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Abstract

Jurcak et al. have reported that, in a sample of more than 100 umbral cores in sunspots, the umbral-penumbral
boundary (UPB) is characterized by a remarkably narrowly defined numerical value (1867 G) of the vertical
component of the magnetic field. Gough & Tayler, in their study of magnetoconvection, showed that the onset of
convection in the presence of a magnetic field is controlled by a parameter δ, which also depends on the vertical
component of the field. Combining the Jurcak et al. result with various empirical models of sunspots leads us to
propose the following hypothesis: the UPB occurs where the vertical field is strong enough to increase the effective
adiabatic temperature gradient by �100% over its non-magnetic value.
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1. Introduction

In 2011, Jurcak (2011) reported on a study of magnetic field
properties at a specific location in a small sample of sunspots.
The specific location to which Jurcak (2011, p. 2) paid attention
was the umbral-penumbral boundary (UPB). In that paper, he
commented that, to his knowledge, “no one (had) yet tried to
estimate the properties of the magnetic field right at the
penumbra boundaries” (our emphasis added). The boundary
that is of primary interest in the present Letter is the one where
the penumbra is in contact with the umbra, i.e., the UPB. (The
other boundary, between penumbra and photosphere, is not part
of our discussion.) Jurcak’s goal in 2011 (Jurcak 2011, p. 2)
was to observe the magnetic parameters at the UPB and to “find
out whether they are the same for sunspots of different sizes,
and if they are even constant along the boundaries in a given
sunspot.”

In a subsequent extended study of 79 different active
regions, Jurcak et al. (2018, p. 1) reported on their analysis of
full Stokes profiles of an Fe I line obtained by the Hinode
satellite between 2006 and 2015 for spots in which the umbral
areas were �10 Mm2. They discovered that at the UPB, “the
vertical component of the magnetic field strength [Bv] does not
depend on the umbra size, or on its morphology, or on the
phase of the solar cycle.” They found that the numerical value
of Bv at the UPB has a most probable value of 1867 G, with a
99% likelihood of lying in the range 1849–1895 G.

This is a remarkable discovery. Jurcak et al. (2018, p. 4)
noted that “it gives fundamental new insights into the magneto-
convective modes of energy transport in sunspots.”

Support for the discovery of Jurcak et al. (which was derived
on the basis of many different active regions) has been
provided by Schmassmann et al. (2018), who followed a single
stable spot as it crossed the disk. They found that, in the course
of 10 days of observing, the vertical component Bv of the
magnetic field at the UPB remained constant with an rms
deviation of less than 1%. To be sure, Schmassmann et al.
found that the numerical value of Bv(UPB) was 1693 G, which
is discrepant from the value reported by Jurcak et al. (2018, p.
7) by “some 175 G.” However, Jurcak et al. used the Hinode
SP instrument for their work, while Schmassmann et al. used
SDO/HMI. The two studies relied on different spectral lines,
different spectral resolutions, different stray light corrections,

etc. In view of this, Schmassmann et al. (2018, p. 7) attribute
the discrepancy between Bv(UPB)=1867 G (Jurcak et al.) and
Bv(UPB)=1693 G (Schmassmann et al.) to “differences in the
experimental setup and analysis methods.”
Our goal in the present Letter is to point out a connection

between this discovery and one particular model of
magnetoconvection.

2. The Gough–Tayler Criterion for Onset of
Magnetoconvection

Gough & Tayler (1966, hereafter GT) derived a criterion for
the onset of convective instability in an electrically conducting
gas that is permeated by a magnetic field. In order to set the
stage for a discussion of GT, we first consider the case of a
compressible medium that does not contain any magnetic field.

2.1. Onset of Convection in a Non-magnetic Medium

In a medium that does not contain magnetic fields, the well-
known Schwarzschild criterion is valid: convection sets in
when the temperature gradient is steeper than the adiabatic
gradient. Expressing the gradients in logarithmic terms, where

d T d pln ln º is the local temperature gradient with
respect to gas pressure p, the Schwarzschild criterion is
∇>∇ad. In a gas that is non-ionizing, ∇ad can be written as

1g g-( ) , where γ is the adiabatic exponent (e.g., Mul-
lan 2009; Equations(6)–(13)). In a monatomic gas, γ=5/3,
and therefore ∇ad=0.4.
How permissible is it for us to assume that the double

conditions of (i) non-ionizing and (ii) monatomic are applicable
to the gas in the photosphere of a sunspot? To answer this, we
first consider the conditions in the non-magnetized portions of
the quiet Sun.
(i) Non-ionizing. In the quiet Sun, the major constituents (H,

He) are only weakly ionized: at T=6000 K, the fraction of
ionized H is of order 1 part in 20,000 (e.g., Mullan 2009), and
He is even less ionized. In the umbra of a sunspot, where the
effective temperature is lower than photospheric, about 4160 K
(Bray & Loughhead 1964), the degrees of ionization of H and
He are even smaller. The only elements that will be ionized in a
sunspot photosphere will be elements with the lowest
ionization potentials, such as the alkali metals. These have
such small abundances in the Sun that we will make no
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significant error if we proceed as follows: the criterion of non-
ionizing gas is readily applicable to gas in the umbral
photosphere.

In what follows, we shall require that the motion of gas in a
sunspot be capable of being “interfered with” by magnetic
fields. To ensure that such “interference” can occur at all, the
gas in the sunspot cannot be absolutely electrically neutral: the
gas must be at least partially ionized. However, when we
consider in detail the physical processes that occur when
magnetic fields interfere with convective flow patterns, we shall
find that even in the presence of the small amount of partial
ionization that exists in the umbra of a sunspot, the interaction
between field and gas can be modeled with high confidence by
assuming that the gas is infinitely conducting. (For quantitative
details in support of this claim, the reader is referred to the
Appendix.) In view of this, we shall assume, without fear of
any significant errors in the present context, that the electrical
conductivity is infinite in the calculations to be reported below
(in Section 2.2).

(ii) Monatomic. As regards the requirement of “monatomic,”
we might need to be concerned if the temperature in the umbra
were to be low enough for abundant molecules to form. To
address this, we note that Vardya (1966) has analyzed the
equilibrium abundances of more than 100 molecular species,
atoms, as well as positive and negative ions, in the atmospheres
of K and M dwarfs. These stars have effective temperatures
ranging from 4410 K for K5 stars to 3920 K for M0 stars to
2660 K for M8 stars. The umbral effective temperature
mentioned above (4160 K) falls between the temperatures of
a K5 and an M0 dwarf in Vardya’s list. Therefore, if we
examine the molecular abundances in an M0 dwarf, we can get
an impression of what to expect as upper limits on molecular
abundances in the (slighter hotter) umbra of a sunspot. Vardya
finds that in an M0 star, the most abundant constituent in the
atmosphere is monatomic hydrogen. A molecular species (H2)
does not become the dominant constituent until we get to stars
as cool as M2, with effective temperatures of only 3500 K.
Therefore, in the umbra of a sunspot, Vardya’s results suggest
that we are safe in assuming that the gas is effectively
monatomic. This conclusion helps to strengthen the “non-
ionizing” condition mentioned in the preceding paragraph: if
molecules were to be present in abundance in the gas in the
umbral photosphere, we would have to incorporate the effects
of dissociation in the same way as those of ionization when
estimating the value of the adiabatic exponent γ.

In view of these considerations, we expect that we will not
make any significant error if we write the Schwarzschild
condition for the onset of non-magnetic convection in the gas
that exists in the photospheric layers of a sunspot umbra in the
following form: ∇>0.4. The numerical value of 0.4 on the
right-hand side of this inequality will be important in what
follows.

2.2. Onset of Convection in a Medium with a Magnetic Field

Now we turn to the case of a medium in which a magnetic
field is present, such as GT considered. In such a medium, if
the electrical conductivity is infinitely high, the field and the
gas become “frozen together” such that any attempt to force the
gas to move in some direction (e.g., by participating in the
overturning motions associated with convection) inevitably
leads to a forcing of the field to move as well. In response to
any imposed force (e.g., buoyancy), not only must the inertia of

the gas (with its finite energy density) be taken into account:
the energy density of the magnetic field will also contribute to
how the medium will react to the imposed force. As a result,
the onset of convection is likely to be impeded in some way by
the presence of the field. No longer does the Schwarzschild
criterion suffice to determine the onset of convection.
In order to quantify the criterion for the onset of convection

instability in a perfectly conducting gas in the presence of a
magnetic field, GT relied on an energy principle that was
originally developed by Bernstein et al. (1958) in the context of
laboratory plasmas. The approach is as follows: starting with an
initial configuration of magnetic field and gas, a small
perturbation is applied and the change ΔW in the total energy
of the system is computed. If it can be shown that, for all
permissible small perturbations, ΔW is a positive quantity, then
the configuration can be regarded as stable. But if there exists
even one example of permissible perturbations that leads to a
reduction in ΔW, then the configuration is unstable.
GT found that a condition that would ensure magneto-

convective stability could be written in the form

B

B p4
. 1v

v
ad

2

2 pg+
>  -  ( )

Here, γ, p,∇, and∇ad have the same meanings as above. (Note
that we have adjusted Equation(1.2) of GT by including a
factor of 4π in the denominator: the reason for this is that GT
used rationalized Gaussian units, whereas we use Gaussian cgs
units.)
We draw special attention to a quantity that did not appear at

all in the Schwarzschild criterion, but that appears in the GT
criterion: Bv. This is not the total magnetic field strength:
instead, it represents only one of the components of the vector
magnetic field, namely the vertical component of the field.
Using the above formula, we can re-write the GT result in
terms of a criterion for the onset of convective instability in the
presence of a magnetic field as follows:

2ad d >  + ( )

where B B p4v v
2 2d pg= +( ). In contrast to the Schwarzschild

criterion, which stated that convection would set in as soon as
∇ grows to a value that exceeds ∇ad, the GT criterion states
that, in the presence of a (vertical) magnetic field, convection
will not set in until ∇ exceeds the larger numerical value
∇ad+δ. Note that the larger the value of δ, the larger ∇ must
become in order for convection to set in; i.e., the steeper the
temperature gradient must become before convection can
occur. Thus, the larger that δ is, the greater the effect of the
magnetic field in inhibiting the onset of convection. In this
sense, δ can be regarded as a magnetic inhibition parameter.
The principal point of the present Letter is that the

component of the magnetic field that appears in the GT
criterion; i.e., Bv, is the same component that Jurcak et al. have
identified as playing a fundamental role at the UPB in sunspots.
This leads us to consider that it might be profitable to regard the
UPB as the site where local conditions ensure that the onset of
convection is required to satisfy not the Schwarzschild
criterion, but rather the more difficult criterion
described by GT.
On a practical note, no real star contains material with

infinite conductivity. Therefore, we need to ask: to what extent
can we apply the GT criterion (which was derived for the case
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of a medium with infinite electrical conductivity) to a medium
where the conductivity is finite? This issue is addressed in an
Appendix below. The conclusion is that in the context of
convective flows in the kinds of stars in which we are
interested, the presence of finite conductivity does not have any
significant effect on our conclusions.

2.3. Numerical Considerations

Recalling the discussion in Section 2.1, it is worthwhile to
write the GT criterion for magneto-convective onset as
∇>0.4+δ. In this form, we see that if it can be shown
that there are astrophysical cases where δ is small compared to
0.4, we expect that such cases should have convective
properties that are only slightly different from those of non-
magnetic convection. But if, on the other hand, we can identify
cases in which δ approaches, or even exceeds, a numerical
value of 0.4, then we expect the convective properties in such
cases should deviate significantly from those of non-magnetic
convection. In the next section, we turn to examples in which
the value of δ has been found to be small compared to 0.4. In
Section 4, we shall turn to the opposite limit, when δ can
definitely not be considered to be small compared to 0.4.

3. Magneto-convective Modeling Efforts in Stars: “Small”
Changes in the Threshold for Convective Onset

In 2000, Leggett et al. reported on measurements of infrared
fluxes from cool dwarfs that allowed bolometric luminosities to
be determined with higher precision then before. For the first
time, the numerical values of stellar radii could then be
obtained for a sample of several dozen M dwarfs with errors of
no more than 10%–15%. When the data were compared with
stellar models, these error bars were good enough to suggest
the following conclusion: active M dwarfs have radii that are
systematically too large (compared to models) for their
effective temperatures (Mullan & MacDonald 2001,
hereafter MM01). Because active M dwarfs are known to be
magnetic, the anomalously large radii led MM01 to explore the
possibility that magnetism might alter the onset of convection
sufficiently to cause global structural changes to stellar models.
With that in mind, MM01 calculated stellar models in which
the GT criterion was applied to the onset of magnetoconvec-
tion. The resulting models, though exploratory in nature, were
indeed found to have larger radii (for a given stellar mass) than
non-magnetic models would predict.

The greatest uncertainty in applying the GT criterion to a star
in 2001 was (and still is) our lack of information about the
radial profile of the inhibition parameter δ. The place where it is
easiest to evaluate δ is in the photosphere of a star, where gas
pressure and surface field strength can in principle be
measured. But how are we to proceed at greater depths below
the surface? Following Ventura et al. (1998), the simplest
approach would be, once the surface value of δ has been
decided upon, to set δ equal to the same constant value at all
radii. Other profiles of δ(r) can also be explored, but MM01
found that the overall results did not differ greatly between the
various choices for the δ(r) profile. Models of stars with masses
ranging from 0.375 Me down to 0.1 Me were explored in
which δ was assigned values ranging from 0.005 to 0.07. Those
ranges of δ were selected with a specific question in mind: can
convection be suppressed by magnetic fields in the core of a
low-mass star? In the years since MM01 appeared, this

question has been recognized as inappropriate for cool dwarfs:
the required magnetic fields would be much too strong to be
generated by stellar dynamos (e.g., MacDonald & Mullan 2012,
hereafter MM12). This realization led MM12 to compute a
model that, abandoning the δ(r)=constant profile, instead
imposed a “ceiling” value of 106 G on the field strength. Such a
ceiling ensures that the value of δ(r)→0 as we approach the
center of the star. Subsequently, the MM12 choice of “ceiling”
field was shown (Browning et al. 2016) to be the strongest field
that could plausibly survive a number of instabilities in a low-
mass star in the course of evolutionary times.
The goal of our magneto-convective models has been to

replicate observed radii and luminosities in low-mass stars with
known ages. In the presence of a “ceiling” on the field in the
deep interior, successful fitting of empirical radii requires us to
assign increasing values of δ at the surface of the star as the
value of the ceiling field decreases. As a result, the largest
values of δ that have been found to be necessary to replicate the
empirical stellar radii and luminosities have emerged from
models in which the “ceiling” field was limited to a very low
value. What might the lowest value of the “ceiling” field be in
stars? Various 3D modeling efforts in dynamo field generation
suggest that low-mass stars can readily generate fields of
10–20 kG; see MacDonald & Mullan (2017, hereafter MM17)
for a summary of those dynamo models. In view of the dynamo
results, MM17 selected 10 kG as the “ceiling” field, and then
obtained models to fit the empirical data on a sample of 14 stars
with well-defined ages. MM17 found values of δ as follows.
The two lowest-mass stars, with masses of 0.22 Me, required
δ=0.013–0.051 and 0.038±0.015. The two highest-mass
stars (M=0.852, 0.862Me) required δ=0.03–0.05. The
smallest values of δ (0.018–0.033) were found in a star with
mass 0.23Me, while the largest values of δ occurred in a fast-
rotating binary (CM Dra) in which the components were
required to lie in the rather wide range δ=0.03–0.11.
Among the MM17 sample of 14 stars with well-defined

ages, the mean value of δ determined by MM17 ranges from
0.010 to 0.095, with a median value of 0.043. In view of the
fact that these results were obtained with a ceiling field of only
10 kG (likely to be actually weaker than the fields that exist
inside a low-mass star), the δ values described above should be
regarded as upper limits: if we were to allow the “ceiling” field
to be stronger than 10 kG, then we would expect to find even
smaller values of δ in the best-fit solutions.
In summary, the stellar models described in this section are

found to provide fits to the empirical radii and luminosities
using values of δ that have median values of 0.043 or smaller.
Should this result be considered as a “large” value of δ, or as

a “small” value of δ? To answer this, we must compare the
value of δ with the threshold ∇=∇ad=0.4 for the onset of
non-magnetic convection. We see that, in the stars that have
been modeled by MM17, convection sets in when the
temperature gradient is larger than the non-magnetic threshold
by an amount that is on average no more than 10%. In this
sense, the magneto-convective solutions obtained in MM17 can
be regarded as relatively small (typically <10%) perturbations
on the solutions that would be obtained in the non-magnetic
limit. The smallness of the changes relative to non-magnetic
models can be appreciated from the differences between the
stellar radii that they predict and the radii predicted by non-
magnetic models. These differences amounted to 10%–15%
(with large error bars) for the earliest data (Leggett et al. 2000),
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but in subsequent data, the changes were found to be only a few
percent. From a historical perspective, it was not until the
precision of the empirical determinations of the masses and
radii became as good as a few percent that computation of
magneto-convective models really became worth the effort. As
Torres et al. (2010, p. 69) have stated: “Only data with errors
(in the mass) below ∼1%–3% provide sufficiently strong
constraints that models with inadequate physics can be
rejected.”

In the context of the discussion on Section 2.3 above, we
expect that, as long as δ has numerical values that are no more
than 10% of ∇ad, then the changes that will be produced in the
observable physical quantities such as luminosity and radius
(relative to non-magnetic solutions) will remain “small,” i.e.,
10% or less.

As a caveat in the above discussion, we recognize that
although the numerical value ∇ad=0.4 is valid for the objects
of primary concern in this Letter (i.e., the umbrae of sunspots,
where gas temperatures are of order 4000 K), this is not
necessarily true for some of the objects that have been
subjected to magneto-convective modeling by MM17.
In MM17, all but one of the target stars have spectral types
which are M2 or later. According to Vardya (1966), in such
stars, H2 molecules may be the dominant constituent of the
atmosphere. In the coolest stars (T<3000 K, i.e., too cool for
H2 dissociation), the availability of rotational degrees of
freedom will reduce γ from 5/3 toward a value of 7/5,
leading to ∇ad≈0.3. In stars that are hot enough to dissociate
H2, the extra degrees of freedom will reduce γ further, leading
to ∇ad even smaller than 0.3. How small might ∇ad become in
such environments? Only a detailed model would provide a
reliable answer. However, if we examine an analogous case (
i.e., ionization of H atoms) in a model of the solar envelope that
lists the relevant information (Baker & Temesvary 1966), we
find that ∇ad has a minimum value of 0.12. If this were to be a
reliable value of the minimum ∇ad in the MM17 stars, then our
median value of δ=0.043 would require that for convection to
set in, the temperature gradient would have to be 35% larger
than in the non-magnetic case. This could probably not be
classified formally as a “small” perturbation. But a factor of
35% still lies well below the case that occurs in the umbra of a
sunspot. In the latter case, we shall find (Section 4) that in order
for convection to set in in the presence of the fields that exist at
the UPB, the temperature gradient must exceed the non-
magnetic gradient by a factor of 100% or more.

4. Magnetoconvection in Sunspots: “Large” Changes in the
Threshold for Convective Onset

The work of Jurcak et al. (2018), with its well-defined value
of Bv=1867 G at the UPB, suggests that it might be
informative to consider this field in the context of the magnetic
inhibition parameter δ. To do this, we need to know the gas
pressure p at some reference level: for the sake of definiteness,
we choose the reference level at the location where the
continuum optical depth τ has a value of unity (see Table 1).
An anonymous referee has pointed out that Jurcak et al. (2018)
undertook their measurements of Bv(UPB) using the Fe I
6302Å line that corresponds in a continuum optical depth τ
lying between 0.1 and 0.01. As a result, strictly speaking, the
magnetic information provided by the Fe I line does not refer to
the same level in the atmosphere as the pressures (at τ=1)
given in Table 1. For example, referring to the models of
Maltby et al. (1986), the gas pressure at τ=0.1 is lower by a
factor of order 3 compared to the pressure at τ=1. In
principle, we anticipate that if we were to use the (smaller) gas
pressures at the level in the atmosphere to which Bv(UPB)
actually refers, i.e., τ≈0.1, then the numerical value of the
magnetic inhibition parameter δ∼1/p would become larger
than the values listed in Table 1, perhaps by as much as a factor
of 3.
In a survey of the literature, we have identified 13 sunspot

models that provide us with numerical values of p(τ=1). For
each model, we have combined the p(τ=1) value with the
Jurcak et al. (2018) value of Bv=1867 G to obtain a value for
δ(τ=1). Results are listed in Table 1. (With regard to the
sunspot models, we recognize that inside an umbra, the
magnetic field strength may well vary as we move from radial
locations at the center of the umbra to radial locations close to
the UPB; e.g., Broxon 1942. These variations in field strength
could be accompanied by gas pressure variations as we move
from umbral center to UPB. We assume that the models listed
in Table 1 are providing gas pressures which are in some sense
a physically meaningful average value that is representative of
the conditions in the gas at τ=1.)
The models in Table 1 were derived by a variety of

techniques. Some used observations of lines, some used the
continuum. The models based on lines used a curve of growth
technique in the earliest models, but switched to inversion of
Stokes parameters data in more recent work. The models that
were derived from continuum data span a range of wavelengths
that is broad enough to include the minimum in H-minus

Table 1
Models of Sunspot Umbrae

Reference for Model p(τ=1) (dyn cm−2) δ(τ=1) Notes

Michard (1953) 3.55×104 0.824 0.3–2.3 μm contin.
Mattig (1958) 2.63×105 0.388 Curve of growth
Fricke & Elsässer (1965) 6.31×104 0.725 Curve of growth
Yun (1971) 2.82×105 0.371 Contin.
Moe & Maltby (1974) Model B 3.02×105 0.355 0.4–1.7 μm contin.
Moe & Maltby (1974) Model D 3.98×105 0.295 ”

Maltby et al. (1986) Model L 2.37×105 0.413 0.5–2.5 μm contin.
Maltby et al. (1986) Model E 3.06×105 0.352 ”

Maltby et al. (1986) Model M 2.68×105 0.383 ”

Collados et al. (1994) warm 1.85×105 0.474 Fe I line profiles
Collados et al. (1994) cool 3.06×105 0.352 ”

Socas-Navarro (2007) Model A 1.74×105 0.489 Ca II + Fe I line profiles
Socas-Navarro (2007) Model B 1.59×105 0.511 ”
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absorption (at 1.6 μm). In general, the (7) continuum models
are expected to probe conditions relatively deep in the spot,
whereas the (6) line-based models would have probed
conditions somewhat higher in the atmosphere.

Of course, the investigators who obtained the models listed
in Table 1 were in no cases aware of the result of Jurcak et al.
(2018) regarding the existence of a unique value of Bv at the
UPB. Therefore, although the results of GT were already in the
literature when 10 of the above models were being developed,
it would have been unlikely that a calculation of the GT
inhibition parameter δ would have been undertaken.

But now, with access to information about the very
component of the field that enters into the GT formula for δ,
the models can be used to evaluate δ(τ=1) in each case.
When we average the values of δ(τ=1) in Table 1 for the
continuum-based models, we find 1 0.43d tá = ñ =( ) . Repeat-
ing the calculation for the line-based models, we find

1 0.49d tá = ñ =( ) . Averaging all 13 models, we find
1 0.46d tá = ñ =( ) . If we include the three-fold correction

mentioned above to allow for the reduced gas pressure at
τ=0.1, we would find 1.38dá ñ » .

In the context of the discussion on Section 2.3 above, we
now revisit the question: are the values of δ to be considered
“small” or “large”? Once again, it is necessary to compare the δ
values with the critical value (∇ad) of the adiabatic temperature
gradient in a non-magnetic medium. Whereas in global stellar
models, we found that the value of δ was small (<10%)
compared to the critical ∇ad=0.4, this is no longer true in the
case of the UPB in a sunspot. The results of Jurcak et al.
(2018), in combination with Equation (2) above, make it clear
that the temperature gradient required for convection to set in at
the UPB is

0.4 0.46. 3ad d >  + = + ( )

Therefore, the sunspot models in Table 1 indicate that the onset
of convection at the UPB requires the temperature gradient to
exceed the adiabatic gradient by a factor that is by no means
“small.” Instead, as is obvious from Equation (3), the
superadiabaticity (i.e., the excess of the temperature gradient
above ∇ad) at the UPB must be at least 100%. And if we were
to include formally the effects of ionization that occur even in
sunspots among some of the low-abundance “metals,” the
value of ∇ad would be reduced somewhat below 0.4. In that
case, our “GT correction” of 0.46 would represent an increase
in the requisite temperature gradient that could be well in
excess of 100%. Moreover, if we were also to allow for the
reduction in gas pressure between the levels in the atmosphere
where τ=1 and τ=0.1 (see the first paragraph at the start of
Section 4), such a reduction in pressure would lead to a
superadiabaticity (i.e., a value of δ) that could be as large as
1.38 in Equation (3). This would lead to the conclusion that the
excess of the temperature gradient above ∇ad at the UPB must
be well in excess of 100%.

Such gross departures from the non-magnetic criterion for
convective onset in an umbra suggest that gross departures
from the non-magnetic photon flux should arise. In fact, the
empirical effective temperature of an umbra is in one case
(Bray & Loughhead 1964; p. 114) listed as 4480 K. Comparing
this with the effective temperature of the quiet Sun (5740 K),
we find that the bolometric flux emerging from the quiet Sun is
greater than that from the umbra by a factor of 2.7. That is, the

quiet Sun emits 170% more flux than the umbra. Clearly, with
an amplitude of 170% for the difference, we are not dealing
here with “small perturbations” to the energy flux. The
observational effects that arise from the presence of the
magnetic field in sunspots are quite different from the “small
perturbations” that have been observed in the equivalent
physical parameters in stars (as described in Section 3).
We note that, in the GT model, the approach to convective

transfer is essentially 1D, such as that which occurs when we
model a spherically symmetric star. However, shortly after the
paper by Jurcak et al. (2018) appeared, 3D models of
convection in stars of various spectral types were reported by
Salhab et al. (2018), for both magnetic and non-magnetic
conditions. The results (which can be seen in Figure 10 of
Salhab et al.) are of particular interest in the context of the
present Letter: they show numerical values for the super-
adiabaticity as a function of optical depth. For a 3D solar
model, Salhab et al. found that the magnitude of the
superadiabaticity rises to a maximum value of about 1.3, even
in the non-magnetic model. For the magnetic model, the
maximum superadiabaticity is found to be larger than in the
non-magnetic model, but only by a slight amount. Because the
models of Salhab et al. refer to entire stars, we believe that it is
more meaningful in general to consider their models as
comparable to our magnetic stellar models (described in
Section 3 above), where magnetic effects lead to only “small”
perturbations of global structure compared to non-magnetic
models. However, in the context of the present Letter, a point
of primary interest of the results of Salhab et al. is that they
found a superadiabaticity (related to our δ values; see
Equation (2) above) that can be as large as 1.3 in a 3D model
of the Sun. In view of this, the values of δ that we have
estimated at the UPB (namely, at least 0.46, and possibly even
as large as 1.38) cannot be dismissed as unreasonable for a
localized strongly magnetic structure in the Sun’s convec-
tion zone.

5. Conclusion

The discovery by Jurcak et al. (2018), that the UPB in a
sample of order 100 sunspots is defined by a narrowly
constrained value of 1867±18 G for Bv, the vertical
component of the field, is remarkable. (Support for the
conclusion of Jurcak et al. was subsequently provided by
Schmassmann et al. 2018 in an independent study of a single
sunspot.) There is no indication that the non-vertical compo-
nents of the field, or the total field strength, are limited to such
narrow windows. Why should the vertical component of the
field be the only component to be constrained to lie within such
a narrow window?
In this Letter, we suggest that a possible reason for this

behavior can be found in one particular version of the criterion
for the onset of convection in the presence of a magnetic field.
Gough & Tayler (1966; GT) derived such a criterion and found
that convection will set in only when the (logarithmic)
temperature gradient ∇ exceeds a limit that is no longer equal
to the simple Schwarzschild value (∇ad). Instead, the GT
criterion for the onset of convection is found to be
∇>∇ad+δ. In this new expression, δ is a positive definite
quantity that depends on two physical parameters: the gas
pressure, and (notably) the vertical component of the
magnetic field.
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We suggest that the appearance of the vertical component of
the field strength as an essential term in the GT criterion can
explain why Jurcak et al. (2018) identified an essentially unique
value for Bv at the location where the pronounced dimming
associated with the umbra occurs.

Quantitatively, the values of δ that have been derived from
fitting global physical parameters of low-mass stars (see
Section 3) are found to be no more than a few percent of ∇ad.
With such small values, the corresponding magnetic fields do
not alter greatly the Schwarzschild criterion for the onset of
convection. As a result, magnetic effects give rise to only
relatively minor perturbations (a few percent) to the radii and
luminosities of low-mass stars. In fact, non-standard physics
(such as magnetic effects) could not even begin to be identified
confidently in low-mass stars until the measurements of masses
and radii had improved to the point where the errors were
reduced to better than a few percent (Torres et al. 2010).

On the other hand, now that Jurcak et al. have provided
reliable measurements of Bv at the UPB, we can establish that
the values of δ at the UBP are not at all small relative to ∇ad.
Quite the contrary: at the τ=1 level in an umbra, we find that
the value of δ is of order 100% or more of ∇ad. Therefore, if
convection is to set in in such conditions, it is not sufficient for
∇ merely to exceed ∇ad: instead, ∇ is now forced to exceed a
value that is the sum of ∇ad plus another term that is at least as
large as 100% of ∇ad. Thus, onset of convection in this case
requires conditions that are grossly different from the non-
magnetic case. In such conditions, it would be unreasonable to
expect that only small (few percent) variations should occur in
the luminosity. On the contrary, variations in energy flux of
order 100% are expected to occur. We suggest that these large
variations contribute to the significant dimming of a sunspot
umbra relative to the photosphere.

The major focus of the present Letter is on the effects of a
vertical magnetic field in a sunspot umbra: the major effect is
that the temperature gradient must be larger in the magnetic
field in order to drive umbral convection. However, the data of
Jurcak et al. (2018) and those of Schmassmann et al. (2018)
have to do with the field at the boundary between umbra and
penumbra. Up to this point, we have focused on convection just
inside the UPB, i.e., in the umbra. But this raises a question:
can we say anything about convective properties just outside
the UPB, i.e., in the penumbra? Interestingly, Borrero et al.
(2017) found that below the visible surface of the penumbra,
the temperature gradient is actually smaller than in the quiet
Sun, i.e., precisely the opposite to the conditions in the umbra.
Why should there be such a dramatic difference between
umbral convection and penumbral convection? Chandrasekhar
(1961, p. 189) offered some guidance in this regard: in Section
47 of his book, he considers the case where gravity and field
lines are inclined at an angle θ relative to each other. In this
case, convection sets in as longitudinal rolls, rather than in the
cellular pattern that occurs when θ=0. (The alternating dark
and bright filaments that are seen in penumbrae may be
evidence of complicated convective flows: e.g., Weiss et al.
2004.) Chandrasekhar regarded it as a “paradox” that when the
field is inclined “only very slightly to the vertical,” his analysis
of convective stability indicates that the convection pattern
switches discontinuously from cells to rolls. To resolve the
paradox, he discusses how the critical Rayleigh numbers for the
onset of different convective patterns behave differently as θ
varies and approaches zero. In view of the complex issues that

are discussed by Chandrasekhar, it is beyond the scope of the
present Letter to deal adequately with the onset of convection
in the penumbra.

We thank an anonymous referee for pointing out relevant
papers in the literature.

Appendix
Effects of Finite Conductivity

The GT approach relies formally on the assumption that the
gas in question is infinitely conducting. However, in a real star,
the gas does not have infinite conductivity. At first sight, this
suggests that we could be in error if we were to apply the GT
model to a real star. But when we examine the conditions in a
real star quantitatively, we find that this is not a major difficulty
in the context of the physics of convection. In fact, we claim
that a convecting medium with finite conductivity can behave
in a way that differs so slightly from the behavior of a medium
with infinite conductivity that the error we would make turns
out to be small (of order 1%).
To justify this claim, we first note that, in the presence of

finite conductivity, the magnetic field and the gas are formally
no longer “frozen together;” instead, the field can drift relative
to the parcel of gas in which it was contained at time t=0.
This leads to a finite spatial separation Lss of field from its
initial parcel of gas in the course of a certain time. We now
need to ask: how much spatial separation Lss can occur during a
time interval Tc that has some relevance for the process of
thermal convection? The answer to this question depends on a
characteristic exponential decay timescale td for magnetic fields
in a medium where the electrical resistivity η is non-zero
(Spitzer 1962, Equations(2)–(38)): td≈4πLss

2 /η if η is
expressed in electromagnetic units. If the electrical conductivity
σ=1/η is expressed in electrostatic units (esu), we find
Lss=c√(Tc/4πσ), where c is the speed of light.
The question then becomes the following: how do typical

values of Lss in the Sun compare with a characteristic length
scale Lc of the convective flows that exist in the Sun’s
photospheric gas?
To evaluate the quantities Tc and Lc we turn to observations.

Because convection in a star is highly turbulent, the convective
flows occurs in individual eddies (“granules”) that survive only
for a finite time: in the Sun, this time is observed to be of order
5–10 minutes (Title et al. 1989). After that time, the eddy loses
its identity, dissolves back into the turbulent medium, and
eventually becomes part of a new eddy. Thus, a relevant
timescale Tc for convection is 300–600 s. The electrical
conductivity in the partially ionized gas that exists in the
photospheric region of a sunspot umbra has been calculated
(Bray & Loughhead 1964, p. 125) to be σ=1011 esu. Inserting
c=3×1010 cm s−1, we can now evaluate the quantity Lss in
the umbral photosphere: we find Lss≈5–7 km. That is, in the
course of one granule lifetime, the magnetic field can spatially
separate from its original gas parcel to an extent of less than
10 km.
How does this spatial separation compare with the size of a

convection cell? From their observations of granule sizes in the
Sun, Title et al. (1989, p. 489) reported that “it is fair to say that
that there is a characteristic granule (angular) size in the
vicinity of 1.2–1.4 arcsec.” This angular scale corresponds to a
linear size of Lc≈900–1000 km. These are the horizontal
dimensions that are typical of granules in the solar photosphere.
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Compared to these dimensions, the spatial separation of field
and gas during a granule lifetime amounts to less than 1%.

In view of this small percentage, we see that as far as
magnetic interference with granule flows is concerned, the gas
in the photosphere of a sunspot behaves in essentially the same
way as if it had infinite conductivity. Thus, the approach used
by Gough & Tayler (1966) for quantifying the onset of
convection in a magnetic field can be applied without
significant error to the photospheric gas in a sunspot umbra.
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