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Abstract 
 

A large eddy simulation (LES) of a turbulent channel flow is performed by using the 
Smagorinsky subgrid scale model and the effects of Smagorinsky constants in LES are 
discussed. The computation is performed in the domain of δδ2δ2 π××π with 326432 ××  grid 

points at a Reynolds number Reτ = 590 based on the channel half width, δ and wall shear 
velocity, uτ. The performance of the Smagorinsky model is tested in LES for three values of 
Smagorinsky constant, CS = 0.065, 0.1 and 0.13, and for all three cases the computed essential 
turbulence statistics of the flow field are compared with Direct Numerical Simulation (DNS) data. 
Comparing the results with those from DNS data throughout the whole calculation domain we 
have found that turbulence statistics for CS = 0.065 show reasonable agreement with the DNS 
data. Agreements as well as discrepancies are discussed. The behavior of the flow structures in 
the computed flow field has also been discussed. 
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1 Introduction 
 
Turbulent channel flow has been widely considered as a benchmark for numerical simulations and 
validation of turbulence models. Its geometric simplicity is attractive for both experimental and 
theoretical investigations of complex turbulence interactions near a wall. As a result, a wide range 
of experimental and computational studies of turbulent channel flow have been carried out [1-7]. 
 
A simulation that resolves all flow scales is called direct numerical simulation (DNS), but the high 
computational cost of DNS makes it impractical for realistic engineering flows. An alternative 
approach to DNS is the large eddy simulation (LES) technique [5-14]. In LES, the computational 
cost is reduced by applying a low-pass filter to the turbulent flow, thereby eliminating many of the 
small scales below the filter width. In LES, the large-scale motion is exactly calculated, while the 
dynamical effects of the smaller scales resulting from the filtering operation are represented by 
subgrid scale (SGS) models [5,10]. In general, SGS models can capture these effects only 
partially. 
 
Because of growing popularity of LES, recent research has been aimed at developing robust LES 
models and these models are derived based on some assumption about the nature of the subgrid 
turbulence. The most commonly used LES model is the well-known Smagorinsky model [15], 
which is based on the equilibrium assumption at the small scales. In this model the theoretical 
value of Smagorinsky constant, CS is evaluated by some relations [15]. It should be noted that the 
value of this constant is, in practice, adjusted to improve the results. By trial it is believed that the 
optimum value of the Smagorinsky constant decreases with the increase of mean shear. But the 
exact cause for the dependence of CS on mean shear is not completely understood. Horiuti [12] 
and Yakhot et al. [13] speculate that the anisotropy of the SGS motions is significant near a 
bounding surface. It is also believed that the Smagorinsky constant also varies with grid mesh 
aspect ratio as pointed out by Scotti et al. [16]. For instance, in channel flows, Deardorff [3] and 
Piomelli et al. [7] use CS = 0.1; Bardina [14] finds an optimum value of CS = 0.09, Moin and Kim [4] 
use CS = 0.065 and Sullivan et al. [11] found CS ≈ 0.12 to 0.13. 
 
Discretization method is another issue to conduct LES in turbulence. A literature review suggests 
that the numerical method widely used for LES is the conventional finite difference method with 
structured grids [17-18]. For the time discretization of the Navier-Stokes equations explicit Runge-
Kutta methods are a popular choice. Although they generally require the solution to a Poisson 
equation for the pressure at each stage, but Runge-Kutta methods have in general better stability 
properties, do not have a start-up problem, and easily allow for adaptive time stepping. The 
application of explicit Runge-Kutta methods to the incompressible Navier-Stokes equations is not 
straight forward because of the differential-algebraic nature of the equations. It is a common 
practice to explicitly advance the velocity at each stage as if the discretized equations are a 
system of ordinary differential equations, and subsequently solve a Poisson equation for the 
pressure to make the velocity field divergence-free [19]. 
 
A typical LES calculation for wall-bounded turbulent flows imposes a great demand on 
computation region, applying a low storage scheme is significant to make sufficient utilization of 
computer resource. Low-storage Runge-Kutta schemes require minimum levels of memory 
locations during the time integration and efficiently comply with the modern large-scale scientific 
computing needs. A number of explicit low-storage Runge-Kutta schemes of third-order accuracy 
were derived by Williamson [20]. 
 
Therefore, the objective of this study is to perform LES of a plane turbulent channel flow using 
Smagorinsky subgrid scale model and to discuss the effects of Smagorinsky constants. Spatial 
and temporal discretization has been done using the third order Low-Storage Runge-Kutta method 
and second order finite difference formulation respectively with staggered grid. We compare the 
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behavior of turbulence statistics with the DNS data of Moser et al. [2]. Then we discuss the 
contours of instantaneous streamwise velocity and streamwise shear velocity distribution of the 
flow at the centerline and immediate vicinity of the wall respectively for the three values of CS. We 
also visualize the vortical structures using second invariant of the velocity gradient tensor in the 
turbulent flow field. 
 

2. Governing Equations 
 
The governing equations of LES for an incompressible plane channel flow are the filtered Navier-
Stokes and continuity equations for constant density in Cartesian co-ordinates given as 
 

( )




























∂

∂
+

∂

∂

∂

∂
+

∂

∂
−=+

∂

∂
+

∂

∂

i

j

j

i

ji
ijji

j

i

x

u

x

u
ν

xx

p

ρ

1
τu.u

xt

u , where i, j = 1, 2, 3                        (1) 

 

0=
∂

∂

i

i

x

u
                                                                                                                        (2)  

 

where the index i = 1, 2, 3 refers to the x, y and z directions respectively. Here xu , yu , zu are 

streamwise, wall normal and spanwise filtered velocity respectively. p is the filtered pressure and

ν is the kinematic viscosity. ijτ is subgrid scale (SGS) Reynolds stress which is in fact the large 

scale momentum flux caused by the action of the small or unresolved scales. A schematic 
geometry of the plane turbulent channel flow and the co-ordinate system are shown in Fig. 1. The 
equations are non-dimensionalized by the channel half-width δ, and the wall shear velocity uτ. The 
Reynolds number is therefore written as Re = uτ.δ/ν. 
 

In LES, the velocity field ui is decomposed into a large scale component iu and a subgrid scale 

component iu ′ by applying a spatial filtering operation. The resolved velocity component iu can be 

expressed as follows: 
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where ( )iii xxG ′− is a general filtering function which satisfies the following relation: 
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Since the continuity equation is linear, filtering does not change it significantly. However, it is 

important to note that jiji u.uu.u ≠ , and the quantity on the left side of the inequality cannot be 

easily computed. So, a modeling approximation for the difference between the two sides of this 
inequality, 
 

jijiij u.uu.uτ −=                                                                                                         (5) 



 
 
 

Uddin and Mallik; BJMCS, 7(5): 375-390, 2015; Article no.BJMCS.2015.132 
 

 

 

378 
 
 

must be needed. The models used to approximate the SGS Reynolds stress are called subgrid 
scale (SGS) models. The most commonly used subgrid scale model is the Smagorinsky model. 
This model represents the SGS eddy viscosity according to  
 

( ) S.C=ν
2

Ss ∆ .                                                                                                        (6) 

 

Here CS is the Smagorinsky constant, ( ) 3/1
zy.x. ∆∆∆=∆ is filter width and ijSijS2S = is the 

magnitude of strain rate, where
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. As we discussed in the introduction that the 

value of CS is not fixed and the many authors used different values of CS for LES in turbulent 
channel flows. Hence, to show the effects of the Smagorinsky constant for LES, in this study, the 
computation is performed and results are compared for three values of CS such as 0.065, 0.1 and 
0.13.  
 
To reduce the near-wall eddy viscosity for the wall bounded flows the SGS eddy viscosity can be 
modified as: 
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Fig. 1. Schematic geometry of plane channel flow 

 

3. Numerical Method 
 
The governing equations of LES are solved using the third order low-storage explicit Runge-Kutta 
method in time [21] and the second order finite difference formulae in space. The coupling 
between continuity equation and pressure fields is performed by the simplified marker-and-cell 
(SMAC) method [22]. Poisson equation is solved iteratively by a Preconditioned Incomplete 
Cholesky Decomposition Conjugated Gradient method. In the following subsections, staggered 
grid arrangement, discrete and interpolation operators are shortly introduced.  
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3.1 Staggered Grid Arrangement 
  
Staggered grids may be constructed by several methods. An example of a staggered grid system 
in a two-dimensional plane is shown in Fig. 2. On the staggered grid, scalar variable pressure are 
stored at the nodes (intersection point of two lines) and velocities are defined at the middle of the 
two nodes. Horizontal (→) arrows indicate the locations for ux – velocities and vertical (↑) ones 
denote those for uy – velocities. The continuity is centered at pressure points. The momentum 
equation corresponding to each velocity component is centered at the respective velocity point 
[23]. The biggest advantage of the staggered arrangement is the strong coupling between the 
velocities and the pressure. 

 
 

Fig. 2. Staggered grid system 
 
In this study, the grid spacing in the periodic directions is uniform. The wall normal grid is stretched 
by using a hyperbolic-tangent type stretching function [23]: 
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where the stretching parameter, γ is taken to be 2.25. Although here both uniform and stretched 
grids have been used but the order of accuracy is unaltered by mesh stretching. 
 

3.2 Discrete Operators 
 
There are a variety of discretization techniques available for developing discrete approximations to 
a set of governing partial differential equations such as Navier-Stokes equations. Let the finite 
difference operator of order one with stencil size 1 acting on a discrete variable φ  with respect to x 

for structured Cartesian meshes with uniform spacing be defined as  
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where the grid spacings ∆x are constant in x direction, and (i, j, k) denotes associated mesh 
indices in x, y and z directions. Subscript “1” indices the stencil size. Discrete operators in the y and 
z – directions are similarly defined. 
 
In addition to the discrete differencing operator we also define interpolation operators with stencil 

size 1 acting on a variable ux in the x – direction as 
2

uu kj,1,ixkj,i,xL

kj,i, 

1x

xu
−+

≡ and     



 
 
 

Uddin and Mallik; BJMCS, 7(5): 375-390, 2015; Article no.BJMCS.2015.132 
 

 

 

380 
 
 

2

uu kj,1,ixkj,i,xR

kj,i, 

1x

xu
++

≡ , where L and R indicate the approximation of 
kj,i, 

1x

xu to the one-half 

left and right of the grid (i, j, k) in x – direction. The interpolation operator acting on the same 

variable xu in y and z – directions are similarly defined. Interpolation operators acting on the other 

variables ( yu and zu ) associated to the directions are defined similarly as above where (i, j, k) 

denotes associated mesh indices in x, y and z directions. 
 

4 Computational Parameter and Grid Spacing 
 
The computational domain of the mesh is selected to be δπδ2δπ2 ×× in streamwise, wall normal 

and spanwise directions respectively. The computation is carried out with 326432 ×× grid points in 

the corresponding directions for a Reynolds number, Reτ = 590 based on the channel half width, δ 
and wall shear velocity, uτ. The computations are performed with non-dimensional time increment, 
∆t = 0.002, which maintained CFL numbers 0.791, 0.755 and 0. 911 for CS = 0.065, 0.1 and 0.13 

respectively. The CFL number is defined as
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denotes an ensemble average of iu . The computation is executed up to non-dimensional time, t = 

n ∆t, where n is the number of time step. With the computational domain, the grid spacings in the 

streamwise and spanwise directions are 116x ≈+
∆ and 58z ≈∆ +  wall units respectively. In the wall 

normal direction ( )11 +≤≤− y  the minimum grid spacing is 2∆ ≈+
y  wall unit which exist at the 

immediate vicinity of the wall and maximum grid spacing is 42≈∆ +
y wall unit which exist at the 

centerline of the channel. The first mesh point away from the wall is at 885.0≈+
y  wall unit. The 

superscript ‘+’ indicates a non-dimensional quantity scaled by the wall variables; e.g. /νuyy τ=+ , 

where ν is the kinematic viscosity and ( )1/2
wτ /ρτu = is the wall shear velocity.  

 

5 Boundary Conditions 
 
We consider fully developed incompressible viscous flow and make use of periodic boundary 
conditions in the streamwise and spanwise directions. For the staggered grid arrangement we set 
up additional nodes surrounding the physical boundary. The calculations are performed at internal 
nodes only. The wall boundary condition is no-slip. Just outside the solution domain the values of 
the velocity components are equated to the values of the nearest node just inside the solution 
domain [24]. The pressure boundary condition is periodic in the streamwise and spanwise 
directions. But in the wall normal direction the values of p , just outside the solution domain, are 

determined by assuming a zero gradient [25]. 
 

6 Temporal Schemes for LES in Plane Turbulent Channel Flow 
 
Since the three components of the velocity vector u in the momentum equations are coupled with 

the pressure p through the continuity equation, these equations for the four variables ( )puuu zyx ,,,  

have to be solved at the same time. The temporal discretization used in our LES code for 
simulating the plane turbulent channel flow is the third order low storage explicit Runge-Kutta 
scheme [20] which is applied for the nonlinear convection and the viscous terms. This scheme 
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requires only two levels of memory locations during the time integration. Such a scheme reads the 
following sub-steps: 
 
Sub-step 1: 
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where Fi (i = x, y, z) are the convective and viscous terms and iu (i = x, y, z) are the velocity 

components. n is the level of time. The superscripts 1, 2, 3 on the variables represent the sub-step 
number. First equation of every sub-step is the momentum equation. Second equation is the 
Poisson equation for pressure. After the Poisson equation have been solved, pressure potential, ψ 
is found. The pressure potential is then used to calculate the pressure, p and velocity components 

from third and fourth equations respectively of every sub-step. Final solutions ( )puuu zyx ,,,  for 

every level of time are found from sub-step 3. Boundary conditions are assigned at every sub-step 
k. The Poisson equation for pressure at each sub-step can be written explicitly as follows: 
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The values of αk, βk and γk are shown below: 
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7 Results and Discussions 
 
7.1 Turbulence Statistics 
 
In this section we discuss some statistics of the computed flow field corresponding to the lower half 
of the 3D turbulent channel. The computed results in LES for all the three values of CS are 
compared with the DNS data of Moser et al. [2].  Simulations are initialized with a random 
solenoidal velocity field and integrated ahead in time with finite viscosity.   
 
Fig. 3 shows the mean velocity profiles of the LES and DNS data normalized by the wall-shear 
velocity which is defined as 

τ
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u
u
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x                                                                                                             (11)    

Numerous experiments have shown that the near-wall region can be largely subdivided into three 

layers. These three layers are the viscous sub-layer ( 5y ≤+ ), buffer layer ( 30y5 ≤< + ) and 

logarithmic inertial layer ( 30y >+ ) [15]. From Fig. 3 it can be observed that there is hardly 

noticeable difference between the DNS and LES results for all three cases in the viscous sub-
layer. But here after in the buffer layer the LES results for all three values of CS under predict the 
DNS result. Finally, in the logarithmic inertial layer the LES profiles are seen to be over predicted 
from DNS results. It is also revealed that in most of the regions the separation of LES velocity 
profiles from the DNS profile increases with the increase of the value of CS. Nonetheless, Fig. 3 
shows that the agreement of the mean velocity profile for CS = 0.065 with the DNS data of Moser et 
al. [2] is good among these three values of CS. 
 

 
 

Fig. 3. The mean velocity profile in wall units normalized by the wall-shear velocity 
 

The DNS and LES profiles of non-dimensional root mean square (r.m.s.) velocity components are 
displayed in Figs. 4(a, b, c), which are defined as 
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The streamwise root mean square velocity profiles are shown in Fig. 4(a) which reveals that there 
is hardly noticeable difference between the DNS and LES profiles in the viscous sub-layer. After 
that in rest of the domain the LES profiles over predict the DNS profile. Peak values of these 

profiles occur at the near wall region ( )4020≈+
-y . It has to be noted that in this region when the 

value of CS increases, the peak value of the LES profiles decreases and the separation of the LES 

profiles from the DNS profile also decreases. After that in the region ( )40>+
y , the LES profiles for 

CS = 0.065 and 0.1 are almost collapsed and show closer agreement with the DNS results of 
Moser et al. [2]. The wall normal and spanwise root mean square velocity profiles are shown in 
Figs. 4(b) and 4(c). From these figures it can be observed that in the whole calculation domain the 
LES profiles under predict the DNS profile. It has to be noted that although there exists a 
noticeable discrepancy between the LES profiles at the near wall region, but away from the wall 
the computed profiles are almost collapsed with each other. However, the profiles of wall normal 
and spanwise root mean square velocity fields for CS = 0.065 show less discrepancy from the DNS 
profile than that of the other two LES profiles. 
 

  

 
 

Fig. 4. Root mean square velocity profiles normalized by the wall-shear velocity 
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The profiles of non-dimensional Reynolds stress, 
2
τ

'
y

'
x

u

uu
- corresponding to the lower half of the 

channel are displayed in Fig. 5. This profile is a straight line in a fully developed channel flow when 
the flow reaches an equilibrium state. Our computed results clearly show that this is the case. 

Peak values of these profiles occur at the near wall region ( )10040≈+
-y and the separation of the 

LES profiles from the DNS profile is higher in this region. It is noticeable that the separation from 
the DNS data increases with the increase of the value of CS. This figure also reveals that when the 
value of CS increases, the peak value of the Reynolds stress decreases and its position moves 

away from the wall. Away from the wall ( 200>+
y ) there is hardly noticeable difference between 

the DNS and LES profiles. This figure clearly indicates that the Reynolds stress profile for CS = 
0.065 shows closer agreement with the DNS profile of Moser et al. [2]. 
 

 
       

Fig. 5. The Reynolds stress profile in wall coordinates normalized by the wall-shear velocity 
 
Table 1 provides a sample of the non-dimensional Reynolds stress at some positions in wall units 
which shows the quantitative comparison between the DNS and LES results. From this table it can 
be observed that the separation between the DNS and LES results increases with the increase of 

the value of CS. It is also noticeable that away from the wall ( 200>+
y ) the LES results show an 

excellent agreement with the DNS results. However, in the whole calculation domain the 
agreement of LES result with DNS for CS = 0.065 is superior to that of the other two values of CS. 
 

Table 1. Comparison between DNS and LES results in Reynolds stress 
 

y
+ DNS LES 

CS = 0.065 CS = 0.1 CS = 0.13 

4.30 0.09 0.07 0.05 0.03 
26.66 0.80 0.68 0.56 0.37 
42.95 0.87 0.80 0.72 0.57 

101.78 0.80 0.79 0.76 0.69 
224.21 0.60 0.60 0.59 0.56 
386.24 0.34 0.34 0.33 0.32 
547.65 0.07 0.07 0.06 0.07 
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7.2 Flow Structures 
 
In this section we discuss about the computed streamwise velocity ( xu ) distribution at the 

centerline plane of the channel and streamwise shear velocity ( τxu ) distribution at the immediate 

vicinity of the wall at the end of calculation time for the three values of CS. Using these computed 
data of LES, different contour plots of the flow field have been shown.  
 
Contour of instantaneous streamwise velocity distributions at the centerline of the channel in x-z 
plane for CS = 0.065, 0.1 and 0.13 respectively are shown in Figs. 6 (a, b, c). In these contour plots 

the value of xu ranged between 19 and 24. The lowest value of xu appears at blue regions, while 

the highest value of xu appears at red regions in these contour plots. The higher values of xu

appear more densely adjacent to the centerline of the channel from both sides. It can be observed 
that the intensity of streamwise velocity increases with the increase of the value of CS. 
 

 
 

 
 

 
 

Fig. 6. Contours of streamwise velocity profiles in x-z plane for (a) CS = 0.065, (b) CS = 0.1 
and (c) CS = 0.13. 

 

Streamwise Shear Velocity ( τxu ) distribution at the immediate vicinity of the wall of this channel 

can be calculated using (15). 
 

ρ
=τ

x
x

τ
u                                                                                                              (15) 

 

where, τxu
 
= streamwise shear velocity 

   ρ    = density of the fluid 
  τx    = streamwise shear stress. 
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Contour of the instantaneous streamwise shear velocity ( τxu ) distribution in x-z plane for CS = 

0.065, 0.1 and 0.13 respectively are displayed in Figs. 7 (a, b, c). In these contour plots the value 

of τxu ranged between 0.7 and 2.0. The highest value of τxu is indicated by a red color, while the 

lowest value of τxu is indicated by a blue color in these contour plots. The lower values of 

streamwise shear velocity appear more densely away from the centerline of this channel. It is also 
noticeable that the intensity of streamwise shear velocity increases with the increase of the value 
of CS. 
 

 
 

 
 

 
 
Fig. 7. Contours of streamwise shear velocity profiles in x-z plane for (a) CS = 0.065, (b) CS = 

0.1 and (c) CS = 0.13 
 

Figs. 8 (a, b, c) represent the visualization of vortical structures in the turbulent channel flow by 
iso-surfaces of the second invariant Q of velocity gradient tensor for CS = 0.065, 0.1 and 0.13 
respectively. The second invariant Q is defined as:  
 

( )ijijijij Ω.ΩS.SQ -
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−=                                                                                                      (16) 
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are the strain-rate and rotation tensors respectively, which are the symmetric and asymmetric part 
of the velocity gradient tensor: 
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ijij
j

i
ij ΩS

x

u
A +=

∂

∂
=                                                                                                             (18) 

 
The visualized region is the whole calculation domain. For all three values of CS the level of the iso-
surface is chosen to be Q = 5. For this value of Q the flow field contains lots of tube-like vortical 
structures which are randomly distributed over the turbulent flow field. Generally, it can be noted 
that for all values of CS the vortices are generated more intensely in between near the boundary 
and the centerline of the channel than that in the position of around the centerline of the channel. It 
is also noticeable that the vortices are generated more intensely for CS = 0.1 than that of the other 
two values of CS. 
 

  

 

 
Fig. 8. Iso-surfaces of the second invariant (Q =5) in the channel flow for (a) CS = 0.065, (b) 

CS = 0.1 and (c) CS = 0.13 

 
8 Conclusions 
 
A Large eddy simulation of a turbulent channel flow has been successfully performed using the 
Smagorinsky subgrid scale model for three different values of Smagorinsky constant at a Reynolds 
number, Reτ = 590 with 326432 ×× grid points. Essential turbulence statistics have been calculated 

and compared the results with the DNS data of reference, which show reasonable agreement with 
the DNS results. After analyzing the results of turbulence statistics throughout the whole 
calculation domain we have found that among the three values of CS = 0.065, 0.1 and 0.13, the 
performance of Smagorinsky model for CS = 0.065 is superior to that of the other two Smagorinsky 
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constants. However, away from the wall the computed results for all three cases show a good 
agreement with the DNS results. Instantaneous streamwise velocity distribution at the centerline 
plane of the channel and streamwise shear velocity distribution at the immediate vicinity of the 
channel have also been measured in the contour plots for all values of CS. Higher values of 
streamwise velocity appear more densely adjacent to the centerline of the channel from both sides 
and lower values of streamwise shear velocity appear more densely away from the centerline of 
this channel. The intensities of streamwise velocity and streamwise shear velocity distributions 
increase with the increase of the value of CS. Visualization of the iso-surfaces of the second 
invariant Q in the turbulent channel flow show that the flow field contains lots of tube-like vortical 
structures which are significant and randomly distributed over the turbulent flow field. For all three 
values of CS the intensity of the vortical structures in the turbulent flow field is high in between near 
the boundary and the centerline of the channel. 
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