
the specific location. Instead of that the ADI 
indicator approximates the ADI indicator around 
the potential facility, and facilities are located at 
sites with high ADI indicator density. 
 
The rest of the paper is organized as follows: the 
next Section describes our model and justifies its 
use. In Section III, we formulate the proposed 
linearized unsupervised learning algorithm and 
present main experimental results and 
discussions. Finally, we conclude the paper with 
some remarks and future work in Section IV.  
 

2. A LINEARIZED APPROACH 
 
In this section, we modify the linearization of the 
inverse problem in Eq. (1) using perturbation 
methods and reduce our original non-linear 
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inverse problem to the linear integral Eq. (1) with 
the Riesz-type kernel,  
 

w(x)  = (1/2π)2  � σ� (y) |� − 
|��dy
Ω

   x Є Ω*
  

(2) 
 

For detailed theoretical derivation of the 
perturbation Eq. (2) we refer to [13]. 
 
New linearized inverse problem can be stated as 
follows: Find an ADI indicator function σ1 Є 
L∞(Ω),  given the function F(xk) = w(xk),  x kЄ Ωk, 
and using the following integral equation of first 
kind 
 

Aσ1 (x) = F(x) x Є Ωk                              (3) 
 

where 
 

Aσ1 (x) =  � k(x, y)σ� (y) dy
Ω

  and k(x,y) = 
(1/2π)2 |x – y|-2 

 
and A is considered as an operator from L∞(Ω) 
into L∞(Ωk) .  
 
For the integral Eq. (3), the uniqueness result 
and a logarithmic type of stability estimate with a 
Riesz-type kernel and non-intersecting domains 
Ω and Ωk is provided in [13]. 
 
We, first, make clear connection between 
regularization theory for inverse problems and 
machine learning to introduce a new machine 
learning regularization algorithm. Then we apply 
the proposed algorithm together multi-objective 
decision support system to an actual problem of 
selecting store locations. 
 
This problem is complex and has been tackled 
as a multiple-objective problem. We noted that 
facility location problems require knowledge of a 
key parameter, “aggregated degree of 
importance” indicator and can be stated as 
machine learning regularization of an inverse 
problem. Then we discussed existing models on 
this problem and sketched how discrete inverse 
problems could be formulated to yield a smooth 
ADI indicator surface with an optimizer which is 
needed for unsupervised learning.  
 
Inverse problems (IP), like most of the inverse 
problems encountered in science and 
engineering may be reformulated as an 
optimization problem. Therefore, many available 
techniques of solving the optimization problems 
are available as methods of solving the IPs. Here 

we use the Tikhonov regularization method to 
solve the ill-posed problem in Eq. (3). In this 
method, instead of Eq. (3), we solve the following 
regularized equation: 
 

(A*A + α I)σ1 (α) = A*F                 (4) 
 
where  α is a regularizer parameter and I is the 
identity operator. 
 
A known theory of regularization guarantees 
existence of the solution σ1 (α) and its 
convergence to the solution f when α →0, 
provided σ1 exists and the uniqueness for the 
original equation is known [13]. Now one has to 
prove that Eq. (4) has a solution, which is given 
below. 
 
Theorem 1:  Let S(y) be the set of all solutions   
to  
 

min     Ax – y Y                                             (5) 

 

x Є Χ0 

 
where x is solution to Eq. (4), Χ0 is a compact 
subset of X, and X= Ω and Y = Ωk in Eq. (5). 
Then S(y) is continuous with respect to y. 
 
Proof: Suppose we pick up any sequence yk Є Y 
such that yk → y0  for all y0 Є Y as k→∞ and ε > 0 
such that d(S(yk), S(y)) >ε. That is, there exists xk 
Є S(yk) such that  
 

||xk – x||X > ε                               (6)  
 

for any x Є S(y).  
 
Now let x0 Є X0. Since X0 is compact so the 
lower semi-continous functional   Φ(x;y) = ||Ax – 
y||Y

2 has a minimum point x* on X. The set of all 
min points is closed deu to semicontinuity of Φ. 
We denote it by S(y). Then since xk Є X0 and X0 
is compact, by extracting a subsequence, we can 
assume that xk → x’ Є X0. Therefore we have  
 

Φ(xk;yk) ≤ Φ(x;yk) for any x Є X0                  (7) 
 
Since xk’s are minimum points in X0. Also since Φ 
is lower semi continuous with respect to xk, we 
can pass to limit 
 

Φ(x’;y) ≤ Φ(x;y) for all x Є X0                  (8) 
 

and therefore x’ Є S(y). On the other hand  ||x’ – 
x||X ≥ ε  for any x Є S(y) and this contradiction 
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proves that S(y) is continuous with respect to y. 
Since X0 is a compact subset of X there exists a 
solution to (5). 
    
Let   Ω and Ωk be the domain in ℜ2. For 
computational reasons, we will regard the 
integral operator 
 

Aσ1 (x) =  � σ�  (y) /|� − 
|� dy
Ω

                  (9)              
       

as defined from L2(Ω) into L2(Ωk). By using the 
definition of an adjoint operator in L2, we have 
A*: L2(Ωk) → L2(Ω) defined by  
 

A*F(y) = � �(�)/|� − 
|�
Ω

�         y Є Ω       (10) 
              

and A*Aσ1 (y) becomes  
 
A*Aσ1 (y) =  � � σ� (
 ′)

ΩΩ�
|� − 
|� |� − 
 ′|� �
 ′��       

(11) 
        

where  x  Є Ωk, and y, y’ ЄΩ.  By discretizing Eq. 
(11), we have 
 

A*Aσ1 (yi)  = ∑  �
�,���  wj wk  σ1 (yj

’) /|xk – yi|
2 |xk – 

yj
’|2      yi, yj

’ Є Ω                                  (12) 
 

≅   ∑ Θ�,�σ� (
�
′ )�

���  
 
where  
 

ΘI,j ≅   ∑  �
�,���  wj wk   /|xk – yi|

2 |xk – yj
’|2  (13) 

 
and wj, wk are the weight functions. By 
discretizing Eq. (10), we have 
 

A*F(yi)≅ ∑  �
���   wkF(xk)/|xk – yi|

2    (14)  
                 

From Eqs. (12), (13), and (14) we have the 
discretized matrix equation in the form of 
 

(αI +Θ ) σ1 (y)  =  A*F                  (15)   
                

for some regularization parameter, α > 0.  Notice 
that the linearization method led us to a 
Fredholm integral equation of first kind with Riesz 
kernel. Since this equation represents an ill-
posed problem, we needed some kind 
regularization method to overcome this difficulty. 
We used the Tikhonov regularization method 
and, by discretizing the regularized equation 
(15), ended up with the system of linear 
equations. With this enhancement, now the 
problem is reduced to solving systems of linear 
equations. This is done conventionally, using 

MATLAB routines. Typical run times are in 
seconds for several machines and operating 
systems. 
 
3. EXPERIMENTAL RESULTS AND 

DISCUSSION 
 
Our particular model is designed to investigate 
the volatility of ADI indicators that can be used to 
predict accurately what facility locations will be 
selected based on several criteria and determine 
the aggregated degree of importance of the 
potential facility locations. The model will then 
populate a Google map with the existing stores 
of data given as input. These data are marked on 
the map with colored dots.  Potential facility 
locations and their aggregated degree of 
importance, on the other hand, are marked with 
thumbtack icons. Next, the model calculates the 
circular area containing the area of interest. This 
is displayed in a large red circle. Then, it 
calculates the smallest circular area with the 
highest ADI indicator. This is displayed in a 
medium-sized blue circle. Using the proposed 
model, estimation is made as to the most 
probable area where the best location resides. 
This is displayed in a small green circle. 
  
Experimental studies are conducted to measure 
computational performance of the proposed 
model using distributed real data sources and to 
analyze decision-making results obtained using 
the proposed model-solving algorithm. 
 
The sample store location problem considered in 
this paper deals with locating drug stores. There 
are a number of existing facility location sites and 
the total number of facilities to be open is limited. 
It is aimed to locate drug stores at sites having 
the largest number of customers and the 
smallest number of competitors in its proximity, 
reasonable traffic density, and having acceptable 
real estate costs. 
 
The necessary input data for modeling are ADI 
indicators and addresses of existing facility 
location sites. The number of potential sites is 
varied from 5 to 10 - what corresponds to small 
to medium-sized facility location problems. The 
value of the coverage radius is 15 miles. The 
model is solved using: (1) the algorithm 
described in Section 2; and (2) the Geocoding 
service, a geographical information system is 
used to represent the modeling results by using 
spatial data. The importance of each ADI 
indicator in the objective function is set according 
to the results. 
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Using the existing facility location and ADI 
indicator data, the facility location problem is 
solved using a DIP model-solving algorithm. For 
the given dimensions of the facility location 
problem, the model solving time is negligible, and 
it is within 1 min for 10 existing and 5 potential 
sites. However, the model solving time can be 
very long for an increased number of existing 
and potential facility location problem. Therefore, 
the time limit is imposed for the model and the 
optimal solution occasionally is not found within 
the specified time limit. For the drug store 
experiment, the model-solving is performed for 
ten existing stores and generated five candidate 
facility locations.  
 
The number of selected units usually is only a 
fraction of existing locations that is affected by 
impact of competition and real estate cost, 
limiting incentives to open maximum number of 
facilities. For the upper level values of r, there 
must also be a limited number of candidate 
locations. 
 
The important feature of spatial data processing 
is an ability to represent data graphically using 
various cartographical tools. Fig. 1 shows a 
sample facility location results for ten existing 
locations and five potential locations within a 15-
mile radius. Technically, the graphical 
representation is created: (1) constructing the 
skeleton of a web page with JavaScript and (2) 
loading it into the HTML browser. Map-type can 
be street, satellite, or hybrid. Displaying the 
Google map in an HTML widget requires 
Common Graphics (CG).  The CG html-widget 
always works on MS Windows, and will work on 
Linux only if you have installed the Mozilla GTK 
widget as needed. 
 
Table 1 shows the ADI indicators for existing 
drug stores derived empirically. Ei shows existing 
location and Pj shows potential locations at 
location i and j respectively, 1 ≤ i ≤ 10; 1 ≤ j ≤ 5.  
Notice that existing locations are ranked from 
best to worst based on five criteria with the aid of 
expert analysts form the investigated store. 
 

Our test calculations were made on Table 2 and 
the domain was divided up into the 100-element 
mesh and the regularization parameter  α = 10-7 
in (21) for the reconstructed potential store 
location distribution. We did not do a systematic 
study to determine an optimal strategy for 
choosing the regularization parameter and the 
number of grid points. We have to mention that 
our aim is to investigate the specific 
characteristics of this method as a technique for 
reconstruction. The approach used here is to 
calculate implied volatility to yield a value for σ. 
The reconstructed potential store locations with 
importance level using the model is shown in 
different forms in Figs. 1 and 2.  Notice that 
potential locations are ranked from best to worst 
based on five criteria with the aid of the 
suggested model for the investigated store. The 
Fig. 1 shows that there is strong preference for 
locations with high population density.  As the 
number of existing locations in question 
increases, the accuracy of the prediction should 
also increase, thus weeding out extremes. 
 

Existing and Potential Facility Locations with ADI 
indicators are displayed in Figs. 3 and 4. 
 

Implied volatility is determined by solving an 
inverse problem involving similar aggregated 
degree of importance indicators on the same 
category of stores. Implied volatility is thus the 
value of  σ that, when substituted into Eq. (1), 
yields a known aggregated degree of importance 
indicators of existing stores. Hence, for each 
aggregated degree of importance indicators, 
there is a corresponding implied volatility, and 
one such value can be used to determine the 
“close” approximation of a new facility location on 
the same underlying. 
 

Eq. (21) involves a main parameter that must be 
adjusted for greatest efficiency:  the 
regularization parameter and the number of 
stores. The numerical experiments described 
above have shown that the reconstructed surface 
is smooth and close to the true volatility surface 
in Fig. 5. The reconstruction was usually a fair 
representation of the shape of σ. 
 

Table 2. ADI indicators for existing drug stores 
 

Main criteria / Existing 
stores 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

Economic factors 0.21 0.17 0.05 0.09 0.1 0.04 0.03 0.12 0.14 0.05 
Saturation level 0.11 0.12 0.08 0.1 0.08 0.07 0.09 0.11 0.13 0.11 
Competitive condition 0.17 0.03 0.11 0.12 0.09 0.05 0.06 0.14 0.12 0.01 
Population structure 0.14 0.12 0.09 0.07 0.07 0.11 0.12 0.09 0.05 0.14 
Store characteristics 0.19 0.11 0.08 0.06 0.09 0.07 0.05 0.11 0.12 0.03 
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Fig. 1. Reconstructed Potential Store Locations – M arked with thumbtack icons 
 

 
 

Fig. 2.  Reconstructed Potential Store Locations – Potential  Location #1 - #5 (Lat – latitude; Lng 
– longitude) 
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Fig. 3.  Existing  facility locations with ADI indicators 
 

 
 

Fig. 4.  Potential facility locations with ADI indicators 
 

 
 

Fig. 5. Reconstructed surface of ADI indicators 
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4. CONCLUDING REMARKS AND 
FUTURE WORK 

 
The paper elaborates a facility location model 
based on utilization of distributed spatial data 
sources. It develops and tests a computational 
approach for potential store location data. This 
approach provides an end-to-end solution 
starting with data gathering until representation 
of the results. The proposed data retrieval 
architecture allows structuring the data retrieval 
process. However, it still requires involvement of 
a data retrieval expert and a decision maker 
cannot be completely relieved from data retrieval 
concerns. Given the special character of facility 
location, the graphical representation provides 
the decision maker with efficient depiction of 
modeling results.  
 

The implementation of the proposed algorithm 
shows that the method is reasonably accurate for 
the reconstruction of volatility of the store 
locations, which is useful both in the accurate 
user predictions as well as in the computing 
sensitivity. Much better results can be achieved if 
the model used to identify degree of importance 
appropriately describes dependencies in data. 
 

The algorithm provides satisfactory results 
compared to the optimal results though there are 
multiple ways to improve the algorithm. But, this 
work is by no means exhaustive of the method 
discussed here. One could do much more 
detailed work to improve data retrieval process 
consists of multiple interrelated steps since  there 
is a large number of standards and technologies 
used in distributed data processing and the 
effectiveness of the data retrieval process 
automation in general.  
 

The investigation shows that there are a multiple 
challenges to be considered for successful 
utilization of distributed spatial data. 
Cartographical resources enable representation 
of modeling results through a combination of 
data representation layers from multiple sources 
involving manual operations.  
 

Even though the experimental results show the 
advantage of the proposed algorithm for multi-
objective decision support system, the proposed 
facility location model can be expanded to 
include additional criteria subject suggested in 
literature.  
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