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Abstract

In this work we generalize the concept of Co-+"-modules to the concept of Co-+"-tuple of
Contravariant Functors between abelian categories.
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1 Introduction

For a unital associative ring A, a fixed right A-module M , and D = Enda(M), let fgd-tl(M ) denote
the class of all torsionless right A-modules whose M-dual are finitely generated over D and fg-tl(p M)
denote the class of all finitely generated torsionless left D-modules. M is called costar module if

Homa(—, M) : fgd-tl(Ma) = fg-ti(pM) : Homp(—, M)

is a duality. Costar modules were introduced by Colby and Fuller in [1]. M is said to be an r-costar
module provided that any exact sequence

0—X—>Y —272—0

such that X and Y are M-reflexive, remains exact after applying the functor Homa(—, M) if and only
if Z is M-reflexive. The notion of r-costar module was introduced by Liu and Zhang in [2]. We say
that a right A-module X is n-finitely M-copresented if there exists a long exact sequence

0—s X —sMFo—spF Rt

such that n is a positive integer and k; are positive integers for 0 < ¢ < n — 1. The class of all
n-finitely M-copresented modules is denoted by n-cop(M). We say that a right A-module M is a
finitistic n-self-cotilting module provided that n-cop(M) = (n+1)-cop(M) and for any exact sequence

0—X —M"—Z—0
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such that Z € n-cop(M) and n is a positive integer, remains exact after applying the functor Homa(—, M).
Finitistic n-self-cotilting modules were introduced by Breaz in [3]. In [4], L. Yao and J. Chen introduced

the concept of co-+"-modules, which is a generalization of finitistic n-self-cotilting modules to the
infinite case, i.e. we say that a right A-module M is a co-+"-module provided that n-cop(M) = (n+1)-
cop(M) and for any exact sequence

0—X—>M —Z-—0

such that Z € n-cop(M) and I is a set, remains exact after applying the functor Homa(—, M).

In [5] Castano-Iglesias generalizes the notion of costar module to Grothendieck categories. Pop
in [6] generalizes the notion of finitistic n-self-cotilting module to finitistic n- F-cotilting object in abelian
categories and he describes a family of dualities between some special abelian categories. Breaz
and Pop in [7] generalize a duality exhibited in [3, Theorem 2.8] to abelian categories.

In [8], the author generalizes the notion of r-costar module to r-costar pair of contravariant functors
between abelian categories, by generalizing the work in [2]. In this paper we generalize the work in
[4] by generalizing the notion of Co-*"-modules to a Co-x"-tuple of contravariant functors between
abelian categories. We use the same technique of proofs as in [4].

2 Preliminaries

Let F: ¢—9 and G : ®—¢ be additive and contravariant functors between two abelian categories
¢ and D. It is said that they are adjoint on the right if there are natural isomorphisms

Nyxy : Home(X,G(Y))—Homo (Y, F(X))

forall X € ¢ and all Y € ©. Then they induce two natural transformations § : 1¢—GF and
§' : 1o—FG defined by 6, = 77;,1F(X>(1F(X>) and dy = ng4 4 (la(v)). Moreover the following
identities are satisfied foreach X € €andY € D.

F((;X) o 6;7()() = 1F(X) and G((;;/) o 5g(y) = 1G(Y)-

F and G are left exact, since they are adjoint on the right. The pair (F, G) is called a duality if there
are functorial isomorphisms GF ~ 1¢ and FG ~ 15. An object X of € (respectively Y of D) is called
F-reflexive (respectively, G-reflexive) in case ¢, (respectively, 6; ) is an isomorphism. An object X of
¢ (respectively Y of D) is called F-torsionless (respectively, G-torsionless) in case d,, (respectively,
6; ) is @ monomorphism. By Ref(F") we will denote the full subcategory of all F-reflexive objects. As
well by Ref(G) we will denote the full subcategory of all G-reflexive objects. It is clear that the functors

F and G induce a duality between the categories Ref(F') and Ref(G).
Let U be an object in €. For an object X in an abelian category ¢, we say that X is U-generated

if there is an exact sequence
v x — 0,
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where I is an index set and if there is an exact sequence
vyt 5 x 0,

where each I; is an index set, then X is said to be U-presented. We say that X is U-cogenerated if
there is an exact sequence
00— X — UI,

where I is an index set and if there is an exact sequence
0— X — U — U,

where each I; is an index set, then X is said to be U-copresented. We say that X is n-U-copresented
if there is an exact sequence

0— X —UY Ul — . —yuh2 s ylh,

where each I; is an index set and n is a positive integer. We denote by Cogen(U), Copres(U)
and n-Copres(U) the classes of all U-cogenerated, U-copresented and n-U-copresented objects

respectively. It is clear that (n + 1)-Copres(U) C n-Copres(U), for every positive integer n.
An object U in ¢ is called co-F-smalll if for any set I, there is a canonical isomorphism F(U') =

F(U)Y. The object U is called n- F-quasi-injective if for any exact sequence
0—X —U' —Y -—o0,
where Y € n-Copres(U), the sequence,
0— F(Y) — F(U") — F(X) — 0,

is exact.

Let F : ¢—® and G : ©®—C be additive and contravariant functors between two abelian
categories € and ©, such that they are adjoint on the right. Let U € € such that V = F(U) is a
projective object in ©. If U is F-reflexive, the tuple (F,G,V,U) is called a Co-«"-tuple, where n is a
positive integer, if:

(i) U is co-F-small,
(i) (n 4+ 1)-F-quasi-injective,
(iii) n-Copres(U) = (n + 1)-Copres(U).

There are two examples of contravariant functors that could satisfy the conditions to be Co-*"-
tuple. The first is the typical example and the second was exhibited by Castano-Iglesias in [5].

Let A be unital associative ring and M a right A-module. Suppose that D = Enda (M), then itis
clear that M is a D-A-bimodule. The contravariant functors A = Homa(, M) : Mod-A — D-Mod
and A = Homp(, M) : D-Mod — Mod-A are right adjoint.

Let G be a group. For G-graded rings A = @ycg Az and B = @,cg B we will denote by Mody, -
A (respectively, by B-Mod,,) the category of all G-graded unital right A-modules (respectively, left
B-modules) . For N, M € Modg--A we can consider the G-graded abelian group HOMa (N, M),
whose zth homogeneous component is

+HOMA(N, M) = {f € Homa(N, M)|f(N,) C M,y, forall y € G}.
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If N, M € B-Modg, we can consider the G-graded abelian group HOMg(N, M), whose xzth homogeneous
component is

HOMp(N,M); ={f € Homp(N,M)|f(yN) Cy= M, forally € G}.
If we suppose that B = HOMa(M,M) = END(Ma), then B is a G-graded ring and M is a graded
(B, A) -bimodule. Now we have a pair of contravariant functors

HY = HOMa(—, M) : Mody, — A= B — Mod,, : HOMp(—, M) =p H".

If for any object X € ¢ there is a projective object P € € and an epimorphism P— X —0,
we say that € has enough projectives. From now on we suppose that both ¢ and © have enough
projectives. It is clear that we can construct a projective resolution for any object X. Suppose we
have a projective resolution of X in ®.

P: ... —Ph—P —PFPy—X—0.

This gives rise to the chain complex
0—G(X)—G(Po)—G(P1)—...,

for which we can compute its homology at the n-th spot (the kernel of the map from G(P,) modulo
the image of the map to G(P,)) and denote it by H" (G(P)). We define R"G(X) = H" (G(P)) as
the n-th right derived functors of G. The n-th right derived functors of F' can be defined similarly. For
the functor G and for a positive integer n, we define * 77" = {X € ® : R'G(X) = 0 for every i > n}.

In the same way one can define + 73"
Let
0—Q-LUu—v-—o

be an exact sequence in €. Applying the functor F' we get the exact sequence
0— F(V)— FU) 2 X —0, (2.1)

where X = Im(F(f)) and F(f) = jop is the canonical decomposition of F'(f), where j : X — F(Q)
is the inclusion map. Applying the functor G to the sequence (2.1), we have the following exact

sequence
0 — a(X) % grU) — GF(V).

Now if we put a = G(j) o dg, then
G(p) o a = G(p) 0 G(j) 0 6q = G(j op) 0 bg = GF(f) 0 g = dv o f.
So we have the following commutative diagram with exact rows.

o — o L v = v = o0

la Loy L5y (2.2)

0 — GX) W Ggru) — GFV)

Q
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Lemma 2.1. /5, Lemma 1.1, Lemma 1.2 JLet F : ¢—® and G : ©—¢€ be a pair of contravariant
functors as above and assume that U and V' are objects of € and D, respectively. Then:

(i) F(X) € Copres(F(U)) whenever X is a U-presented object of €,

(i) G(Y') € Copres(G(V)) wheneverY is a V -presented object of ©.

For the next statements, we assume that U and V' are generators of € and ©, respectively.

(iii) X is F-torsionless if and only if X € Cogen(G(V)), for every X € €,

(iv) Y is G-torsionless if and only if Y € Cogen(F(U)), foreveryY € ®.

Lemma 2.2. Let F and G be a pair of contravariant functors as above. LetV be a projective
generator in ® with G(V) = U and let n be a positive integer. ForanyY € @, if R'G(Y) = 0 for
1<i<n,thenG(Y) € (n+ 2)-Copres(U).

3 Co-«"-tuple Pair of Contravariant Functors

Throughout this section, let F' : ¢—® and G : ©—¢ be a pair of additive and contravariant functors
which are adjoint on the right, between abelian categories. As well, let U be a F-reflexive object in €
with F(U) = V be a projective generator in ©. Moreover, we consider a positive integer n.

Proposition 3.1. Suppose that (F, G, V,U) is a Co-+"-tuple. Then for any X € n-Copres(U), 6x
is an isomorphism and R'G(F (X)) = 0, for every i > 1.
Proof. Let X € n-Copres(U). It follows that X € (n + 1)-Copres(U), by assumptions. Hence there

is an exact sequence
0—X —U —Y — 0,

where Y € n-Copres(U). Since (F,G,V,U) is a Co-+"-tuple we have the exact sequence
0— F(Y) — F(U") — F(X) — 0,
after applying the functor F. Applying the functor G to the last sequence and taking into account that
V is projective, hence V1) = F(U)!) = F(U') is also projective, we get an exact sequence
0 — GF(X) — GF(U") — GF(Y) — R'G(F(X)) — 0,
and the following commutative diagram with exact rows

0 — X — Ut — Y — 0
dsx Yoy Loy
0 — GFX) — GFUY)Y — GFY) — RIGEFX) — 0.

By Lemma 2.1, éy is @ monomorphism. By Snake Lemma, it follows that §x is an isomorphism since
8y1 is an isomorphism. Then §y is also an isomorphism by a similar argument. Hence, R*G(F (X)) =
0, by commutativity of the right square. Since Y € n-Copres(U), R*G(F(Y)) = 0. Then we can get
the assertion inductively. O

Theorem 3.1. The following conditions are equivalent
(1) (F,G,V,U) is a Co-«"-tuple.

1705



British Journal of Mathematics and Computer Science 4(12), 1701-1709, 2014

(2) i) U is co-F-small,
(i) For any exact sequence 0 — X — U’ — Y — 0, where X € n-Copres(U) and I is a set, it
remains exact after applying the functor F if and only if Y € n-Copres(U).

Proof. (1) = (2) Suppose that we have an exact sequence 0 — X — U/ — Y — 0, where
X € n-Copres(U) and I a set. Assume that Y € n-Copres(U). Since (F,G,V,U) is a Co-+"-tuple,
we get the exact sequence

0— F(Y) — F(U") — F(X) — 0.
Conversely, assume that the sequence

0— F(Y) — FU") — F(X) — 0
is exact. Applying the functor G we get the following long exact sequence

0 — GF(X) — GF({U" — GF(Y) — R'G(F(X)) —

RIG(F(UT)) — R'G(F(Y)) —> .... (3.1)

By Proposition 3.1, §x is an isomorphism and R‘G(F (X)) = 0 for any « > 1. Thus, we have the
following commutative diagram with exact rows

0 — X — Ut — Y — 0

\I/(Sx \I/(SUI \Léy
0 — GFX) — GFU') — GFY) — 0

It is clear, by Snake Lemma, that dy is an isomorphism, which means that Y = GF(Y). From the

exactness of sequence (3.1) we conclude that R'G(F(Y)) = R'G(F(U")) = 0 for any i > 1, so by
Lemma 2.2, Y = GF(Y) € n-Copres(U). (2)= (1) It is enough to prove n-Copres(U) = (n + 1)-
Copres(U). If X € n-Copres(U) , then F(X) is V-generated over ©, thus by [5, Lemma 2.2], there
exists an exact sequence 0 — X — U’ — Y — 0, which remains exact after applying the
functor F. Then Y € n-Copres(U) , hence X € (n + 1)-Copres(U). O

Proposition 3.2. Suppose that (F,G,V,U) be a Co-«"-tuple. Then G is an exact functor in
F(n-Copres(U)). Moreover F(n-Copres(U)) == Té>1,

Proof. By Proposition 3.1 we have F'(n-Copres(U)) C*t TZ7' and G is an exact functor in F(n-
Copres(U)). Conversely, for any X €* T/7', by Lemma 2.2, G(X) € n-Copres(U). Since V is a

generator in D, there is an exact sequence 0 — vV~ V() %5 x 5 0, where I is a set. If we
apply the functor G we get the long exact sequence

0— G(X) — G(VD) — QYY) — R'G((X)) —
R'G(VD)) — R'G((Y)) — ...

By assumption R'G((X)) = 0 for any i > 1. Since R'G((V'")) = 0, forany i > 1, R'G((Y)) =0
for any i > 1, by the exactness. Thus Y €* T/' and hence by Lemma 2.2, G(Y) € n-Copres(U).
Since (F, G,V,U) is a Co-+"-tuple, applying the functor F to the following sequence

0— GX)— GVD)—=GY)—0
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we get the following commutative diagram with exact rows

0o — Y — 14 — X — 0

\Lg’ J/(;’ J/(;’

Y v(D) X
0 — FGY) — FGWVY) — FGX) — 0
Hence by Snake Lemma, 5y is an epimorphism and Ker(é;() = Coker(é;), since 6;/(1) is an

isomorphism. Similarly Sy is also an epimorphism. Thus, 5y is an isomorphism and therefore
X = FG(X) € F(n-Copres(U)). So F(n-Copres(U)) =+ T O

Proposition 3.3. Suppose that (F,G,V,U) be a Co«"-tuple. Then F preserves any exact
sequence in n-Copres(U).

Proof. Let0 — X -5 vV -2 Z — 0 be an exact sequence in n-Copres(U). Applying the functor
F we get the following long exact sequence

F
al

0— F(2) 29 piyy 29 p(x) - RUF(Z) — ...

Thus we can get the following two exact sequences
0— W — F(X)—Q—0,

0—F(Z)— F(Y)— W —0,

where @ = Ima and W = Im F(f). Applying the functor G to the last sequence we get the following
commutative diagram with exact rows:

0 — X — Y — Z — 0

\I/ \Ltsy ‘L‘SZ .
0 — GW) — GFY) — GF(Z) — R'GW) — 0

It is clear by Proposition 3.1 that 6y and §z are isomorphisms and R'G(F(Y)) = 0 = R'G(F(2)),

for any i > 1. By Snake Lemma, X = G(W) and by the exactness R‘G(W) = 0 for any i > 1. Hence
by Proposition 3.2, W = F(D) for some D € n-Copres(U). Therefore

W = F(D) = F(GF(D)) = FG(F(D)) = FG(W) & F(X).
Hence F(f) is an epimorphism, and therefore the induced sequence

0— F(2) 2% piyy 29 p(x) — 0

is exact. 0

Theorem 3.2. The following conditions are equivalent:

(1) (F,G,V,U) is a Co-«"-tuple.

(2) () U is co-F-small,

(i) For any exact sequence 0 — X Sy Lz — 0 with X, Y € n-Copres(U), we have

Z € n-Copres(U) ifand only if0 —s F(2) ™9 r(y) ™Y p(x) — 0 is exact.

Proof. (1)=-(2) The necessity follows from Proposition 3.3 and the sufficiency from a similar proof to
that of (1)=(2) in Theorem 3.1.
(2)=(1) It follows from (2)=-(1) in Theorem 3.1. O
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Proposition 3.4. Suppose that (F, G, V,U) is a Co-«"-tuple. Then n-Copres(U) is closed under
extensions if and only if n-Copres(U) C* TH = {X € ¢ : R'F(X) = 0}.

Proof. Suppose that n-Copres(U) is closed under extensions. For any X € n-Copres(U) one can
construct an exact sequence using the canonical maps to get an extension 0 — U — Y —
X — 00of U by X. We have Y € n-Copres(U), by assumption. By Proposition 3.3, F' preserves any
exact sequence in n-Copres(U), so applying F' to the last exact sequence we get the exact sequence

0— F(X)— F(Y)— F{U) —0,

thus by the exactness, R' F(X) = 0, so X €* T} and hence n-Copres(U) C+ T#. Conversely. For
any extension0 — X — Y — Z — 0, of X by Z, where X,Z € n-Copres(U), the induced
sequence

0— F(Z) — F(Y)— F(X)—0,
is exact by assumption. According to Proposition 3.1, both §x and 6 are isomorphisms and F(X), F(Z) €+
T:7'. Then it is clear that dy is an isomorphism and F(Y) €* T7". Hence by Lemma 2.2, we have
Y 2 GF(Y) € n-Copres(U). O

Theorem 3.3. The following conditions are equivalent:
(1) (F,G,V,U) is a Co-«"-tuple.
(2) There is a duality
G TiZ' = n-Copres(U) : F

Proof. (1)=(2) By Propositions 3.1 and Propositions 3.2.

(2)=(1) Since VD et 72" we get F(U') = F(G(V)) = F(GVWD)) = FGVD) = v
F(U)W . SoUis co-F-small. Forany X € n-Copres(U), by assumption X = G(F(X))and F(X) e+
T, thus X € (n+ 1)-Copres(U), by Lemma 2.2. So n-Copres(U) = (n + 1)-Copres(U). Now let
0— X 5 U — Y — 0 be an exact sequence, with Y € (n + 1)-Copres(U) and I a set. We
can get the following exact sequence

0— F(Y) — FUH) " r(x) — @ — o0,

where Q = Im a, where o : F(X) — R'F(Y). By using argument similar to that in Proposition 3.3,
we get the following commutative diagram with exact rows:

o — x L v = v = 0

\L \L(SU] l/tsy ?
0o — GW) — GFU")Y — GFY) — R'GW) — 0

where W = Im F(f), and we conclude that @ = 0, which means that we have an exact sequence
0 — F(Y) — F(U" — F(X) — 0. Thus (F, G, V,U) is a Co-+"-tuple. O
Proposition 3.5. Suppose that U is a co-F-small . Assume that n-Copres(U) = ~T}='. Then
(F,G,V,U) is a Co-«"-tuple.

Proof. Let0 — X — UT — Y — 0, be an exact sequence with X € n-Copres(U) and I a set.
We can get the following long exact sequence
0— FY)— FU") — F(X) — R'F(Y) —
R'F(U") — R'F(X) — ...
Note that X, U’ e n-Copres(U) =+ TiZ', so by exactness, R'F(Y) = 0, for every i > 2. Now

R'F(Y) = 0if and only if Y € +T}2" = n-Copres(U). So by Theorem 3.1 we get the desired
result. O
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4 Conclusion

We introduced the concept of Co-*"-tuple of contravariant functors and give some characterizations
as in Theorems 3.1, 3.2 and 3.3.
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