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Abstract
In this study, the applicability of a multiple regression equation to predict breeding values based
on the high-density SNP (single nucleotide polymorphism) markers that are found in the whole
genome sequences of animals and plants was evaluated. The genotypes of a large number of
SNPs distributed on chromosomes were treated as functional data and phenotypic values of a trait
were treated as scalar target variables in the functional data multiple regression equations. The
functional data analysis R package (“fda”, version 2.4.0) was used to create the functional data
multiple linear regression equations. An outline of this procedure is presented in this paper. We
evaluated the accuracy of the functional data multiple regression equations by predicting breeding
values using simulated data sets of SNPs as predictors and phenotypic values of a trait as variables.
We found that the regression equations predicted the breeding values with considerable accuracy
even though the predictors were not selected, nor were prior distributions assumed.
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1 Introduction

Methods and instruments for analysis of DNA (deoxyribonucleic acid) sequence data have progressed
rapidly, and enormous amounts of genomic information for many species, including humans, have
accumulated as a result [1]. Genomic information of crop plants such as rice and wheat and of
livestock such as cow and pig has also become available. Among the genomic information, mutations
in the DNA sequences, which characterize individuals, breeds of livestock, and varieties and inbred
lines of crop plants are called DNA markers. SNPs (single nucleotide polymorphisms) are DNA
markers that are densely distributed in genomes. The many thousands of SNPs can be used
to study generic variations in whole genomes. SNPs have been used to predict genetic abilities
that determine, for example, quantities of agricultural products such as yield amounts and meat
productivities. Such predictions have contributed to the establishment a new efficient breeding method
called genomic selection for selecting individuals and breed varieties with beneficial properties [2].

The value of an individual plant or an animal as a genetic parent is called its breeding value.
The accurate prediction of breeding values of individuals or breeds using large SNP genotype data
sets plays an important role in genomic selection. In general, two different alleles exist at a SNP
locus. Combinations of these two alleles give three types of SNP genotypes: homozygous with one
of the allele, homozygous with the other allele, and heterozygous. For instance, when the two alleles
are A (adenine) and T (thymine), the three possible SNP genotypes are AA, AT, and TT. These SNP
genotypes are coded as 1 and -1 for two homozygous and 0 for heterozygous to be used as predictors
in prediction models.

Although our goal is the prediction of breeding values, the target variable of the prediction model
is the phenotypic value of a trait. While the numbers of SNPs in a genome ranges from a few
thousands to a few hundreds of thousands, the numbers of phenotypes of individuals or breeds
usually ranges from several dozens to a few thousands; therefore, we have to create prediction
models when the number of predictors (SNPs) is much larger than the number of variables (pheno-
types). A variety of methods have been employed to create breeding value prediction models: linear
regressions using regularization methods such as LASSO, ridge regression, and Bayesian methods;
and prediction models using machine learning techniques such as kernel regression [3-8]. All these
techniques are dimension reduction methods that use selection of predictors or shrinkage regression
methods. However, because SNPs are arranged densely on a chromosome, neighboring SNPs are
highly correlated because of linkage disequilibrium. If a chromosome is regarded as a time sequence,
the genotypes of a large number of SNPs can be treated as functional data that represent variation in
time. Because the numbers of available SNPs are likely to increase in the near future, SNPs arranged
on a chromosome are expected to be considered a continuous variable. Therefore, the possibility
of treating SNPs as functional data in breeding value prediction models should be considered. In
this paper, we investigate the application of functional data analysis for developing breeding value
prediction models aimed at genomic selection.

In a regression equation of breeding value prediction models, we treat SNP data as predictors
(functional data) and the numerical values as the target variable (scalar). In this form, the regression
equation is the basic regression equation that has been used widely in functional data analysis [9,10],
section 5 of [11,12].

The functional data analysis R package (“fda”, version 2.4.0)[13] is a publicly available tool for
implementing functional data analysis using the R language. This package allows diverse regressions
using functional data analysis and related statistical computation to be carried out efficiently and in a
sophisticated manner. A user manual for the package “fda” (version 2.4.0) tool is freely available [13].

The simplest regression equation in which predictors are functional data and the target variable is
scalar is a regression equation with one functional data set as a predictor ({xi(t)}(1 ≤ i ≤ n) (n is the
number of items in the data set) and one target variable data set ({yi}(1 ≤ i ≤ n)). The relationship
between the predictor and the target variable is represented as has been described previously (e.g.,
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see page 261 in [10] and page 133 in [12])

yi = α0 +

∫ tmax

tmin

xi(t)β(t)dt+ ϵi, (1.1)

where α0 is a constant, and tmin and tmax are the minimum and maximum of the range of t; t is
the argument of {xi(t)}. β(t) plays the same role as the regression coefficients in a usual regression
equation. {ϵi}(1 ≤ i ≤ n) defines the residuals. When both xi(t) and β(t) are scalars, this regression
is equivalent to a simple regression. Hence, this regression is regarded as an extension of a simple
regression using functional data as predictors.

Therefore, generalization of Eq.(1.1) yields a multiple linear regression equation with K predictors.
That is,

yi = α0 +
K∑

k=1

∫ tmax
k

tmin
k

xik(t)βk(t)dt+ ϵi, (1.2)

where the predictors are functions ({xik(t)}(1 ≤ i ≤ n, 1 ≤ k ≤ K)), and the target variable is a
scalar ({yi}(1 ≤ i ≤ n)). βk(t) corresponds to the regression coefficient of the k-th predictor in a
usual multiple linear regression. α0 is a constant, tmin

k and tmax
k are the minimum and maximum of

the range of t, and the argument of {xik(t)}; {xik(t)} corresponds to the k-th predictors in a usual
multiple regression. {ϵi}(1 ≤ i ≤ n) indicates residuals.

The functional data multiple linear regression equation is also considered a generalization of an
additive model, which becomes obvious when {xik(t)} in Eq.(1.2) is written as

xik(t) = δ(t− τik), (1.3)

where δ(·) is a delta function. This setting transforms Eq.(1.2) to

yi = α0 +

K∑
k=1

∫ tmax
k

tmin
k

δ(t− τik)βk(t)dt+ ϵi

= α0 +

K∑
k=1

βk(τik) + ϵi. (1.4)

This equation describes an additive model in which {τik} plays the role of predictors of data. Therefore,
the additive model can be regarded as a special case of the functional data multiple regression
equation.

Package “fda” can be used to produce a regression equation in the form of Eq.(1.2) in a simple
way. However, in their paper Ramsay et al.[12] focused almost exclusively on a regression equation
with one predictor and {xi(t)} that were assumed to be a periodic functions. Moreover, the equations
behind the commands in package “fda” were not explained in detail. Here, we first explain the
procedures for creating regression equations in the form of Eq.(1.2) and give a general outline of
the calculations in these processes using simple examples with two predictors and the nonperiodic
function {xi(t)}. We also describe a process to produce the regression equation in the form of
Eq.(1.2) using this example and discuss the results of the prediction accuracy evaluation.

2 Carrying Out Smoothing Splines
To construct a regression equation in the form of Eq.(1.2), we created functions ({xik(t)}(1 ≤ i ≤
n, 1 ≤ k ≤ K)) that constitute predictors of the data. All the values of {xik(t)} for continuous t
cannot be obtained in usual experiments or censuses; instead, values of {Xik(tijk)} for discrete t
are available. Hence, we assume that {Xik(tijk)} are given for {tijk} (1 ≤ j ≤ m(i, k), ti1k < ti2k <
. . . < ti,m(i,k),k).
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To derive {xik(t)} using {Xik(tijk)}, we used the smoothing spline technique (e.g., as described
in [14]). That is, we obtained {xik(t)} that minimize Eik as follows:

Eik =

m(i,k)∑
j=1

(
Xik(tijk)− xik(tijk)

)2

+ λ

∫ xn

x1

(
d2xik(t)

dt2

)2

dt, (2.1)

where λ is a positive constant called the smoothing parameter. λ was optimized using GCV (generalized
cross-validation) [15].

Next, the following equation was used to define xik(t).

xik(t) =

b(i,k)∑
p=1

cikpϕikp(t), (2.2)

where {ϕikp(t)} are cubic B-spline bases (hereafter referred to as B-spline base). {cikp} are coefficients
of B-spline bases and b(i, k) is the number of bases. The functions described above are termed
spline functions. If a specific positive value is given as λ in Eq.(2.1) and Eik is minimized, {cikp} are
obtained, which gives xik(t).

For a simple example with a setting of i = 1 and k = 1, Eq.(2.2) was transformed into

x11(t) =

b(1,1)∑
p=1

c11pϕ11p(t). (2.3)

By abbreviating the suffixes of i and k, we have

x(t) =

b(1,1)∑
p=1

cpϕp(t). (2.4)

Furthermore, we assumed {tj} = {−1.5,−0.5, 1.6, 2.3, 4, 5.1, 6, 7.1} and {X11(tj)} = {−3.3,−2.5,
1, 4.9, 5.9, 6.6, 6.2, 7.9}. m = 7 was set as an example. In R language, {tj} is represented as t1 and
{X11(tj)} is represented as x1. x(t) (Eq.(2.4)) given by Eq.(2.1) and GCV are obtained by the R
command as:

xbas1 <- create.bspline.basis(c(-2 ,8), nbasis = 7)

xsb1 <- smooth.basis(t1, x1, xbas1)

xfd1 <- xsb1$fd

et1 <- seq(from = -2, to = 8, length = 100)

ex1 <- eval.fd(et1, xfd1)

Here, create.bspline.basis(c(-2 ,8), nbasis = 7) constructs seven B-spline bases in the range
−2 to 8. Because the positions of knots were not specified here, equi-spaced knots were set. et1

contains 100 equi-spaced values in this range. Then, eval.fd() yields values of x̂(t) (the function
given by optimizing x(t)) at et1. The data points given by t1 and x1 together with those given by ex1

are plotted in Fig.1 (left). ex1 contains the values of the curve that were obtained by setting Eq.(2.2)
and minimizing Eq.(2.1); these values correspond to et1. λ was optimized using GCV . It is clear
from the plot, that moderate smoothing of the data points led to x̂(t). The above description is an
outline of deriving x̂(t) using smoothing splines.

Furthermore, the xfd1 obtained here is a “functional data object” (as defined on page 245 in [13])
that stores the results of smoothing the data, which consist of t1 and x1. The contents of xfd1 is
shown by executing the R command:

plot(xfd1, ylim = c(-5.5, 9.5), xlab = expression(t[1]),

ylab = expression(x[1]), mgp = c(1.9, 1, 0))
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Figure 1: Optimized x(t) (i.e. x̂(t)). Data points given by {tj} and {X11(tj)} (⃝).
x̂(t) was given by Eq.(2.1) and GCV (solid line) (left). Optimized x(t) (i.e. x̂(t))
given by another R command. x̂(t) was given by xfd1. Equi-spaced knots were set
(right).

This R command was used to draw Fig.1 (right). The two curves (Fig.1) are identical.
To articulate clearly the functions that constructed the (x̂(t)) curves shown in Fig.1, second order

derivatives of the curves were calculated as:

dex1 <- eval.fd(et1, xfd1, Lfdobj = 2)

The dex1 value yielded by this R command are second order derivatives of x̂(t) at et1. Lfdobj = 2

specifies that second order derivatives are to be estimated. dex1 is illustrated in the left panel in
Fig.2, which indicates that x̂(t) consists of four regions given by five points ({−2, 0.5, 3, 5.5, 8}) and
that the functions in the respective regions are cubic. Moreover, x̂(t) and its second order derivative
are continuous at boundary points of the four regions. The points at {−2, 0.5, 3, 5.5, 8} are called
knots. The knots at both ends are termed quadruple knots because, to construct B-spline bases, four
knots are overlapped at these points . Here, the number of bases is set at seven; hence, the number
of knots is five if each quadruple knot is considered one knot. (The number of bases subtracted by 2
equals the number of knots. This rule holds for any number of bases.)

The following R command was used to draw the seven B-spline bases used here.

plot(xbas1, col = 1, xlab = expression(t[1]), ylab = expression(x[1]),

mgp=c(1.9, 1, 0))

The behaviors of the seven B-spline bases is shown in right panel in Fig.2.

3 Producing a Functional Data Multiple Regression
Equation

Using x̂(t), which was obtained as {xik(t)} in Eq.(1.2), as described in Section 2, a functional data
multiple regression equation in the form of Eq.(1.2) is produced. Here, simple simulation data are
used to illustrate the procedures.
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Figure 2: Second order derivatives of x̂(t) from Fig.1. Seven B-spline bases are
given by five knots placed at {−2, 0.5, 3, 5.5, 8} (left). Seven B-spline bases given by
5 knots placed at {−2, 0.5, 3, 5.5, 8}. These B-spline bases are used for producing
the curve in the left figure. The knots at both ends are quadruple knots (right).

Set n = 50, K = 2, m(i, 1) = m(i, 2) = 30 (1 ≤ i ≤ 50), and {tijk} = j (1 ≤ i ≤ 50, 1 ≤ k ≤ 2);
i.e., the number of data (n) is set at 50, the number of predictors of the functional data multiple
regression equation (K) is set at 2, and the numbers of data that yield respective predictors in the
functional data multiple regression equation (m(i, 1) and m(i, 2)) are both set at 30 for all values
of i. All the values of {Xik(tijk)} (1 ≤ i ≤ 50, 1 ≤ j ≤ 30, 1 ≤ k ≤ 2) are realizations of the
uniform random numbers in which the minimum value is 0 and the maximum value is 1. The values
of {yi}(1 ≤ i ≤ 50) are given by the equation:

yi = 3

30∑
j=1

Xij1sin(1.5πj/30) + 5

30∑
j=1

Xij2cos(2.5πj/30) + ϵi. (3.1)

The {ϵi} values are realizations of N(5, 22) (a normal distribution with mean 0 and variance 22). When
Xi1(tij1) is depicted as xx1[jj, ii] and Xi2(tij2) is depicted as xx2[jj, ii], then xx1[jj, ii]

and xx2[jj, ii] are obtained using the R command:

library(fda)

nd <- 50

nx <- 30

xx1 <- matrix(rep(0, length = nd * nx), ncol = nd)

xx2 <- matrix(rep(0, length = nd * nx), ncol = nd)

yy <-NULLs

for(ii in 1:nd){

xx1[, ii] <- runif(nx, min = 0, max = 1)

xx2[, ii] <- runif(nx, min = 0, max = 1)

ss <- 0

for(jj in 1:nx){

ss <- ss + xx1[jj, ii] * 3* sin(1.5 * pi * jj / nx) +

xx2[jj, ii] * 5 * cos(2.5 * pi * jj / nx)
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}

yy[ii] <- ss + 5 + rnorm(1, mean = 0, sd = 2.0)

}

Here, library(fda) indicates that package “fda” was used. nd is the number of data (n) and nx

represents both m(i, 1) and m(i, 2).
Next, B-spline bases are constructed to be stored in xb1 and xb2 using the following R command:

xb1 <- create.bspline.basis(c(0.5, nx + 0.5), nbasis = 20)

xb2 <- create.bspline.basis(c(0.5, nx + 0.5), nbasis = 20)

In this R command, the range where B-spline bases exist is set to be from 0.5 to 30.5; i.e., the
positions of the quadruple knots are t = 0.5 and t = 30.5. Because nbasis = 20 is set and the
positions of knots (except the quadruple knots) are not specified, 20 B-spline bases are located at
equi-spaced positions in this range.

Then, xs1 and xs2 are constructed using xx1[jj, ii] and xx2[jj, ii], where xs1 and xs2

stand for {xi1(t)}(1 ≤ i ≤ 50) and {xi2(t)}(1 ≤ i ≤ 50), respectively. The following R command is
used for this purpose.

xs1 <- smooth.basis(tt, xx1, xb1)

xs2 <- smooth.basis(tt, xx2, xb2)

To create xs1 and xs2, smoothing spline is carried out using B-spline bases specified by xb1 and xb2,
respectively. The value of smoothing parameter (λ in Eq.(2.1)) is not assigned in this R command;
hence, the value of the smoothing parameter is optimized by GCV . Furthermore, the values of the
smoothing parameters of {xi1(t)}(1 ≤ i ≤ 50) for all of {xi1(t)}(1 ≤ i ≤ 50) are identical.

The fd-component is extracted from xs1 and xs2 as follows:

xf1 <- xs1$fd

xf2 <- xs2$fd

where fd-component is a functional data object that contains basis functions, which in this example
are B-spline bases (i.e., {ϕikp(t)} in Eq.(2.2), and the coefficients of basis functions, which in this
example are {cikp} in Eq.(2.2).[MB24]

Next, to produce a functional data multiple regression equation using xf1 and xf2, these two
objects were combined as follows:

xl <- vector("list",2)

xl[[1]] <- rep(1,nd)

xl[[2]] <- xf1

xl[[3]] <- xf2

Here, xl[[1]] indicates the presence of a constant term (i.e., α0 in Eq.(1.2)) in this functional
data multiple regression equation. xl[[2]] indicates the presence of the first term of predictors
(
∫ tmax

1

tmin
1

xi1(t)β1(t)dt in Eq.(1.2)) and xl[[3]] indicates the presence of the second term of predictors

(
∫ tmax

2

tmin
2

xi2(t)β2(t)dt in Eq.(1.2)).
Next, B-spline bases were created to construct {βk(t)} (Eq.(1.2)) using the following R command:

bb1 <- create.bspline.basis(c(0.5, nx + 0.5), nbasis = 20)

bb2 <- create.bspline.basis(c(0.5, nx + 0.5), nbasis = 20)
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Here, bb1 gives B-spline bases for {β1(t)} and bb2 gives B-spline bases for {β2(t)}; the specifications
of xb1 and xb2 are identical.

To prepare for the creation of a functional data multiple regression equation, bp1 and bp2 are
obtained using bp1 and bp2 using the following R command:

bp1 <- fdPar(bb1, Lfdobj = 2)

bp2 <- fdPar(bb2, Lfdobj = 2)

where Lfdobj = 2 specifies that the equation containing second order derivatives of {βk(t)} (Eq.(1.2)
is used for smoothing {βk(t)} when {βk(t)} are produced. If lambda = is contained in the arguments
of fdPar(), the smoothing parameter (λ in Eq.(2.1)) is specified. However, in this example, the
smoothing parameter was not assigned because it is specified in a later process.

Next, bp1 and bp2 were combined into bla as follows:

bla <- vector("list",2)

conbasis <- create.constant.basis()

bla[[1]] <- conbasis

bla[[2]] <- bp1

bla[[3]] <- bp2

This process is similar to the one used for xl.
Then, the smoothing parameter used to produce {βk(t)} (Eq.(1.2)) was optimized by GCV as

follows:

lams <- 10^(seq(from = 0, to = 3, by = 0.2))

gcvs <- rep(0, length(lams))

for(kk in 1:length(lams)){

blb <- bla

par2 <- blb[[2]]

par2$lambda <- lams[kk]

blb[[2]] <- par2

par3 <- blb[[3]]

par3$lambda <- lams[kk]

blb[[3]] <- par3

reg1 <- fRegress(yy, xl, blb)

gcvs[kk] <- reg1$gcv

}

wh1 <- which(gcvs == min(gcvs))

lbest <- lams[wh1]

The values of the smoothing parameters were set first as lams. In this example, they are
{100, 100.2, 100.4, · · · , 103}. The values of GCV given by the smoothing parameters are stored in
gcvs. The $lambda stored in [[2]]-component of blb is the smoothing parameter for deriving β1(t);
blb is identical to bla. The $lambda stored in [[3]]-component is the smoothing parameter for
deriving β2(t). In this example, the fRegress() R command, which performs regression based on
functional data analysis, was carried out by altering the values of the smoothing parameters. $gcv-
component stored in reg1, which is the output of fRegress() gives GCV . Hence, lbest represents
the best λ.

The relationship between the smoothing parameters (λ) and GCV was obtained by:

plot(lams, gcvs, type = ’n’, log = ’x’, mgp=c(1.9, 1, 0))

lines(lams, gcvs)

points(lams, gcvs)
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Figure 3: Relationship between the smoothing parameter (λ) and GCV .

The following R command was used to draw Fig.3.

blb <- bla

par2 <- blb[[2]]

par2$lambda <- lbest

blb[[2]] <- par2

par3 <- blb[[3]]

par3$lambda <- lbest

blb[[3]] <- par3

reg2 <- fRegress(yy, xl, blb)

bl2 <- reg2$betaestlist

bp1 <- bl2[[2]]

bf1 <- bp1$fd

bp2 <- bl2[[3]]

bf2 <- bp2$fd

The derived β1(t) and β2(t) functions are stored in reg2. The following R command was used to
draw Fig.4,

et1 <- seq(from = 0.5, to = nx + 0.5, by = 0.5)

eb1 <- eval.fd(et1, bf1)

plot(et1, eb1, xlab = "t", ylab = expression(beta[1](t)),

type="n", mgp=c(1.9, 1, 0))

lines(et1, eb1)

et2 <- seq(from = 0.5, to = nx + 0.5, by = 0.5)

eb2 <- eval.fd(et2, bf2)

plot(et2, eb2, xlab = "t", ylab = expression(beta[2](t)),

type="n", mgp=c(1.9, 1, 0))

lines(et2, eb2)

Here, eval.fd() calculates the values of a function at et1 or et2 using the functional data object,
which in this example, are bf1 or bf2, respectively (Fig.4(left)(right)).
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Figure 4: β̂1(t) (left) and β̂2(t) (right) given by the functional data objects bf1 or
bf2, respectively.

The estimated values of the target variable (eyy) that corresponds to the predictors of data ({yi})
were extracted by:

eyy <- reg2$yhatfdobj

Moreover, the constant term, α0, in Eq.(1.2) was derived by:

bp0 <- bl2[[1]]

bf0 <- bp0$fd

alpha0 <- bf0$coef

where alpha0 is the estimate of α0.
The procedures described here were used to successfully construct a functional data multiple

regression equation and output the contents of the result. When arbitrary {x̂ik(t)} was used (Eq.(1.2)),
{β̂k(t)x̂ik(t)} are to be integrated to calculate the value of the target variable. In the following section,
we use SNP data and the composite Simpson’s rule (see page 257 of [16] for details) to carry out the
numerical integration.

4 Prediction of Breeding Values
The application of functional data analysis for predicting breeding values using SNP data is described.
The focus is on prediction of breeding values for breeding crop plants and livestock.

Breeding methods consists of (1) selection of individuals and varieties on the basis of desirable
genetic traits such as yields or productivities, (2) repeated hybridizations over several generations,
and (3) foundation of individuals and breed varieties with the desirable genetic traits. Quantitative
traits such as the amount of yield or growth, which are represented as continuous values, are not
directly observed; instead, phenotypic values associated with the trait are observed. The phenotypic
value of a trait consists of the genotypic value and non-genetic factors such as environment. Therefore,
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the influence of non-genetic noise should be reduced to accurately estimate breeding values. In the
past, breeding values were predicted using phenotypic values of many offspring or relatives. For
example, breeding values of self-pollinating plants can be predicted on the basis of the observations
of and/or values of genetically identical plants using the same inbred lines; however, the prediction of
breeding values in this way is laborious, time consuming, and expensive. For example, observation
of phenotypic values of fruit traits of fruit plants needs more than several years. Because determining
phenotypic values for a desirable trait contributes most to the cost of breeding using traditional
methods, genomic information is now being used as a more efficient way of estimating breeding
values.

It has been shown that quantitative traits are influenced by a large number of loci scattered
along a genome with each loci having a small effect. The combination of these small effects and the
non-genetic effects determine the phenotypic value of a quantitative trait. Generally, in conventional
breeding methods using genomic information, the influence of one or two genes is focused on and a
small number of DNA markers located in the genome near the genes are used for selection. Such
methods, however, do not realize efficient breeding if a large number of genetic loci are involved in a
trait. Hence, methods for more accurate and efficient predictions of breeding values for quantitative
traits have received much attention recently. These methods attempt to consider the influences of
a large number of genetic loci on quantitative traits using detailed information about the genes.
Genome-wide information has been accumulating at a very steep rate for many years. A new
genomic selection method [2] has been developed that selects desirable individuals and varieties
based on breeding values predicted using a large number of SNP markers arranged densely in a
whole genome. This method does not require phenotypic values of individuals and varieties as input.
The feasibility and usability of this method has been investigated [17].

To predict breeding values using SNP information, prediction models that use large data sets of
SNP genotypes from individuals and varieties along with the corresponding phenotypic values need to
be developed. These data sets can be used as training data to estimate parameters for the proposed
models. If the SNP genotypes in the training data are set as X, the phenotypic values are set as Y ,
and the prediction error is set as e, then a model can be represented as Y = f(X) + e, where f(X)
is a term that resulted from the regression of X on Y . If X contained all the information on a whole
genome, then f(X) could be regarded as the breeding values, which are hereditarily determined.
Furthermore, using X∗, which are the SNP genotype data for the individuals or breed varieties to
be selected, the breeding values of these individuals or varieties is given as f(X∗). Because the
genomic information for an individual can be collected before birth or germination, the time-span
needed for breeding will be shortened dramatically by selecting and growing new individuals, breed
varieties, or cultivars using the predicted breeding values without phenotypic observations. Clearly,
the success of such a method will depend heavily on the accuracy of f(X∗).

Actual breeding values are not observable; therefore, to test the accuracy of a proposed prediction
method, simulation data instead of real data can be employed. The simulation data were generated
by setting genetic loci that affect the traits and the arrangement and number of SNPs on a genome,
and assuming the effects of the non-genetic environment. In this way, phenotypic values and SNP
genotype data were generated as the training data. Independent validation data were simulated
using real breeding values and the corresponding SNP genotype data. These data are treated as
real breeding values and compared with the predicted breeding values to determine the accuracy of
the proposed prediction method.

5 Functional Data Multiple Regression Equation Given by
Simulated SNP and Traits Data

The simulation data used here is from [18]. These data consist of training data that were generated
assuming 1, 000 outbred diploid individuals and validation data that consisted of 1, 000 SNP data and
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associated trait data.
The analysis of the first data set among the 20 data sets ([18]) is described here. The predictors

are the SNP genotype data each of which takes one value among {0, 1, 2}. The number of predictors
is 10, 100, comprising 10 sections of 1, 010 values. In each of the 10 sections, it is assumed that the
effects of neighboring predictors are similar; however, this similarity does not cross the of section
boundaries. The target variable of this data are traits. The number of trait data is 2, 000. Hence, to
produce a functional data multiple regression equation, the following data is considered: n = 2, 000,
K = 10, m(i, 1) = m(i, 2) = . . . = m(i, 10) = 1, 010 (1 ≤ i ≤ n)A{tijk} = j (1 ≤ i ≤ n, 1 ≤ k ≤ 10).
Furthermore, we set tmin

1 = tmin
2 = . . . ,= tmin

10 = 0.5, tmax
1 = tmax

2 = . . . ,= tmax
10 = 1, 000.5.

Each {xik(t)} and {βk(t)} is represented by 100 B-spline bases with knots located at equi-spaced
points. One half of these 2, 000 data (i.e., 1, 000 data) are used to produce a functional data multiple
regression equation using the R command described in the section 3. The smoothing parameter (λ)
is optimized by GCV as illustrated in Fig.5, which shows that λ = 106.2 (= 1, 584, 893) is optimal.

This optimal value of λ is used to construct a functional data multiple regression equation illustrated
in Figs.6 and 7. The estimate of α0 (Eq.(1.2)) in this regression equation is α̂0 = −4.349619.

1e+05 5e+05 2e+06 1e+07

0.
00

48
0.

00
50

λ
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C
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Figure 5: Relationship between smoothing parameter (λ) and GCV . The optimal λ
is relationship is used to construct a functional data multiple regression equation.

When the target variables of the data are represented as {yi} (1 ≤ i ≤ 1, 000) and the estimates
corresponding to these values are represented as {ŷi} (1 ≤ i ≤ 1, 000), the relationship between {yi}
and {ŷi} is shown in Fig. 8(left). Using the resulting functional data multiple regression equation,
the values of the target variables are estimated using the other half of the data ({ypre

i } (1 ≤ i ≤
1, 000)) (i.e., another 1, 000 data). The estimated values are termed {ŷpre

i } (1 ≤ i ≤ 1, 000) and the
relationship between {ypre

i } and {ŷpre
i } is illustrated in Fig.8(right).

The discrepancy between {ypre
i } and {ŷpre

i } is calculated as

Epre =

∑1,000
i=1 (ypre

i − ŷpre
i )2

1, 000
. (5.1)

We obtained an estimate of Epre = 4.383985. Here, it is important that the magnitude among the
estimates is similar to the magnitude among the data. To check this relation, the Corrpre (Pearson’s
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Figure 6: Regression equation represented as β̂1(t) (solid line), β̂2(t) (broken line),
β̂3(t) (dotted line) (left) and β̂4(t) (solid line), β̂5(t) (broken line), β̂6(t) (dotted line)
(right).
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Figure 7: Regression equation represented as β̂7(t) (solid line), β̂8(t) (broken line)
(left) and β̂9(t) (solid line), β̂10(t) (broken line) (right).
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product-moment correlation coefficient) was calculated as:

Corrpre =

∑1,000
i=1 (ypre

i − ȳpre)(ŷpre
i − ¯̂y

pre
)√∑1,000

i=1 (ypre
i − ȳpre)2

√∑1,000
i=1 (ŷpre

i − ¯̂y
pre

)2
, (5.2)

where ȳpre and ¯̂y
pre were defined as

ȳpre =

∑1,000
i=1 ypre

i

1, 000
, ¯̂y

pre
=

∑1,000
i=1 ŷpre

i

1, 000
. (5.3)

The Corrpre was calculated as equal to 0.6590756.
A multiple regression equation is produced for comparison. By averaging the 1, 010 predictor

data in each section, 10 predictor data were obtained and a multiple linear regression equation was
constructed using these data. That is, a multiple linear regression equation with 10 predictor was
obtained. When the one half of this 2, 000 data (i.e., 1, 000 data) was used to produce a multiple
linear regression equation, the relationship between {yi} and {ŷi} is illustrated in Fig.9(left). Using
the resulting multiple linear regression equation, the values of the target variables were estimated
using the other half of the data ({ypre

i } (1 ≤ i ≤ 1, 000)) (i.e., the remaining 1, 000 data). The
estimated values are termed {ŷpre

i } (1 ≤ i ≤ 1, 000). The relationship between {ypre
i } and {ŷpre

i } is
illustrated in Fig.9(right). Moreover, Epre = 7.305007 and Corrpre = 0.1644215. By comparing the
left and right graphs in Fig.8, we found that the functional data multiple regression equation performed
better than the multiple linear regression equation.
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ŷpr
e

Figure 8: Relationship between {yi} and {ŷi} (left). Relationship between {yprei }
and {ŷprei } (right).

Using the 19 data sets and the same method as that used for the first 2, 000 data, similar functional
data multiple regression equations were derived and Epre (Eq.(5.1)) and Corrpre (Eq.(5.2)) was
calculated. The results are shown in Fig.10. The first of the data sets is the data set that was used in
the previous example. The results indicate that functional data multiple regression equations predict
breeding values of traits with considerable accuracy.
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Figure 9: Relationship between {yi} and {ŷi} when a multiple linear regression
equation is produced (left). Relationship between {yprei } and {ŷprei } (right).
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6 Conclusions
In this study, we show that the simple functional data analysis R package “fda” (version 2.4.0) can
be used to produce functional data multiple regression equations. When the number of predictors is
very large and more than the amount of available data, as can be the case when predicting breeding
values using SNP genotype data, functional data multiple regression allows the automatic derivation
of beneficial regression equations; optimization of the smoothing parameters is also automatic. This
is a major advantage of this technique when analyzing data of this kind. Even if the prediction errors
are kept small by selecting predictors or by adjusting prior distributions by trial and error, it is still
uncertain whether or not the obtained prediction errors represent the essential prediction errors.

Furthermore, in conventional data analysis, sometimes several data are averaged for use in
regression analyses, or an effect is assumed to be constant even when it may be time-dependent.
Such treatments are adopted so that the regression equation can be reduced to multiple linear
regression. Although many predictors may be useful for predicting the values of a target variable,
in many instances, a small number of predictors are selected because efficient methods for treating
large numbers of predictors are not available. We expect that functional data multiple regression and
higher-level regression methods using package “fda” will be used in future prediction models, or other
prediction models that can use data in which the number of predictors is much more than the amount
of data will be developed before long.
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