

SCIENCEDOMAIN *international* <www.sciencedomain.org>

Co-[∗]ⁿ-tuple of Contravariant Functors

S. Al-Nofayee¹[∗](#page-0-0)

¹*Department of Mathematics, Taif University, P.O.Box 439, Hawiah 21974, Saudi Arabia.*

Original Research Article

> *Received: 23 February 2014 Accepted: 23 March 2014 Published: 12 April 2014*

Abstract

In this work we generalize the concept of $Co-*^n$ -modules to the concept of $Co-*^n$ -tuple of Contravariant Functors between abelian categories.

Keywords: Co-∗ n *-modules; contravariant functor; right adjoint functors; duality.*

2010 Mathematics Subject Classification: 16E30; 16D90

1 Introduction

For a unital associative ring A, a fixed right A-module M, and $D = End_A(M)$, let fgd-tl (M_A) denote the class of all torsionless right A-modules whose M-dual are finitely generated over D and fg-tl($_D M$) denote the class of all finitely generated torsionless left D -modules. M is called costar module if

 $Hom_A(-, M)$: fqd-tl(M_A) \rightleftharpoons fq-tl($_D M$): $Hom_D(-, M)$

is a duality. Costar modules were introduced by Colby and Fuller in $[1]$. M is said to be an r-costar module provided that any exact sequence

 $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$

such that X and Y are M-reflexive, remains exact after applying the functor $Hom_A(-, M)$ if and only if Z is M -reflexive. The notion of r-costar module was introduced by Liu and Zhang in [\[2\]](#page-8-1). We say that a right A -module X is n -finitely M -copresented if there exists a long exact sequence

 $0 \longrightarrow X \longrightarrow M^{k_0} \longrightarrow M^{k_1} \longrightarrow \dots \longrightarrow M^{k_{n-1}}$

such that n is a positive integer and k_i are positive integers for $0 \le i \le n-1$. The class of all n-finitely M-copresented modules is denoted by $n\text{-}cop(M)$. We say that a right A-module M is a finitistic n-self-cotilting module provided that $n\text{-}cop(M) = (n+1)\text{-}cop(M)$ and for any exact sequence

 $0 \longrightarrow X \longrightarrow M^n \longrightarrow Z \longrightarrow 0$

**Corresponding author: E-mail: alnofayee@hotmail.com*

such that $Z \in n\text{-}cop(M)$ and n is a positive integer, remains exact after applying the functor $Hom_A(-, M)$. Finitistic n-self-cotilting modules were introduced by Breaz in [\[3\]](#page-8-2). In [\[4\]](#page-8-3), L. Yao and J. Chen introduced the concept of co-^{*}ⁿ-modules, which is a generalization of finitistic n-self-cotilting modules to the infinite case, i.e. we say that a right A-module M is a co- $*^n$ -module provided that $n\text{-}cop(M) = (n+1)\cdot$ $cop(M)$ and for any exact sequence

$$
0 \longrightarrow X \longrightarrow M^I \longrightarrow Z \longrightarrow 0
$$

such that $Z \in n\text{-}cop(M)$ and I is a set, remains exact after applying the functor $Hom_A(-, M)$.

In [\[5\]](#page-8-4) Castaño-Iglesias generalizes the notion of costar module to Grothendieck categories. Pop in [\[6\]](#page-8-5) generalizes the notion of finitistic n-self-cotilting module to finitistic n -F-cotilting object in abelian categories and he describes a family of dualities between some special abelian categories. Breaz and Pop in [\[7\]](#page-8-6) generalize a duality exhibited in [\[3,](#page-8-2) Theorem 2.8] to abelian categories.

In [\[8\]](#page-8-7), the author generalizes the notion of r-costar module to r-costar pair of contravariant functors between abelian categories, by generalizing the work in [\[2\]](#page-8-1). In this paper we generalize the work in [\[4\]](#page-8-3) by generalizing the notion of Co- $*^n$ -modules to a Co- $*^n$ -tuple of contravariant functors between abelian categories. We use the same technique of proofs as in [\[4\]](#page-8-3).

2 Preliminaries

Let $F : \mathfrak{C} \longrightarrow \mathfrak{D}$ and $G : \mathfrak{D} \longrightarrow \mathfrak{C}$ be additive and contravariant functors between two abelian categories $\mathfrak c$ and $\mathfrak D$. It is said that they are adjoint on the right if there are natural isomorphisms

$$
\eta_{X,Y}:Hom_{\mathfrak{C}}(X,G(Y))\longrightarrow Hom_{\mathfrak{D}}(Y,F(X))
$$

for all $X \in \mathfrak{C}$ and all $Y \in \mathfrak{D}$. Then they induce two natural transformations $\delta : 1_{\mathfrak{C}} \longrightarrow GF$ and $\delta^{'}:1_{\frak{D}}\longrightarrow FG$ defined by $\delta_{_X}=\eta^{-1}_{X,F(X)}(1_{F(X)})$ and $\delta^{'}_{Y}=\eta_{_{G(Y),Y}}(1_{G(Y)}).$ Moreover the following identities are satisfied for each $X \in \mathfrak{C}$ and $Y \in \mathfrak{D}$.

$$
F(\delta_X)\circ\delta_{F(X)}^{'}=1_{F(X)}\text{ and }G(\delta_Y^{'})\circ\delta_{G(Y)}=1_{G(Y)}.
$$

F and G are left exact, since they are adjoint on the right. The pair (F, G) is called a duality if there are functorial isomorphisms $GF \simeq 1_{\mathfrak{C}}$ and $FG \simeq 1_{\mathfrak{D}}$. An object X of C (respectively Y of \mathfrak{D}) is called F -reflexive (respectively, G -reflexive) in case $\delta_{_X}$ (respectively, $\delta_{Y}^{'}$) is an isomorphism. An object X of $\mathfrak C$ (respectively Y of $\mathfrak D$) is called F-torsionless (respectively, G-torsionless) in case δ_X (respectively, $\delta_{Y}^{'}$) is a monomorphism. By Ref(F) we will denote the full subcategory of all F -reflexive objects. As well by $\text{Ref}(G)$ we will denote the full subcategory of all G -reflexive objects. It is clear that the functors F and G induce a duality between the categories Ref(F) and Ref(G).

Let U be an object in \mathfrak{C} . For an object X in an abelian category \mathfrak{C} , we say that X is U-generated

if there is an exact sequence

$$
U^{(I)} \longrightarrow X \longrightarrow 0,
$$

where I is an index set and if there is an exact sequence

$$
U^{(I_2)} \longrightarrow U^{(I_1)} \longrightarrow X \longrightarrow 0,
$$

where each I_i is an index set, then X is said to be U-presented. We say that X is U-cogenerated if there is an exact sequence

$$
0 \longrightarrow X \longrightarrow U^I,
$$

where I is an index set and if there is an exact sequence

$$
0 \longrightarrow X \longrightarrow U^{I_1} \longrightarrow U^{I_2},
$$

where each I_i is an index set, then X is said to be U -copresented. We say that X is n - U -copresented if there is an exact sequence

$$
0 \longrightarrow X \longrightarrow U^{I_0} \longrightarrow U^{I_1} \longrightarrow \dots \longrightarrow U^{I_{n-2}} \longrightarrow U^{I_{n-1}},
$$

where each I_i is an index set and n is a positive integer. We denote by $Cogen(U)$, $Copres(U)$ and $n\text{-}Copres(U)$ the classes of all U-cogenerated, U-copresented and $n\text{-}U$ -copresented objects respectively. It is clear that $(n + 1)$ -Copres(U) $\subseteq n$ -Copres(U), for every positive integer n.

An object U in ${\mathfrak C}$ is called co- F -small if for any set $I,$ there is a canonical isomorphism $F(U^I)\cong$

 $F(U)^{(I)}.$ The object U is called n - F -quasi-injective if for any exact sequence

$$
0 \longrightarrow X \longrightarrow U^I \longrightarrow Y \longrightarrow 0,
$$

where $Y \in n\text{-}Copres(U)$, the sequence,

$$
0 \longrightarrow F(Y) \longrightarrow F(UI) \longrightarrow F(X) \longrightarrow 0,
$$

is exact.

Let $F : \mathfrak{C} \longrightarrow \mathfrak{D}$ and $G : \mathfrak{D} \longrightarrow \mathfrak{C}$ be additive and contravariant functors between two abelian categories C and \mathfrak{D} , such that they are adjoint on the right. Let $U \in \mathfrak{C}$ such that $V = F(U)$ is a projective object in $\mathfrak D.$ If U is F -reflexive, the tuple (F, G, V, U) is called a Co- $*^n$ -tuple, where n is a positive integer, if:

(i) U is co- F -small,

(ii) $(n + 1)$ -*F*-quasi-injective,

(iii) $n\text{-}Copres(U) = (n + 1)\text{-}Copres(U)$.

There are two examples of contravariant functors that could satisfy the conditions to be $Co-*^n$ -tuple. The first is the typical example and the second was exhibited by Castano-Iglesias in [\[5\]](#page-8-4).

Let A be unital associative ring and M a right A-module. Suppose that $D = End_A(M)$, then it is clear that M is a D-A-bimodule. The contravariant functors $\Delta = Hom_A(M) : Mod-A \longrightarrow D\text{-}Mod$ and $\Delta^{'}=Hom_D(,M):D\text{-}Mod \longrightarrow Mod\text{-}A$ are right adjoint.

Let G be a group. For G-graded rings $A = \bigoplus_{x \in \mathcal{G}} A_x$ and $B = \bigoplus_{x \in \mathcal{G}} xB$ we will denote by Mod_{gr} -A (respectively, by $B\text{-}Mod_{ar}$) the category of all G-graded unital right A-modules (respectively, left B-modules). For $N, M \in Mod_{gr}A$ we can consider the G-graded abelian group $HOM_A(N, M)$, whose x th homogeneous component is

$$
{}_x HOM_A(N,M) = \{ f \in Hom_A(N,M) | f(N_y) \subseteq M_{xy}, \text{ for all } y \in \mathcal{G} \}.
$$

If $N, M \in B \text{-}Mod_{gr}$ we can consider the G-graded abelian group $HOM_B(N, M)$, whose xth homogeneous component is

$$
HOM_B(N,M)_x = \{ f \in Hom_B(N,M) | f(yN) \subseteq yx M, \text{ for all } y \in \mathcal{G} \}.
$$

If we suppose that $B = HOM_A(M, M) = END(M_A)$, then B is a G-graded ring and M is a graded (B, A) -bimodule. Now we have a pair of contravariant functors

$$
H_A^{gr} = HOM_A(-, M) : Mod_{gr} - A \rightleftarrows B - Mod_{gr} : HOM_B(-, M) = _B H^{gr}.
$$

If for any object $X \in \mathfrak{C}$ there is a projective object $P \in \mathfrak{C}$ and an epimorphism $P \rightarrow X \rightarrow 0$, we say that $\mathfrak C$ has enough projectives. From now on we suppose that both $\mathfrak C$ and $\mathfrak D$ have enough projectives. It is clear that we can construct a projective resolution for any object X . Suppose we have a projective resolution of X in \mathfrak{D} .

$$
P: \quad \ldots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X \longrightarrow 0.
$$

This gives rise to the chain complex

$$
0 \longrightarrow G(X) \longrightarrow G(P_0) \longrightarrow G(P_1) \longrightarrow \dots,
$$

for which we can compute its homology at the n-th spot (the kernel of the map from $G(P_n)$) modulo the image of the map to $G(P_n)$) and denote it by $H^n(G(P))$. We define $R^nG(X) = H^n(G(P))$ as the *n*-th right derived functors of G . The *n*-th right derived functors of F can be defined similarly. For the functor G and for a positive integer $n,$ we define ${}^\perp T^{i\geqslant n}_G=\{X\in\mathfrak{D}:R^iG(X)=0$ for every $i\geqslant n\}.$

In the same way one can define ${}^{\perp}T_{F}^{i\geqslant n}.$

Let

$$
0 \longrightarrow Q \stackrel{f}{\longrightarrow} U \longrightarrow V \longrightarrow 0
$$

be an exact sequence in \mathfrak{C} . Applying the functor F we get the exact sequence

$$
0 \longrightarrow F(V) \longrightarrow F(U) \stackrel{p}{\longrightarrow} X \longrightarrow 0,
$$
\n(2.1)

where $X = \text{Im}(F(f))$ and $F(f) = j \circ p$ is the canonical decomposition of $F(f)$, where $j : X \longrightarrow F(Q)$ is the inclusion map. Applying the functor G to the sequence [\(2.1\)](#page-3-0), we have the following exact sequence

$$
0 \longrightarrow G(X) \stackrel{G(p)}{\longrightarrow} GF(U) \longrightarrow GF(V).
$$

Now if we put $\alpha = G(j) \circ \delta_Q$, then

$$
G(p) \circ \alpha = G(p) \circ G(j) \circ \delta_Q = G(j \circ p) \circ \delta_Q = GF(f) \circ \delta_Q = \delta_U \circ f.
$$

So we have the following commutative diagram with exact rows.

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & Q & \xrightarrow{f} & U & \longrightarrow & V & \longrightarrow & 0 \\
& \downarrow_{\alpha} & & \downarrow_{\delta_U} & & \downarrow_{\delta_V} & & \\
0 & \longrightarrow & G(X) & \xrightarrow{G(p)} & GF(U) & \longrightarrow & GF(V) & & \\
\end{array}
$$
\n(2.2)

1704

Lemma 2.1. *[\[5,](#page-8-4) Lemma 1.1, Lemma 1.2]Let* F : C−→D *and* G : D−→C *be a pair of contravariant functors as above and assume that* U *and* V *are objects of* C *and* D*, respectively. Then: (i)* $F(X) \in \text{Copres}(F(U))$ whenever X is a U-presented object of \mathfrak{C} , *(ii)* $G(Y) \in \text{Copres}(G(V))$ whenever Y is a V-presented object of \mathfrak{D} . *For the next statements, we assume that* U *and* V *are generators of* C *and* D*, respectively. (iii)* X *is* F-torsionless if and only if $X \in Cogen(G(V))$, for every $X \in \mathfrak{C}$, *(iv) Y is G*-torsionless if and only if $Y \in Cogen(F(U))$, for every $Y \in \mathfrak{D}$.

Lemma 2.2. *Let* F *and* G *be a pair of contravariant functors as above. Let* V *be a projective* g enerator in $\mathfrak D$ with $G(V)=U$ and let n be a positive integer. For any $Y\in\mathfrak D,$ if $R^iG(Y)=0$ for $1 \leq i \leq n$, then $G(Y) \in (n+2)$ *-Copres* (U) *.*

3 Co-∗ n **-tuple Pair of Contravariant Functors**

Throughout this section, let $F : \mathfrak{C} \longrightarrow \mathfrak{D}$ and $G : \mathfrak{D} \longrightarrow \mathfrak{C}$ be a pair of additive and contravariant functors which are adjoint on the right, between abelian categories. As well, let U be a F -reflexive object in $\mathfrak C$ with $F(U) = V$ be a projective generator in \mathcal{D} . Moreover, we consider a positive integer n.

Proposition 3.1. *Suppose that* (F, G, V, U) *is a Co-* $*^n$ -tuple. Then for any $X \in n\text{-}Copres(U)$, δ_X *is an isomorphism and* $R^iG(F(X)) = 0$, *for every* $i \geq 1$.

Proof. Let $X \in n\text{-}Copres(U)$. It follows that $X \in (n + 1)\text{-}Copres(U)$, by assumptions. Hence there is an exact sequence

$$
0 \longrightarrow X \longrightarrow U^I \longrightarrow Y \longrightarrow 0,
$$

where $Y \in n\text{-}Copres(U)$. Since (F, G, V, U) is a Co- $*^n$ -tuple we have the exact sequence

$$
0 \longrightarrow F(Y) \longrightarrow F(UI) \longrightarrow F(X) \longrightarrow 0,
$$

after applying the functor F. Applying the functor G to the last sequence and taking into account that V is projective, hence $V^{(I)}=F(U)^{(I)}=F(U^I)$ is also projective, we get an exact sequence

$$
0 \longrightarrow GF(X) \longrightarrow GF(U^I) \longrightarrow GF(Y) \longrightarrow R^1G(F(X)) \longrightarrow 0,
$$

and the following commutative diagram with exact rows

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & X & \longrightarrow & U^I & \longrightarrow & Y & \longrightarrow & 0 \\
& & \downarrow_{\delta_X} & & \downarrow_{\delta_{U^I}} & & \downarrow_{\delta_Y} \\
0 & \longrightarrow & GF(X) & \longrightarrow & GF(U^I) & \longrightarrow & GF(Y) & \longrightarrow & R^1G(F(X)) & \longrightarrow & 0.\n\end{array}
$$

By Lemma [2.1,](#page-4-0) δ_Y is a monomorphism. By Snake Lemma, it follows that δ_X is an isomorphism since δ_{U^I} is an isomorphism. Then δ_Y is also an isomorphism by a similar argument. Hence, $R^1G(F(X))=$ 0, by commutativity of the right square. Since $Y \in n-Copres(U), R^1G(F(Y)) = 0$. Then we can get the assertion inductively. \Box

Theorem 3.1. *The following conditions are equivalent* (1) (F, G, V, U) *is a Co-* $*^n$ -tuple.

(2) i) U *is co-*F*-small,*

(ii) For any exact sequence $0 \longrightarrow X \longrightarrow U^I \longrightarrow Y \longrightarrow 0$, where $X \in n\text{-}Copres(U)$ and I is a set, it *remains exact after applying the functor* F *if and only if* $Y \in n\text{-}Copres(U)$.

Proof. (1) \Rightarrow (2) Suppose that we have an exact sequence $0 \rightarrow X \rightarrow U^I \rightarrow Y \rightarrow 0$, where $X \in n\text{-}Copres(U)$ and I a set. Assume that $Y \in n\text{-}Copres(U)$. Since (F, G, V, U) is a Co- $*^n$ -tuple, we get the exact sequence

$$
0 \longrightarrow F(Y) \longrightarrow F(U^I) \longrightarrow F(X) \longrightarrow 0.
$$

Conversely, assume that the sequence

$$
0 \longrightarrow F(Y) \longrightarrow F(U^I) \longrightarrow F(X) \longrightarrow 0
$$

is exact. Applying the functor G we get the following long exact sequence

$$
0 \longrightarrow GF(X) \longrightarrow GF(U^I) \longrightarrow GF(Y) \longrightarrow R^1G(F(X)) \longrightarrow R^1G(F(U^I)) \longrightarrow R^1G(F(Y)) \longrightarrow \dots
$$
\n(3.1)

By Proposition [3.1,](#page-4-1) δ_X is an isomorphism and $R^iG(F(X)) = 0$ for any $i \geq 1$. Thus, we have the following commutative diagram with exact rows

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & X & \longrightarrow & U^I & \longrightarrow & Y & \longrightarrow & 0 \\
& & \downarrow_{\delta_X} & & \downarrow_{\delta_{U^I}} & & \downarrow_{\delta_Y} \\
0 & \longrightarrow & GF(X) & \longrightarrow & GF(U^I) & \longrightarrow & GF(Y) & \longrightarrow & 0\n\end{array}
$$

It is clear, by Snake Lemma, that δ_Y is an isomorphism, which means that $Y \cong GF(Y)$. From the

exactness of sequence [\(3.1\)](#page-5-0) we conclude that $R^iG(F(Y))\cong R^iG(F(U^I))=0$ for any $i\geq 1,$ so by Lemma [2.2,](#page-4-2) $Y \cong GF(Y) \in n\text{-}Copres(U)$. (2) \Rightarrow (1) It is enough to prove $n\text{-}Copres(U) = (n + 1)\text{-}$ Copres(U). If $X \in n\text{-}Copres(U)$, then $F(X)$ is V-generated over \mathfrak{D} , thus by [\[5,](#page-8-4) Lemma 2.2], there exists an exact sequence $0\longrightarrow X\longrightarrow U^I\longrightarrow Y\longrightarrow 0,$ which remains exact after applying the functor F. Then $Y \in n\text{-}Copres(U)$, hence $X \in (n+1)\text{-}Copres(U)$. \Box

Proposition 3.2. *Suppose that* (F, G, V, U) *be a Co-**ⁿ-tuple. Then G is an exact functor in $F(n\text{-}Copres(U))$. **Moreover** $F(n\text{-}Copres(U)) = \perp T_G^{i \geqslant 1}$.

Proof. By Proposition [3.1](#page-4-1) we have $F(n-Copres(U)) \subseteq^{\perp} T_G^{i \geq 1}$ and G is an exact functor in $F(n-Copres(U))$ $Copres(U)$). Conversely, for any $X \in \stackrel{\perp}{-} T_G^{\frac{1}{2}}$, by Lemma [2.2,](#page-4-2) $G(X) \in n\text{-}Copres(U)$. Since V is a generator in $\frak D,$ there is an exact sequence $0\longrightarrow Y\stackrel{f}{\longrightarrow}V^{(I)}\stackrel{g}{\longrightarrow}X\longrightarrow 0,$ where I is a set. If we apply the functor G we get the long exact sequence

$$
0 \longrightarrow G(X) \longrightarrow G(V^{(I)}) \longrightarrow G(Y) \longrightarrow R^1G((X)) \longrightarrow R^1G((V^{(I)})) \longrightarrow R^1G((Y)) \longrightarrow \dots
$$

By assumption $R^iG((X)) = 0$ for any $i \geq 1$. Since $R^iG((V^{(I)})) = 0$, for any $i \geq 1$, $R^iG((Y)) = 0$ for any $i\geq 1,$ by the exactness. Thus $Y\in^{\bot}T^{i\geqslant 1}_G$ and hence by Lemma [2.2,](#page-4-2) $G(Y)\in n\text{-}Copres(U).$ Since (F, G, V, U) is a Co- $*^n$ -tuple, applying the functor F to the following sequence

$$
0 \longrightarrow G(X) \longrightarrow G(V^{(I)}) \longrightarrow G(Y) \longrightarrow 0
$$

1706

we get the following commutative diagram with exact rows

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & Y & \longrightarrow & V^{(I)} & \longrightarrow & X & \longrightarrow & 0 \\
& & \downarrow_{\delta'_Y} & & \downarrow_{\delta'_{V^{(I)}}} & & \downarrow_{\delta'_X} \\
0 & \longrightarrow & FG(Y) & \longrightarrow & FG(V^{(I)}) & \longrightarrow & FG(X) & \longrightarrow & 0\n\end{array}
$$

Hence by Snake Lemma, $\delta^{'}_X$ is an epimorphism and $Ker(\delta^{'}_X) \cong Co\ker(\delta^{'}_Y)$, since $\delta^{'}_{V^{(I)}}$ is an isomorphism. Similarly $\delta_{Y}^{'}$ is also an epimorphism. Thus, $\delta_{X}^{'}$ is an isomorphism and therefore $X \cong FG(X) \in F(n\text{-}Copres(U))$. So $F(n\text{-}Copres(U)) = \perp T_G^{i \geqslant 1}$.

Proposition 3.3. Suppose that (F, G, V, U) be a Co-^{*}ⁿ-tuple. Then F preserves any exact *sequence in* n*-*Copres(U).

Proof. Let $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ be an exact sequence in $n\text{-}Copres(U)$. Applying the functor F we get the following long exact sequence

$$
0 \longrightarrow F(Z) \stackrel{F(g)}{\longrightarrow} F(Y) \stackrel{F(f)}{\longrightarrow} F(X) \stackrel{\alpha}{\longrightarrow} R^1F(Z) \longrightarrow \dots
$$

Thus we can get the following two exact sequences

$$
0 \longrightarrow W \longrightarrow F(X) \longrightarrow Q \longrightarrow 0,
$$

$$
0 \longrightarrow F(Z) \longrightarrow F(Y) \longrightarrow W \longrightarrow 0.
$$

where $Q = \text{Im }\alpha$ and $W = \text{Im } F(f)$. Applying the functor G to the last sequence we get the following commutative diagram with exact rows:

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & X & \longrightarrow & Y & \longrightarrow & Z & \longrightarrow & 0 \\
& & \downarrow & & \downarrow_{\delta_Y} & & \downarrow_{\delta_Z} & & \\
0 & \longrightarrow & G(W) & \longrightarrow & GF(Y) & \longrightarrow & GF(Z) & \longrightarrow & R^1G(W) & \longrightarrow & 0\n\end{array}
$$

It is clear by Proposition [3.1](#page-4-1) that δ_Y and δ_Z are isomorphisms and $R^iG(F(Y)) = 0 = R^iG(F(Z)),$

for any $i\geq 1.$ By Snake Lemma, $X\cong G(W)$ and by the exactness $R^iG(W)=0$ for any $i\geq 1.$ Hence by Proposition [3.2,](#page-5-1) $W = F(D)$ for some $D \in n\text{-}Copres(U)$. Therefore

$$
W = F(D) \cong F(GF(D)) = FG(F(D)) = FG(W) \cong F(X).
$$

Hence $F(f)$ is an epimorphism, and therefore the induced sequence

$$
0 \longrightarrow F(Z) \stackrel{F(g)}{\longrightarrow} F(Y) \stackrel{F(f)}{\longrightarrow} F(X) \longrightarrow 0
$$

is exact.

Theorem 3.2. *The following conditions are equivalent:*

 (1) (F, G, V, U) *is a Co-* $*^n$ -tuple.

(2) (i) U *is co-*F*-small,*

(ii) For any exact sequence $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ with $X, Y \in n\text{-}Copres(U)$, we have $Z \in n\text{-}Copres(U)$ if and only if $0 \longrightarrow F(Z) \stackrel{F(g)}{\longrightarrow} F(Y) \stackrel{F(f)}{\longrightarrow} F(X) \longrightarrow 0$ is exact.

Proof. (1)⇒(2) The necessity follows from Proposition [3.3](#page-6-0) and the sufficiency from a similar proof to that of $(1) \Rightarrow (2)$ in Theorem [3.1.](#page-4-3) \Box

(2) \Rightarrow (1) It follows from (2) \Rightarrow (1) in Theorem [3.1.](#page-4-3)

1707

 \Box

.

Proposition 3.4. *Suppose that* (F, G, V, U) *is a Co-**ⁿ-tuple. Then n -Copres(U) is closed under *extensions if and only if* $n\text{-}Copres(U) \subseteq^{\perp} T_F^1 = \{X \in \mathfrak{C} : R^1F(X) = 0\}.$

Proof. Suppose that $n\text{-}Conres(U)$ is closed under extensions. For any $X \in n\text{-}Conres(U)$ one can construct an exact sequence using the canonical maps to get an extension $0 \rightarrow U \rightarrow Y \rightarrow Y$ $X \longrightarrow 0$ of U by X. We have $Y \in n\text{-}Copres(U)$, by assumption. By Proposition [3.3,](#page-6-0) F preserves any exact sequence in $n\text{-}Conres(U)$, so applying F to the last exact sequence we get the exact sequence

$$
0 \longrightarrow F(X) \longrightarrow F(Y) \longrightarrow F(U) \longrightarrow 0,
$$

thus by the exactness, $R^1F(X)=0,$ so $X\in ^{\perp}T^1_F$ and hence $n\text{-}Copres(U)\subseteq ^{\perp}T^1_F.$ Conversely. For any extension $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$, of X by Z, where $X, Z \in n\text{-}Copres(U)$, the induced sequence

$$
0 \longrightarrow F(Z) \longrightarrow F(Y) \longrightarrow F(X) \longrightarrow 0,
$$

is exact by assumption. According to Proposition [3.1,](#page-4-1) both δ_X and δ_Z are isomorphisms and $F(X), F(Z) \in^\perp$ $T_G^{i\geq 1}.$ Then it is clear that δ_Y is an isomorphism and $F(Y)\in^\perp T_G^{i\geq 1}.$ Hence by Lemma [2.2,](#page-4-2) we have $\widetilde{Y} \cong GF(Y) \in n\text{-}Copres(U).$

Theorem 3.3. *The following conditions are equivalent:*

f

(1) (F, G, V, U) *is a Co-* $*^n$ -tuple. *(2) There is a duality*

$$
G: \xrightarrow{+} T_G^{i \geq 1} \rightleftarrows n-Copres(U): F
$$

Proof. (1)⇒(2) By Propositions [3.1](#page-4-1) and Propositions [3.2.](#page-5-1) $P(A)$ ⇒(1) Since $V^{(I)} \in \Gamma$ $T_G^{i \geq 1}$, we get $F(U^I) \cong F(G(V)^I) \cong F(G(V^{(I)})) \cong FG(V^{(I)}) \cong V^{(I)}$ $F(U)^{(I)}$. So U is co-F-small. For any $X\in n\text{-}Copres(U),$ by assumption $X\cong G(F(X))$ and $F(X)\in^\perp$ $T_G^{i\geq 1}$, thus $X\in (n+1)\text{-}Copres(U)$, by Lemma [2.2.](#page-4-2) So $n\text{-}Copres(U)=(n+1)\text{-}Copres(U)$. Now let $0\longrightarrow X\stackrel{f}{\longrightarrow} U^I\longrightarrow Y\longrightarrow 0$ be an exact sequence, with $Y\in (n+1)\text{-}Copres(U)$ and I a set. We can get the following exact sequence

$$
0 \longrightarrow F(Y) \longrightarrow F(U^I) \stackrel{F(f)}{\longrightarrow} F(X) \longrightarrow Q \longrightarrow 0,
$$

where $Q = {\rm Im}\,\alpha,$ where $\alpha: F(X) \longrightarrow R^1F(Y).$ By using argument similar to that in Proposition [3.3,](#page-6-0) we get the following commutative diagram with exact rows:

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & X & \stackrel{f}{\longrightarrow} & U^I & \longrightarrow & Y & \longrightarrow & 0 \\
& & \downarrow & & \downarrow_{\delta_{U^I}} & & \downarrow_{\delta_Y} \\
0 & \longrightarrow & G(W) & \longrightarrow & GF(U^I) & \longrightarrow & GF(Y) & \longrightarrow & R^1G(W) & \longrightarrow & 0\n\end{array},
$$

where $W = \text{Im } F(f)$, and we conclude that $Q = 0$, which means that we have an exact sequence $0 \longrightarrow F(Y) \longrightarrow F(U^I) \longrightarrow F(X) \longrightarrow 0.$ Thus (F, G, V, U) is a Co- $*^n$ -tuple. \Box

Proposition 3.5. *Suppose that* U is a co-F-small . Assume that $n\text{-}Copres(U) = {}^{\perp}T_F^{i\geq 1}$. Then (F, G, V, U) is a Co- $*^n$ -tuple.

Proof. Let $0 \longrightarrow X \longrightarrow U^I \longrightarrow Y \longrightarrow 0$, be an exact sequence with $X \in n\text{-}Copres(U)$ and I a set. We can get the following long exact sequence

$$
0 \longrightarrow F(Y) \longrightarrow F(U^I) \longrightarrow F(X) \longrightarrow R^1F(Y) \longrightarrow R^1F(U^I) \longrightarrow R^1F(X) \longrightarrow \dots
$$

Note that $X, U^I \in n\text{-}Copres(U) =^{\perp} T_F^{i\geq 1}$, so by exactness, $R^iF(Y) = 0$, for every $i \geq 2$. Now $R^1F(Y) = 0$ if and only if $Y \in {}^{\perp}T_F^{i \geq 1} = n$ - $Copres(U)$. So by Theorem [3.1](#page-4-3) we get the desired result.

4 Conclusion

We introduced the concept of Co-^{*}ⁿ-tuple of contravariant functors and give some characterizations as in Theorems [3.1,](#page-4-3) [3.2](#page-6-1) and [3.3.](#page-7-0)

Competing interests

The author declares that no competing interests exist.

References

- [1] Colby RR, Fuller KR. Costar modules. Journal of Algebra. 2001;242:146-159.
- [2] Liu H, Zhang S. r-Costar modules, International Electronic Journal of Algebra. 2010;8:167-176.
- [3] S. Breaz. Finitistic n-self-cotilting modules. Communications in Algebra. 2009;37:3152-3170.
- [4] L. Yao, Chen J. Co-*ⁿ-modules. Algebra Colloquium. 2010;17(3):447-456.
- [5] F. Castano-Iglesias. On a natural duality between Grothendieck categories. Communications in Algebra. 36 (2008), 2079-2091.
- [6] F. Pop. Natural dualities between abelian categories. Central European Journal of Mathematics. 2011;9(5):1088-1099.
- [7] S. Breaz, F. Pop. Dualities induced by right adjoint contravariant functors. Studia Univ. "Babes– Bolyai". Mathematica. LV. 2010;1:75-83.
- [8] S. Al-Nofayee. r-Costar Pair of Contravariant Functors.International Journal of Mathematics and Mathematical Sciences. vol. 2012, Article ID 481909.

——— c *2014 Al-Nofayee; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [http://creativecommons.org/licenses/by/3.0,](http://creativecommons.org/licenses/by/3.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=487&id=6&aid=4290