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Abstract
In this work we generalize the concept of Co-∗n-modules to the concept of Co-∗n-tuple of
Contravariant Functors between abelian categories.
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1 Introduction

For a unital associative ring A, a fixed right A-module M , and D = EndA(M), let fgd-tl(MA) denote
the class of all torsionless right A-modules whoseM -dual are finitely generated overD and fg-tl(DM )
denote the class of all finitely generated torsionless left D-modules. M is called costar module if

HomA(−,M) : fgd-tl(MA)� fg-tl(DM) : HomD(−,M)

is a duality. Costar modules were introduced by Colby and Fuller in [1]. M is said to be an r-costar
module provided that any exact sequence

0 −→ X −→ Y −→ Z −→ 0

such that X and Y are M -reflexive, remains exact after applying the functor HomA(−,M) if and only
if Z is M -reflexive. The notion of r-costar module was introduced by Liu and Zhang in [2]. We say
that a right A-module X is n-finitely M -copresented if there exists a long exact sequence

0−→X−→Mk0−→Mk1−→...−→Mkn−1

such that n is a positive integer and ki are positive integers for 0 ≤ i ≤ n − 1 . The class of all
n-finitely M -copresented modules is denoted by n-cop(M). We say that a right A-module M is a
finitistic n-self-cotilting module provided that n-cop(M) = (n+ 1)-cop(M) and for any exact sequence

0 −→ X −→Mn −→ Z −→ 0
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such that Z ∈ n-cop(M) and n is a positive integer, remains exact after applying the functorHomA(−,M).
Finitistic n-self-cotilting modules were introduced by Breaz in [3]. In [4], L. Yao and J. Chen introduced
the concept of co-∗n-modules, which is a generalization of finitistic n-self-cotilting modules to the
infinite case, i.e. we say that a rightA-moduleM is a co-∗n-module provided that n-cop(M) = (n+1)-
cop(M) and for any exact sequence

0 −→ X −→MI −→ Z −→ 0

such that Z ∈ n-cop(M) and I is a set, remains exact after applying the functor HomA(−,M).

In [5] Castaño-Iglesias generalizes the notion of costar module to Grothendieck categories. Pop
in [6] generalizes the notion of finitistic n-self-cotilting module to finitistic n-F -cotilting object in abelian
categories and he describes a family of dualities between some special abelian categories. Breaz
and Pop in [7] generalize a duality exhibited in [3, Theorem 2.8] to abelian categories.

In [8], the author generalizes the notion of r-costar module to r-costar pair of contravariant functors
between abelian categories, by generalizing the work in [2]. In this paper we generalize the work in
[4] by generalizing the notion of Co-∗n-modules to a Co-∗n-tuple of contravariant functors between
abelian categories. We use the same technique of proofs as in [4].

2 Preliminaries

Let F : C−→D and G : D−→C be additive and contravariant functors between two abelian categories
C and D. It is said that they are adjoint on the right if there are natural isomorphisms

ηX,Y : HomC(X,G(Y ))−→HomD(Y, F (X))

for all X ∈ C and all Y ∈ D. Then they induce two natural transformations δ : 1C−→GF and
δ
′

: 1D−→FG defined by δX = η−1
X,F (X)

(1F (X)) and δ
′
Y = η

G(Y ),Y
(1G(Y )). Moreover the following

identities are satisfied for each X ∈ C and Y ∈ D.

F (δX ) ◦ δ
′

F (X) = 1F (X) and G(δ
′

Y
) ◦ δG(Y ) = 1G(Y ).

F and G are left exact, since they are adjoint on the right. The pair (F,G) is called a duality if there
are functorial isomorphisms GF ' 1C and FG ' 1D. An object X of C (respectively Y of D) is called
F -reflexive (respectively, G-reflexive) in case δX (respectively, δ

′
Y ) is an isomorphism. An object X of

C (respectively Y of D) is called F -torsionless (respectively, G-torsionless) in case δX (respectively,
δ
′
Y ) is a monomorphism. By Ref(F ) we will denote the full subcategory of all F -reflexive objects. As

well by Ref(G) we will denote the full subcategory of all G-reflexive objects. It is clear that the functors
F and G induce a duality between the categories Ref(F ) and Ref(G).

Let U be an object in C. For an object X in an abelian category C, we say that X is U -generated

if there is an exact sequence
U (I) −→ X −→ 0,
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where I is an index set and if there is an exact sequence

U (I2) −→ U (I1) −→ X −→ 0,

where each Ii is an index set, then X is said to be U -presented. We say that X is U -cogenerated if
there is an exact sequence

0 −→ X −→ UI ,

where I is an index set and if there is an exact sequence

0 −→ X −→ UI1 −→ UI2 ,

where each Ii is an index set, then X is said to be U -copresented. We say that X is n-U -copresented
if there is an exact sequence

0 −→ X −→ UI0 −→ UI1 −→ ... −→ UIn−2 −→ UIn−1 ,

where each Ii is an index set and n is a positive integer. We denote by Cogen(U), Copres(U)

and n-Copres(U) the classes of all U -cogenerated, U -copresented and n-U -copresented objects
respectively. It is clear that (n+ 1)-Copres(U) ⊆ n-Copres(U), for every positive integer n.

An object U in C is called co-F -small if for any set I, there is a canonical isomorphism F (UI) ∼=

F (U)(I). The object U is called n-F -quasi-injective if for any exact sequence

0 −→ X −→ UI −→ Y −→ 0,

where Y ∈ n-Copres(U), the sequence,

0 −→ F (Y ) −→ F (UI) −→ F (X) −→ 0,

is exact.
Let F : C−→D and G : D−→C be additive and contravariant functors between two abelian

categories C and D, such that they are adjoint on the right. Let U ∈ C such that V = F (U) is a
projective object in D. If U is F -reflexive, the tuple (F,G, V, U) is called a Co-∗n-tuple, where n is a
positive integer, if:
(i) U is co-F -small,
(ii) (n+ 1)-F -quasi-injective,
(iii) n-Copres(U) = (n+ 1)-Copres(U).

There are two examples of contravariant functors that could satisfy the conditions to be Co-∗n-

tuple. The first is the typical example and the second was exhibited by Casta
˜
no-Iglesias in [5].

Let A be unital associative ring and M a right A-module. Suppose that D = EndA(M), then it is
clear that M is a D-A-bimodule. The contravariant functors ∆ = HomA(,M) : Mod-A −→ D-Mod

and ∆
′

= HomD(,M) : D-Mod −→Mod-A are right adjoint.
Let G be a group. For G-graded rings A = ⊕x∈GAx and B = ⊕x∈G xB we will denote by Modgr-

A (respectively, by B-Modgr) the category of all G-graded unital right A-modules (respectively, left
B-modules) . For N,M ∈ Modgr-A we can consider the G-graded abelian group HOMA(N,M),
whose xth homogeneous component is

xHOMA(N,M) = {f ∈ HomA(N,M)|f(Ny) ⊆Mxy, for all y ∈ G}.

1703



British Journal of Mathematics and Computer Science 4(12), 1701-1709, 2014

IfN,M ∈ B-Modgr we can consider the G-graded abelian groupHOMB(N,M), whose xth homogeneous
component is

HOMB(N,M)x = {f ∈ HomB(N,M)|f(yN) ⊆yx M , for all y ∈ G}.
If we suppose that B = HOMA(M,M) = END(MA), then B is a G-graded ring and M is a graded
(B,A) -bimodule. Now we have a pair of contravariant functors

Hgr
A = HOMA(−,M) : Modgr −A� B −Modgr : HOMB(−,M) =B Hgr.

If for any object X ∈ C there is a projective object P ∈ C and an epimorphism P−→X−→0,

we say that C has enough projectives. From now on we suppose that both C and D have enough
projectives. It is clear that we can construct a projective resolution for any object X. Suppose we
have a projective resolution of X in D.

P : ...−→P2−→P1−→P0−→X−→0.

This gives rise to the chain complex

0−→G(X)−→G(P0)−→G(P1)−→...,

for which we can compute its homology at the n-th spot (the kernel of the map from G(Pn) modulo
the image of the map to G(Pn)) and denote it by Hn (G(P )). We define RnG(X) = Hn (G(P )) as
the n-th right derived functors of G. The n-th right derived functors of F can be defined similarly. For
the functor G and for a positive integer n, we define ⊥T i>nG = {X ∈ D : RiG(X) = 0 for every i > n}.

In the same way one can define ⊥T i>nF .
Let

0 −→ Q
f−→ U −→ V −→ 0

be an exact sequence in C. Applying the functor F we get the exact sequence

0 −→ F (V ) −→ F (U)
p−→ X −→ 0, (2.1)

whereX = Im(F (f)) and F (f) = j◦p is the canonical decomposition of F (f), where j : X −→ F (Q)
is the inclusion map. Applying the functor G to the sequence (2.1), we have the following exact
sequence

0 −→ G(X)
G(p)−→ GF (U) −→ GF (V ).

Now if we put α = G(j) ◦ δQ, then

G(p) ◦ α = G(p) ◦G(j) ◦ δQ = G(j ◦ p) ◦ δQ = GF (f) ◦ δQ = δU ◦ f.

So we have the following commutative diagram with exact rows.

0 −→ Q
f−→ U −→ V −→ 0

↓α ↓δU ↓δV
0 −→ G(X)

G(p)−→ GF (U) −→ GF (V )

(2.2)
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Lemma 2.1. [5, Lemma 1.1, Lemma 1.2 ]Let F : C−→D and G : D−→C be a pair of contravariant
functors as above and assume that U and V are objects of C and D, respectively. Then:
(i) F (X) ∈ Copres(F (U)) whenever X is a U -presented object of C,
(ii) G(Y ) ∈ Copres(G(V )) whenever Y is a V -presented object of D.
For the next statements, we assume that U and V are generators of C and D, respectively.
(iii) X is F -torsionless if and only if X ∈ Cogen(G(V )), for every X ∈ C,

(iv) Y is G-torsionless if and only if Y ∈ Cogen(F (U)), for every Y ∈ D.

Lemma 2.2. Let F and G be a pair of contravariant functors as above. Let V be a projective
generator in D with G(V ) = U and let n be a positive integer. For any Y ∈ D, if RiG(Y ) = 0 for
1 ≤ i ≤ n, then G(Y ) ∈ (n+ 2)-Copres(U).

3 Co-∗n-tuple Pair of Contravariant Functors

Throughout this section, let F : C−→D and G : D−→C be a pair of additive and contravariant functors
which are adjoint on the right, between abelian categories. As well, let U be a F -reflexive object in C

with F (U) = V be a projective generator in D. Moreover, we consider a positive integer n.

Proposition 3.1. Suppose that (F,G, V, U) is a Co-∗n-tuple. Then for any X ∈ n-Copres(U), δX

is an isomorphism and RiG(F (X)) = 0, for every i ≥ 1.

Proof. Let X ∈ n-Copres(U). It follows that X ∈ (n + 1)-Copres(U), by assumptions. Hence there
is an exact sequence

0 −→ X −→ UI −→ Y −→ 0,

where Y ∈ n-Copres(U). Since (F,G, V, U) is a Co-∗n-tuple we have the exact sequence

0 −→ F (Y ) −→ F (UI) −→ F (X) −→ 0,

after applying the functor F. Applying the functor G to the last sequence and taking into account that
V is projective, hence V (I) = F (U)(I) = F (UI) is also projective, we get an exact sequence

0 −→ GF (X) −→ GF (UI) −→ GF (Y ) −→ R1G(F (X)) −→ 0,

and the following commutative diagram with exact rows

0 −→ X −→ UI −→ Y −→ 0
↓δX ↓δ

UI ↓δY
0 −→ GF (X) −→ GF (UI) −→ GF (Y ) −→ R1G(F (X)) −→ 0.

By Lemma 2.1, δY is a monomorphism. By Snake Lemma, it follows that δX is an isomorphism since
δUI is an isomorphism. Then δY is also an isomorphism by a similar argument. Hence,R1G(F (X)) =
0, by commutativity of the right square. Since Y ∈ n-Copres(U), R1G(F (Y )) = 0. Then we can get
the assertion inductively.

Theorem 3.1. The following conditions are equivalent
(1) (F,G, V, U) is a Co-∗n-tuple.
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(2) i) U is co-F -small,
(ii) For any exact sequence 0 −→ X −→ UI −→ Y −→ 0, where X ∈ n-Copres(U) and I is a set, it
remains exact after applying the functor F if and only if Y ∈ n-Copres(U).

Proof. (1) ⇒ (2) Suppose that we have an exact sequence 0 −→ X −→ UI −→ Y −→ 0, where
X ∈ n-Copres(U) and I a set. Assume that Y ∈ n-Copres(U). Since (F,G, V, U) is a Co-∗n-tuple,
we get the exact sequence

0 −→ F (Y ) −→ F (UI) −→ F (X) −→ 0.

Conversely, assume that the sequence

0 −→ F (Y ) −→ F (UI) −→ F (X) −→ 0

is exact. Applying the functor G we get the following long exact sequence

0 −→ GF (X) −→ GF (UI) −→ GF (Y ) −→ R1G(F (X)) −→
R1G(F (UI)) −→ R1G(F (Y )) −→ ....

(3.1)

By Proposition 3.1, δX is an isomorphism and RiG(F (X)) = 0 for any i ≥ 1. Thus, we have the
following commutative diagram with exact rows

0 −→ X −→ UI −→ Y −→ 0
↓δX ↓δ

UI ↓δY
0 −→ GF (X) −→ GF (UI) −→ GF (Y ) −→ 0

It is clear, by Snake Lemma, that δY is an isomorphism, which means that Y ∼= GF (Y ). From the

exactness of sequence (3.1) we conclude that RiG(F (Y )) ∼= RiG(F (UI)) = 0 for any i ≥ 1, so by
Lemma 2.2, Y ∼= GF (Y ) ∈ n-Copres(U). (2)⇒ (1) It is enough to prove n-Copres(U) = (n + 1)-
Copres(U). If X ∈ n-Copres(U) , then F (X) is V -generated over D, thus by [5, Lemma 2.2], there
exists an exact sequence 0 −→ X −→ UI −→ Y −→ 0, which remains exact after applying the
functor F. Then Y ∈ n-Copres(U) , hence X ∈ (n+ 1)-Copres(U).

Proposition 3.2. Suppose that (F,G, V, U) be a Co-∗n-tuple. Then G is an exact functor in
F (n-Copres(U)). Moreover F (n-Copres(U)) =⊥ T i>1

G .

Proof. By Proposition 3.1 we have F (n-Copres(U)) ⊆⊥ T i>1
G and G is an exact functor in F (n-

Copres(U)). Conversely, for any X ∈⊥ T i>1
G , by Lemma 2.2, G(X) ∈ n-Copres(U). Since V is a

generator in D, there is an exact sequence 0 −→ Y
f−→ V (I) g−→ X −→ 0, where I is a set. If we

apply the functor G we get the long exact sequence

0 −→ G(X) −→ G(V (I)) −→ G(Y ) −→ R1G((X)) −→
R1G((V (I))) −→ R1G((Y )) −→ ....

By assumption RiG((X)) = 0 for any i ≥ 1. Since RiG((V (I))) = 0, for any i ≥ 1, RiG((Y )) = 0
for any i ≥ 1, by the exactness. Thus Y ∈⊥ T i>1

G and hence by Lemma 2.2, G(Y ) ∈ n-Copres(U).
Since (F,G, V, U) is a Co-∗n-tuple, applying the functor F to the following sequence

0 −→ G(X) −→ G(V (I)) −→ G(Y ) −→ 0
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we get the following commutative diagram with exact rows

0 −→ Y −→ V (I) −→ X −→ 0
↓
δ
′
Y

↓
δ
′
V (I)

↓
δ
′
X

0 −→ FG(Y ) −→ FG(V (I)) −→ FG(X) −→ 0

Hence by Snake Lemma, δ
′
X is an epimorphism and Ker(δ

′
X) ∼= Co ker(δ

′
Y ), since δ

′

V (I) is an
isomorphism. Similarly δ

′
Y is also an epimorphism. Thus, δ

′
X is an isomorphism and therefore

X ∼= FG(X) ∈ F (n-Copres(U)). So F (n-Copres(U)) =⊥ T i>1
G .

Proposition 3.3. Suppose that (F,G, V, U) be a Co-∗n-tuple. Then F preserves any exact
sequence in n-Copres(U).

Proof. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be an exact sequence in n-Copres(U). Applying the functor
F we get the following long exact sequence

0 −→ F (Z)
F (g)−→ F (Y )

F (f)−→ F (X)
α−→ R1F (Z) −→ ....

Thus we can get the following two exact sequences

0 −→W −→ F (X) −→ Q −→ 0,

0 −→ F (Z) −→ F (Y ) −→W −→ 0,

where Q = Imα and W = ImF (f). Applying the functor G to the last sequence we get the following
commutative diagram with exact rows:

0 −→ X −→ Y −→ Z −→ 0
↓ ↓δY ↓δZ

0 −→ G(W ) −→ GF (Y ) −→ GF (Z) −→ R1G(W ) −→ 0
.

It is clear by Proposition 3.1 that δY and δZ are isomorphisms and RiG(F (Y )) = 0 = RiG(F (Z)),

for any i ≥ 1. By Snake Lemma, X ∼= G(W ) and by the exactness RiG(W ) = 0 for any i ≥ 1. Hence
by Proposition 3.2, W = F (D) for some D ∈ n-Copres(U). Therefore

W = F (D) ∼= F (GF (D)) = FG(F (D)) = FG(W ) ∼= F (X).

Hence F (f) is an epimorphism, and therefore the induced sequence

0 −→ F (Z)
F (g)−→ F (Y )

F (f)−→ F (X) −→ 0

is exact.

Theorem 3.2. The following conditions are equivalent:
(1) (F,G, V, U) is a Co-∗n-tuple.
(2) (i) U is co-F -small,
(ii) For any exact sequence 0 −→ X

f−→ Y
g−→ Z −→ 0 with X,Y ∈ n-Copres(U), we have

Z ∈ n-Copres(U) if and only if 0 −→ F (Z)
F (g)−→ F (Y )

F (f)−→ F (X) −→ 0 is exact.

Proof. (1)⇒(2) The necessity follows from Proposition 3.3 and the sufficiency from a similar proof to
that of (1)⇒(2) in Theorem 3.1.
(2)⇒(1) It follows from (2)⇒(1) in Theorem 3.1.
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Proposition 3.4. Suppose that (F,G, V, U) is a Co-∗n-tuple. Then n-Copres(U) is closed under
extensions if and only if n-Copres(U) ⊆⊥ T 1

F = {X ∈ C : R1F (X) = 0}.

Proof. Suppose that n-Copres(U) is closed under extensions. For any X ∈ n-Copres(U) one can
construct an exact sequence using the canonical maps to get an extension 0 −→ U −→ Y −→
X −→ 0 of U by X. We have Y ∈ n-Copres(U), by assumption. By Proposition 3.3, F preserves any
exact sequence in n-Copres(U), so applying F to the last exact sequence we get the exact sequence

0 −→ F (X) −→ F (Y ) −→ F (U) −→ 0,

thus by the exactness, R1F (X) = 0, so X ∈⊥ T 1
F and hence n-Copres(U) ⊆⊥ T 1

F . Conversely. For
any extension 0 −→ X −→ Y −→ Z −→ 0, of X by Z, where X,Z ∈ n-Copres(U), the induced
sequence

0 −→ F (Z) −→ F (Y ) −→ F (X) −→ 0,

is exact by assumption. According to Proposition 3.1, both δX and δZ are isomorphisms and F (X), F (Z) ∈⊥
T i≥1
G . Then it is clear that δY is an isomorphism and F (Y ) ∈⊥ T i≥1

G . Hence by Lemma 2.2, we have
Y ∼= GF (Y ) ∈ n-Copres(U).

Theorem 3.3. The following conditions are equivalent:
(1) (F,G, V, U) is a Co-∗n-tuple.
(2) There is a duality

G :⊥ T i≥1
G � n-Copres(U) : F

Proof. (1)⇒(2) By Propositions 3.1 and Propositions 3.2.
(2)⇒(1) Since V (I) ∈⊥ T i≥1

G , we get F (UI) ∼= F (G(V )I) ∼= F (G(V (I))) ∼= FG(V (I)) ∼= V (I) ∼=
F (U)(I). So U is co-F -small. For anyX ∈ n-Copres(U), by assumptionX ∼= G(F (X)) and F (X) ∈⊥
T i≥1
G , thus X ∈ (n + 1)-Copres(U), by Lemma 2.2. So n-Copres(U) = (n + 1)-Copres(U). Now let

0 −→ X
f−→ UI −→ Y −→ 0 be an exact sequence, with Y ∈ (n + 1)-Copres(U) and I a set. We

can get the following exact sequence

0 −→ F (Y ) −→ F (UI)
F (f)−→ F (X) −→ Q −→ 0,

where Q = Imα, where α : F (X) −→ R1F (Y ). By using argument similar to that in Proposition 3.3,
we get the following commutative diagram with exact rows:

0 −→ X
f−→ UI −→ Y −→ 0

↓ ↓δ
UI ↓δY

0 −→ G(W ) −→ GF (UI) −→ GF (Y ) −→ R1G(W ) −→ 0

,

where W = ImF (f), and we conclude that Q = 0, which means that we have an exact sequence
0 −→ F (Y ) −→ F (UI) −→ F (X) −→ 0. Thus (F,G, V, U) is a Co-∗n-tuple.

Proposition 3.5. Suppose that U is a co-F -small . Assume that n-Copres(U) = ⊥T i≥1
F . Then

(F,G, V, U) is a Co-∗n-tuple.

Proof. Let 0 −→ X −→ UI −→ Y −→ 0, be an exact sequence with X ∈ n-Copres(U) and I a set.
We can get the following long exact sequence

0 −→ F (Y ) −→ F (UI) −→ F (X) −→ R1F (Y ) −→
R1F (UI) −→ R1F (X) −→ ....

Note that X,UI ∈ n-Copres(U) =⊥ T i≥1
F , so by exactness, RiF (Y ) = 0, for every i ≥ 2. Now

R1F (Y ) = 0 if and only if Y ∈ ⊥T i≥1
F = n-Copres(U). So by Theorem 3.1 we get the desired

result.
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4 Conclusion

We introduced the concept of Co-∗n-tuple of contravariant functors and give some characterizations
as in Theorems 3.1, 3.2 and 3.3.
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