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Abstract
The fundamental equations for the evaluation of cylindrical involute gear measurements on 3D
gear measuring instruments are provided. The computations are based on the principles of gear
kinematics and use the system of involute gear coordinates introduced in a previous work of the
authors. This holistic approach focuses on significant error sources that only appear since 3D
measurement technology is used and that are almost unrecognized till today. The proposed
algorithms are beneficial for the description of gear deviations as they allow the use of simple
formulas covering profile, helix and pitch evaluation for internal or external and spur or helical
gears. The presented equations contain the key fundamentals to complement existing standards.
They will become part of reference algorithms used by the Physikalisch-Technische
Bundesanstalt, the national metrology institute of Germany, to certify gear evaluation
software.
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Nomenclature

Symbol Name Range Unit

b Facewidth ∈ R+ mm
c Helix coefficient ∈ R+

0 —
db Base diameter ∈ R+ mm

flank Tooth flank direction

{
−1 : left

+1 : right
—

Fα Total profile deviation ∈ R+
0 mm

Fβ Total helix deviation ∈ R+
0 mm

ffα Profile form deviation ∈ R+
0 mm

ffβ Helix form deviation ∈ R+
0 mm

fHα Profile slope deviation ∈ R mm
fHβ Helix slope deviation ∈ R mm
Fp Cumulative pitch deviation ∈ R+

0 mm
f p Single pitch deviation ∈ R+

0 mm
Fp,i Individual cumulative pitch deviation ∈ R mm
Fvp,i Individual cumulative pitch deviation at

v-circle
∈ R mm

fp,i Individual single pitch deviation ∈ R mm
Fr,i Individual runout value ∈ R+

0 mm
Fr Runout deviation ∈ R+

0 mm
f y Deviation ∈ R mm
f resy Residual ∈ R mm

hand Slope direction of tooth


−1 : left

0 : spur

+1 : right

—

i Tooth number ∈ N+ —
inv α Involute α ∈ R+

0 rad
Lα Regression range for profile evaluation ⊂ R+

0 mm
LAE Reference length for fHα ∈ R+

0 mm
Lβ Regression range for helix evaluation ⊂ R+

0 mm
ly Length of roll ∈ R+

0 mm
m Slope of regression line ∈ R mm
MdK Dimension over (or between) balls ∈ R+

0 mm
mn Normal module ∈ R+ mm
MrK Radial single-ball dimension ∈ R+

0 mm
n Number of teeth ∈ N+ —
nz z-component of normal vector on

involute surface
∈ R —

pi Measurement point ∈ R3 mm
r Radius ∈ R+ mm
rb Base radius ∈ R+ mm
rs Radius of stylus tip ∈ R+ mm
rv Radius of v-circle ∈ R+ mm
r0 Radius of reference circle ∈ R+ mm
st0 Tooth thickness at reference circle in

transverse section
∈ R+ mm

type Type of gear

{
−1 : internal

+1 : external
—

x Profile shift coefficient ∈ R —
αt Transverse pressure angle ∈ (0,π] rad
αn0 Normal pressure angle at reference

circle
∈ (0,π] rad

βb Helix angle at base circle ∈ [0,π/2) rad
ηb Base space width half angle ∈ [0,2π) rad
φb Position of involute at base circle at

z= 0
∈ [0,2π) rad

2



Meas. Sci. Technol. 33 (2022) 125003 M Stein and F Härtig

1. Introduction

The second part of this work addresses the mathematical
description of involute gear flank and pitch deviations. The
main idea is to use a new involute coordinate system intro-
duced in part I of this article series [1]. This holistic 3D
approach allows a convenient, easy and reliable evaluation
of profile, helix and pitch deviations using the characteristic
properties of the involute helicoid. 3D evaluations are required
since measurement points are taken by 3D gear measurement
instruments, which can be generally referred to as 3D coordin-
atemeasuringmachines (CMMs)with tactile probing systems,
optical probe heads or computed tomography devices. How-
ever, due to the generative principle between mating gears, the
deviations are evaluated in the transverse plane, which is per-
pendicular to the gear axis. For helical gears, this is different to
evaluations taken on other regular geometries such as planes,
cylinders, cones or spheres, where the deviations are described
perpendicular to the object’s surface.

Another essential argument for the use of involute coordin-
ates is that they provide for a nuanced examination of the
generative motion between mating gears according to Euler’s
description [2]. The formulas used allow a function-orientated
evaluation to be made that takes all effects of the gear kin-
ematics into account, including those deviations which have
until recently not been given full consideration. One promin-
ent example is the correlation between pitch and profile devi-
ations and the associated radial shift of evaluation ranges.

The basic geometry and fundamental rules for the evalu-
ation of cylindrical involute gear deviations are described in
numerous standards and guidelines [3–7]. But because these
documents are lacking in computational details, manufactur-
ers of CMMs and software developers make use of their
own models and algorithms. Some of these have been in part
described in [8–10] and they quite obviously rely on differ-
ent approaches. This is why a software test service based on
agreed and independent reference algorithms is strongly urged
[11, 12].

This software test for cylindrical involute gear evaluations
uses reference pairs consisting of synthetic measurement
data and reference results. An independent evaluation soft-
ware developed at the Physikalisch-Technische Bundesanstalt
(PTB) is used to compute the reference results from the test
data sets containing 3D stylus sphere center coordinates. The
basic concepts and evaluation rules used in that software are
explained in this paper. The procedures are in line with the
definitions from the above mentioned international standards
and guidelines. However, the descriptions feature a higher
level of detail. All categories of gear deviation are computed
using the 3D model introduced in [1] that can also be used for
holistic inspection of various helical machine elements based
on areal measurement data [13]. This way, the equations in
this paper are capable of bridging between classical line based
gear metrology and holistic areal inspection which goes bey-
ond state of the art in this field.

The structure of this paper is as follows. Nomenclature
starts with a comprehensive list of the symbols used in this
paper that also includes the range of possible values and the

unit assigned to each quantity. Section 2 recalls some funda-
mental principles of gear kinematics that form the prerequis-
ites for function-oriented involute gear evaluation. The compu-
tation of involute gear deviations for individual measurement
points using the coordinate system introduced in [1] is the sub-
ject of section 3, whereas in section 4 the rules are provided
to computationally derive a set of evaluation parameters as
described in the standards and guidelines from individual point
deviations. The broad variety of evaluation options as dis-
cussed, for instance, in [6] is not included in this article.

Section 5 examines the influence of pitch deviations on
the evaluation of profile deviations. This interaction can only
be compensated when both pitch and profile measurements
are evaluated within the same coordinate system. Involute
coordinates allow this to be done in a convenient manner.

As the vast majority of running gears feature micro geo-
metry corrections, also referred to as flank modifications, to
ensure proper operating performance under load, section 6
shows how the most common modifications like reliefs and
crowning can be covered by the introduced model.

Finally, section 7 concludes this paper and includes an out-
look on further research activities aimed at establishing an
online software test service for industrial users to provide cer-
tification for gear evaluation software.

2. Nomencalture

Involute gear evaluation relies on the fundamental principles
of mating gears. The central characteristics are expressed in
the gearing law.

Gearing law
An involute gear driven at a constant angular
velocity is error-free if it produces a constant
angular velocity in the mating gear as well.

The generative principle describes the fundamental kin-
ematic principle of mating gears.

Generative principle
The motion of mating gears combines a
rotational with a translational movement.
When the driving wheel rotates with constant
velocity it causes a linear translation of the
contact point along the line of action which
also shows constant velocity.

Correct involute gear evaluation directly follows from
the demands posed by the gearing law and the generative
principle.

Involute profile evaluation criterion
According to the generative principle, the
evaluation of involute profile deviations must
reference equidistant points along the length
of roll, which correspond exactly to equally
spaced rolling angles.

The central aspects of mating involute gears and their eval-
uation principle are illustrated in figure 1.
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Figure 1. Mating gears. When the driving wheel with base radius rb1 rotates by ∆φb1, it causes the driven wheel with base radius rb2 to
rotate by ∆φb2 =

rb1
rb2
∆φb1. All contact points between the involutes of the driving and the driven wheels lie on the same straight line, the

so-called line of action.

3. Involute gear deviations

Geometrical deviations of involute gear flanks are derived
from the generative principle of mating gears. They are always
described and evaluated in the gear’s transverse plane. This is
in contrast to other geometries, where deviations are expressed
perpendicular to the object’s surface.

Involute gear deviations are typically divided into pro-
file, helix and pitch deviations (see figure 2). These three
measurement tasks are sufficient to determine and to correct
manufacturing errors for unmodified gears. Note that mod-
ern measurement techniques using optical or computed tomo-
graphy systems allow the analysis of all measurement points
taken on the gear flank. However, these measurement points
have also to be handled using the classical evaluation cross
sections.

In the discussion that follows, it is important to note that
every individual measurement point is treated as an independ-
ent involute point as introduced in [1]. An involute point is
expressed by five geometry parameters and three coordinates:

InvPnt = (type,hand,flank,rb,c;φb,r,z). (1)

The constants type, hand and flank define the algeb-
raic sign of the normal vector and hence the material side. rb
describes the size of the involute whereas c= tan(βb)/rb rep-
resents the radius-independent lead of the helix. The coordin-
atesφb, r and z describe the 3D location of the individual point
on an involute gear flank.

All deviations - whether of profile, helix or pitch - are cal-
culated in involute coordinates, as these provide many advant-
ages compared to Cartesian coordinates.

Measuring involute gears on CMMs presents us with two
special challenges. The first relates to measurements taken on

tactile CMMs and concerns the required stylus radius cor-
rection, i.e. translating stylus center point coordinates into
corresponding surface points. The second issue involves the
correction of the surface contact points, which are typically not
perfectly located within the evaluation cross sections. These
points have to be computationally shifted into the specified
evaluation paths (see figure 2).

In the case of an involute curve, both challenges are quite
easily overcome through the use of involute coordinates. As
the involute curve is its own parallel curve, radius correction
can be performed applying equation (22) from [1] as shown in
figure 3.

One of the striking characteristics of the involute helical
flank is that the z-component of the normal vector is constant
on any location of the surface according to equation (17) in
[1], namely

nz = type · hand · flank · sin(βb). (2)

Note that the actual normal vector on an involute profile
with deviatons is in general not tangent to the base circle. How-
ever, the procedure described in [6] defines a reference invol-
ute to the nominal base radius that is best-fitted into the meas-
urement points, i.e. the stylus sphere center points. The normal
vector of each measurement point is then perpendicular to this
reference involute and not to the actual profile with deviations.
The effects resulting from this procedure are considered to be
negligible.

After the necessary corrections of the measurement points
have been performed, the individual point deviation fy,i can be
calculated for each of the derived surface points.

Figure 4 illustrates the relation between the deviation fy,i
of an individual measurement point pi and its corresponding
involute coordinate φb,i. Each measurement point

4
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Figure 2. Cross sections and measurement tasks for the evaluation of cylindrical involute gears.

Figure 3. The offset curve of an involute is itself an involute with the same base radius. Its offset angle can easily be calculated as
φb,corr =

rs
rb
with rs denoting the stylus radius.

pi = (type,hand,flank,rb,c;φb,i,ri,zi) (3)

is considered as belonging to a perfect involute with nominal
base radius rb whose angular position is rotated by∆φb,i. Con-
sidering only the constant flank, each deviation is easily cal-
culated with the correct algebraic sign as follows:

fy,i = flank · rb ·∆φb,i = flank · rb · (φb,ref −φb,i). (4)

Following the traditional evaluation strategy, the reference
angle φb,ref for each tooth should be chosen according to the

approach described in [6]. For a holistic evaluation of invol-
ute gears, correlations between the profile and pitch devi-
ations must be considered. The determination of the reference
angles φb,ref and the evaluation of deviations is described in
section 5.

In general, the algebraic sign of the deviation f y does not
correlate to plus orminusmaterial.More precisely, for external
gears a positive deviation fy > 0 is understood as plus material
and a negative deviation fy < 0 as minus material. For internal
gears the opposite is true, with fy > 0 indicatingminusmaterial
and fy < 0 plus material (figure 4).
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4. Derivation of standardized parameters from
involute gear deviations

The preceding section described the calculation of deviations
for individual points on the gear flank. This section deals with
the determination of themost prominent evaluation parameters
calculated from these pointwise deviations.

Given the great number of national and international stand-
ards and guidelines as well as the diversity of inspection rules
applied by companies, this article can only concentrate on the
fundamental evaluation methods. The enormous number of
different evaluation ranges and options as well as their indi-
vidual interpretation will not be covered here.

4.1. Profile evaluation

In this section the standardized profile evaluation [6] is presen-
ted independently of the effects resulting from a holistic 3D
evaluation approachwhere correlations between pitch and pro-
file are also considered. These correlations will be precisely
described in section 5.

The deviations f y are plotted against the nominal length of
roll ly, i.e. the length to the reference profile (dashed line in
figure 4), in order to obtain the evaluation diagram for the cal-
culation of all standardized parameters (slope, form, and total
deviation, tip and root reliefs, crowning, etc).

For each measurement point pi = (type,hand,flank,
rb,c;φb,i,ri,zi) the corresponding length of roll ly,i is calcu-
lated by

ly,i =
√
r2i − r2b− fy,i. (5)

The example depicted in all the cases (a)–(d) in figure 4
yields the diagram shown in figure 5.

If the measurement points are not recorded following the
involute profile evaluation criterion (see section 2), numer-
ical correction has to be applied. This can take on particular
importance when scanning mode is used on gear measuring
devices or CMMs that do not follow the generative principle
[14]. This is also strongly recommended in ISO 18653 [15].

The three most prominent evaluation parameters for profile
deviations are

• Total profile deviation Fα,
• Profile slope deviation fHα,
• Profile form deviation ffα.

Different standards and guidelines may define different
evaluation ranges for these quantities. However, the underly-
ing computational rules described in this article are always the
same.

In the case of a plain involute profile, the deviation within
the specified evaluation range Lα is calculated by

Fα =max
i
fy,i−min

i
fy,i. (6)

Profile slope deviation fHα is calculated by means of a linear
least square fit considering the deviations inside the specified
evaluation range Lα. Two points have to be remembered here:

• For historical reasons fHα is defined as a length instead of an
angle.

• In general, the evaluation range Lα used for computing the
least squares line is different from the reference length LAE
in which fHα is determined [6].

When m denotes the slope of the fitted least squares line,
the profile slope deviation is

fHα = m ·LAE. (7)

According to [5, 6], profile slope deviation is deemed to be
positive when the fitted least squares line (mean profile line)
with slope m shows an increase in material toward the tooth
tip, relative to the nominal involute. Otherwise it is negative
(or zero). This applies to both external and internal gears.

Figure 5(a) shows the profile deviations of external gears.
The diagram is plotted from root to tip in the direction of
increasing length of roll. The material side is below the curve.
Figure 5(b) shows the profile deviations of internal gears.
Unlike the diagram for external gears, this diagram is plotted
from tip to root, but also in the direction of increasing length
of roll. The material side is above the curve.

The shape of an involute is defined solely by its base
circle radius rb. The relative base circle deviation (rb,act −
rb,nom)/rb,nom is approximately proportional to the profile
slope deviation (see figure 6) according to

fHα
LAE,nom

≈ rb,act − rb,nom
rb,nom

. (8)

Note that equation (8) holds for external and internal gears
as well as for left and right flanks. A larger base circle always
results in a positive profile slope deviation according to the
definition in [5, 6].

The profile form deviation ffα is calculated from the
extreme values of the residuals from the least squares line
denoted by f resy,i .

ffα =max
i
f resy,i −min

i
f resy,i . (9)

4.2. Helix deviations

For each measurement point pi = (type,hand,flank,
rb,c;φb,i,ri,zi) the deviation fy,i from equation (4) is plotted
against its z-coordinate zi. In this diagram, all helix deviation
parameters can be determined.

The three most prominent evaluation parameters for helix
deviations are

• Total helix deviation Fβ ,
• Helix slope deviation fHβ ,
• Helix form deviation ffβ .

6
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Figure 4. Algebraic sign of deviations for all gear type and flank cases.

Different standards and guidelines may define different
evaluation ranges for these quantities. However, the underly-
ing computational rules described in this article are always the
same.

In the case of an unmodified helix, the deviation within the
specified evaluation range Lβ is calculated by

Fβ =max
i
fy,i−min

i
fy,i. (10)

7
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Figure 5. Profile deviation f y against nominal length of roll ly. When the gear type (external or internal) is changed, not only does the
material side switch but the tip and root are also reversed.

Figure 6. Every profile deviation may be interpreted as local base circle deviation. This leads to equation (8).

Helix slope deviation fHβ is calculated by means of a linear
least square fit considering the deviations inside the specified
evaluation range Lβ . Two points have to be remembered here:

• For historical reasons fHβ is defined as a length instead of an
angle.

• In general, the evaluation range Lβ used for computing the
least squares line is different from the reference length b in
which fHβ is determined.

When m denotes the slope of the fitted least squares line,
the helix slope deviation is

fHβ = m · b . (11)

According to [5, 6], helix slope deviation is deemed to be pos-
itive when the actual helix angle is larger than the nominal
helix angle. For spur gears helix slope deviation is positive
when the actual helix is right-handed and negative if it is left-
handed. This applies to both external and internal gears as well
as to left and right flanks.

The relation of helix slope deviation and actual base
helix angle is depicted in figure 7 and explicitly given by
equation (12).

fHβ = b · (tanβb,act − tanβb,nom). (12)

The helix form deviation ffβ is calculated from the extreme
values of the residuals f resy,i from the least squares line.

ffβ =max
i
f resy,i −min

i
f resy,i . (13)

4.3. Pitch deviations

In this section, the evaluation of transverse pitch deviations is
described. The transverse pitch is defined to be the arc length
between two successive tooth flanks of equal direction on the
reference radius r0 (see figure 8). The first pitch is defined
between the last and the first tooth.

The individual cumulative pitch deviation Fp,i at the left or
right flank of tooth number i is referenced to the actual position

8
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Figure 7. Base cylinder with involute helicoid. For each measurement point, the helix deviation is evaluated in a direction tangent to the
base circle according to equation (4). If all the deviations are rotated into a common base tangent plane, the resulting curve can be
considered as a projected generatrix and the relation in equation (12) becomes obvious.

Figure 8. Definitions of cumulative pitch deviations and tooth
thickness.

of the first tooth φb,1,act, which defines the nominal positions
of all teeth φb,i,nom (see section 4.3 in [1]). This also allows
profile shift or any other tooth thickness modification to be
taken into account. Fp,i is calculated by

Fp,i = r0(φb,i,nom −φb,i,act) , (14)

where1

φb,i,nom = φb,1 − (i− 1)
2π
n

mod 2π. (15)

Figure 9 illustrates that in general there is no correlation
between the algebraic sign of Fp,i and plus or minus mater-
ial on the flank.

The individual single pitch deviation fp,i is derived as
follows:

fp,1 = Fp,1 −Fp,n =−Fp,n (16)

fp,i = Fp,i−Fp,i−1 (2⩽ i⩽ n). (17)

In order to avoid cumulative errors, it is recommended to
calculate the individual single pitch deviations fp,i from the
individual cumulative pitch deviations Fp,i.

If the pitch deviations are to be evaluated on a circle
with a radius rv that differs from the reference circle radius,
the individual cumulative pitch deviations can easily be
calculated by

Fvp,i = rv(φb,i,nom −φb,i,act). (18)

The cumulative pitch deviation Fp is defined as

Fp =max
i
Fp,i−min

i
Fp,i. (19)

1 Themodulo operator mod 2π calculates the remainder of the division of any
real number by 2π. This remainder always lies in the interval [0,2π).

9
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Figure 9. Individual cumulative pitch deviations Fp,i. The algebraic sign according to equation (14) depends on the absolute position of the
flank related to its nominal position and does not necessarily correspond to plus or minus material.

The single pitch deviation f p is

fp =max | fp,i|. (20)

In contrast to the calculations, values in diagrams can be shif-
ted by an absolute value based on individual conventions. The
most common representation follows DIN 3960 [4] (with-
drawn since 2012) and defines Fp,n = 0. Note that this does
not affect the values of Fp and f p.

4.4. Tooth thickness

The actual transverse tooth thickness st0,i on tooth number i is
an absolute measure. It is defined to be the arc length between
the left and right flanks of tooth number i on the reference
radius r0 (see figure 10) and is evaluated according to

st0,i = r0 (∆φb,i− 2 · type · invαt(r0)) , (21)

where

∆φb,i = type
(
φle
b,i,act −φri

b,i,act

)
mod 2π. (22)

4.5. Calculation of a stylus sphere radius for double-flank
contact

Some important gear measurands are defined to be measured
with a stylus sphere simultaneously touching both flanks of
a tooth space on a given diameter of the gear. Such meas-
urements are, for example, used to evaluate the gear’s runout
deviations as well as the dimension over and between balls
which allows to draw conclusions on the tooth thickness. This
requires the calculation of a theoretical stylus sphere radius.

Let the contact radius r on the gear flanks be given and let

αt(r) = arccos
( rb
r

)
(23)

10
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Figure 10. Definitions of angles involved in tooth thickness
calculations.

be the pressure angle at this radius r. When

ηb =
π− type · 4 · x · tanαn0

2n
− type · invαt(r0) (24)

denotes the base space width half angle of the gear, the radius
rs of the stylus sphere touching both flanks simultaneously on
a cylinder with radius r is calculated by solving

rs =
rb

cosβb
(tan(ηb− crs sinβb+ type · tanαt(r))

−type · tanαt(r)) . (25)

Note that equation (25) is implicit and transcendental with
respect to rs and must be solved by a numerical approxima-
tion method such as described in [16]. However, in the case of
a spur gear (βb = 0), a direct solution is given by

rs = rb (tan(ηb+ type · tanαt(r))− type · tanαt(r)) . (26)

The theoretical derivation of equation (25) can be found
in [17].

4.6. Runout

Runout can be determined following two different approaches.
One uses direct measurements in double-flank contact, the
other is based on calculations from pitch deviations.

The direct approach yields a set of n sphere center coordin-
ates (xi,yi,zi) from measurements in double-flank contact loc-
ated in one transverse plane zi = zj for i, j= 1, . . . ,n. The radial

distances to these stylus sphere center coordinates then lead to
the individual values Fr,i with

Fr,i =
√
x2i + y2i for i= 1, . . . ,n. (27)

The indirect approach is based on the set of 2n angles φle
b,i

and φri
b,i of the left and right flanks as derived from pitch devi-

ations. Following the definition of tooth space numbers (see
figure 2 in [1]), for external gears the actual value of the ith
space width half angle ηb,i is calculated with

ηb,1 =
φri
b,n−φle

b,1

2
mod 2π (28)

and

ηb,i =
φri
b,i−1 −φle

b,i

2
mod 2π for i= 2, . . . ,n. (29)

Accordingly, for internal gears ηb,i is calculated by

ηb,1 =
φle
b,n−φri

b,1

2
mod 2π (30)

and

ηb,i =
φle
b,i−1 −φri

b,i

2
mod 2π for i= 2, . . . ,n. (31)

Based on each actual angle ηb,i, the corresponding contact
radius ri for double-flank contact in the ith tooth space may
now be derived by numerically solving equation (25) with a
theoretical stylus sphere radius rs. This theoretical value of rs
may either be given by technical specifications for the meas-
urement task or can be calculated based on the nominal gear
geometry as described in section 4.5. Once the contact radius
ri is determined for each tooth space, the corresponding radial
distance to the stylus sphere center Fr,i is obtained by

Fr,i =
√
r2b+(rb tanαt(ri)+ type · rs cos(βb))2 for i= 1, . . . ,n.

(32)

For reference, see [17, figures 6, 7 and equation (46)].
The runout deviation Fr is defined as

Fr =maxFr,i−minFr,i. (33)

Note that the results of both methods are only comparable if
the same stylus sphere radius rs is used for both the measure-
ment in the direct approach and the calculation in the indirect
approach. In practice, both methods may still lead to different
outcomes as the contact points for the underlying measure-
ments are located on different radii, which will lead to differ-
ent form deviation effects.
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Figure 11. The dimension over (or between) balls MdK,ij depends on the actual pitch of the gear represented by the angle γ.

4.7. Dimension over and between balls

Taking the results from section 4.6, the radial single-ball
dimension MrK,i for the tooth space number i is computed
with

MrK,i = Fr,i+ type · rs. (34)

However, the calculation of the dimension over (or between)
ballsMdK,ij must take into account the actual pitch of the gear
expressed in terms of φle

b,i and φ
ri
b,i−1 as well as φ

le
b,j and φ

ri
b,j−1

with j denoting the tooth space opposite to the ith tooth space.
More precisely, we choose

j=


i+

n
2

for even n ,

i+
n− 1
2

for odd n.
(35)

For the triangle shown in figure 11, we have

γ =
φle
b,i+φri

b,i−1

2
−

φle
b,j+φri

b,j−1

2
, (36)

where both terms should be reduced mod 2π if necessary, and
derive from the law of cosines that

MdK,ij =
√
F2
r,i+F2

r,j− 2Fr,iFr,j cos(γ)+ type · 2rs. (37)

5. Correlation between profile and pitch deviation

Pitch deviations can falsify the profile evaluation if not prop-
erly separated from one another. For the sake of simplicity this
is explained on an ideal involute shifted by a pitch deviation.

In figure 12 the actual profile deviates from the nominal
profile only by a pitch error r0 ·∆φb. The profile error is eval-
uated in terms of length of roll along the line of action. Each

measurement point of the profile measurement is evaluated
against the nominal profile. The effect is that the actual point
and the corresponding nominal point of the profile are located
on different circles with radii ract and rnom leading to a shift of
the complete profile measurement by the amount of the pitch
error. This means that the profile will be evaluated in a dif-
ferent evaluation range than the one specified, with this range
shifted in terms of length of roll by

ly,act = ly,nom + rb ·∆φb (38)

and in the radial direction by

ract = rb
√
1+(tan(αt(rnom))+∆φb)2. (39)

The active profile corresponding to the evaluation ranges on
the nominal and actual profiles are depicted in red in figure 12.

A suitable method for correcting this influence on the pro-
file evaluation based on individual reference profiles for each
tooth is explained in VDI 2612 Part 1 [6].

6. Flank modifications

Micro geometry corrections (also referred to as flank modific-
ations) are used to compensate for the elastic deformation of
running gears under load. The most prominent modifications
are crowning and slope modification as well as reliefs in both
the profile and helix directions. This leads to intended devi-
ations from the ideal involute helicoid that must be considered
for a proper failure analysis.

VDI 2612 Part I provides a broad variety of evaluation rules
for the inspection of modified profiles and helices on invol-
ute gears [6]. These rules build upon the standard procedure
based on equations (4) and (5) from sections 3 and 4 in this

12
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Figure 12. Correlation between profile and pitch deviation.

work. The characteristics of modifications are then treated by
evaluating the derived deviations in separated ranges and with
varied regression elements (e.g. parabolas instead of straight
lines).

Special attention is to be paid when several flank modi-
fications are combined. Although this is very common in
gear production, standards and guidelines still lack precise
evaluation rules.

7. Conclusion and outlook

The geometrical and computational basics for the evaluation of
cylindrical involute gear measurements on CMMs have been
described. The models and formulas are based on the funda-
mental gear kinematics and a 3D description using an involute
gear coordinate system introduced in [1].

The presented equations form the basis of PTB’s software
test service to be implemented in its online validation system,
TraCIM [18], as part of an ongoing research project (https://
tracim.ptb.de). This service will provide independent test data
sets for profile, helix and pitch deviations on involute gears.
The data sets can be evaluated by manufacturers of CMMs and
software developers to test their own evaluation algorithms
against PTB’s reference results. This will enable gear metro-
logy service providers to certify their software for the first time
and to reliably quantify the accuracy of their algorithms.

The software test service will also cover the evaluation
of involute gears featuring all possible combinations of flank
modifications as only briefly described in section 6. Details on
evaluating deviations of modified gears will be the subject of
future publications.
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