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Abstract

In this paper, non-Bayesian and Bayesian approaches edetasbtain point and interval
estimation of the shape parameters, the reliability amd hhzard rate functions of the
Kumaraswamy distribution. The estimators are obtaireesdh on generalized order statistics.
The symmetric and asymmetric loss functions are consldereBayesian estimation. Also,
maximum likelihood and Bayesian prediction for a new ple®n are found. The results hayve
been specialized to Type |l censored data and the uppedrealues. Comparisons are mgde
between Bayesian and non-Bayesian estimates via Moatk simulation. Moreover, th
results are applied on real hydrological data.
Keywords: Kumaraswamy distribution; generalized ordgatistics; loss functions; Type-lI
censored data; upper records; maximum likelihood predictiore®ay prediction.

1. Introduction

[1,2] introduced the concept of generalized order siedisienoted by GOS to unify several
concepts that have been used in statistics such as ordindey statistics, record values,
sequential order statistics, Pfeifer's record modelctiners. He presented his concepts of GOS by
defining the joint density function of n random variables, wtach called uniform generalized
order statistic¥/ (r,n, m, k), r = 1,2, ..., m as follows

fUQRAR O () = k(T v ) TR = )™ (L =) 2, (1)
where

k=21 n=21€eN, 0y, <<y, <l,yp=k+n—-r+M,,v >0,
M, =YL, m; my,..m,_; €Rand M =my .. my_,r€{1, .., r—1}.
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[1] used the quantile transformatiai(r,n,m, k) = F~1(U(r,n, M, k)) based on an arbitrary
absolutely continuous distribution functiéifx) to define the joint probability density function
(pdf) of the GOSX (r,n, M, k), r = 1,...,n in the form

fX(1,n,771,k),...,x(n,n,771,k) (xl‘ - xn) —

k(22T (@ = FOo)™ F ]I = Fae)* " f () )
where
F10)<x < <x, <F (D).

Hence, the joint pdf of the firgtGOS can be written as

X (1,n,m,k),...X (r,n,mk) —
f (g s ) = -
Croa [T ((1 = FGe)) ™ fO][L = F O] Mr =2 £ (), ®)
where
-
Gy = 1_[)’]': r=1.,n yj=k+n—j+M, vy, =k
j=1
If m; = =m,_; = mthe joint pdf in (3) takes the form

fx(1,n,m,k),...,x(r,n,m,k) (x1' " xr) —

Cra[TE22((1 = FxD))™ Fa)]I1 = F(x )] f (), (4)

where
.
C_,= nyj, r=1.,n yj=k+(m—-j)(m+1), y, =k
j=1

[3,4] showed that the well known pdf's such as the normalnévgial and Beta distributions do
not fit well hydrological data like daily rain fall arghily stream flow.He developed the sine
power pdf to fit up hydrological random processes which thewer and uppeends and which
has a mode between them. [5] dropped the latter condition apdsgt more generaldf for
double bounded random processes with hydrological applicalibe&kKumaraswamy distribution
is very similar to Beta distribution but has the key atage of a closed-form cumulative
distribution function (cdf) so it has been used only in sitmfiamodeling and the estimation of
models by simulation-based methods for 20 years. AlthougKuhearaswamy distribution was
introduced in 1980, the first theoretical investigation twdis presented by [6]. He derived an
expression for the moments, studied the distribution’s ligitdistributions, introduced an
analytical expression for the mean absolute deviation arcdumdnedian as a function difie
parameters of the distribution, established some bofordshis dispersion measure and for the
variance and examined the relationship between the Ksmamy distribution andhe Beta
family of distributions.
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[7] derived the distribution of single order statistidge foint distribution of two order statistics
and the distribution of the product and the quotient of two ostiistics when the random
variables are independent and identically KumaraswastyHalited.

[8] derived general formulas for L-moments and the momaeftsorder statistics of the
Kumaraswamy distribution. He studied the distribution’s skessnand kurtosis properties.
Moreover, he considered maximum likelihood estimation (ML) the parameters of
Kumaraswamy distribution. He compared between the BetahenHumaraswamy distributions
from several points of view.

[9] obtained both the joint distribution and distributions of pheduct and the ratio of two GOS
from Kumaraswamy distribution.

[10] obtained the classical estimators of one of theehaarameters of the Kumaraswamy
distribution and compared these estimators according torttegin squared errors (MSES). They
got the Bayes estimators of the Kumaraswamy distribdtiogrouped and un-grouped data.

[11] used maximum likelihood and Bayesian approaches to ob&iestimators of the parameters
and the future s-th record value from the Kumaraswamy disoibut

The generalized double-bounded, Kumaraswamuf and cdf are given, respectively, by

fGO) = aBx*H (1 —x*)P, ®)
and

Fx)=1-[1-x%f, 0<x<1la>0andp >0. (6)

The reliability function (rf) and hazard rate function Jtafe given, respectively, by

R(x) = [1—x%]%, (7
and
hx) = L ®)

In Section 2, ML estimators of the parameters, thedftha hrf based on GOS are derived. Bayes
point estimators and credible interval of the par@nse the rf and hibased on GOS are given in
Section 3. In Section 4 the one-sample and two-samphiiciom are taken in consideration,
respectively. Three applications are used in Section ®rwdstrate how the proposed methods
can be used in practice. In Section 6, Monte Carlo stioualatudy is performed to investigate
and compare the methods of ML and Bayesian estimation adidtioa.
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2. Maximum Likelihood Estimation

Suppose thaX (1,n, M, k), ..., X(r,n, M, k), k > 0, = (m;, m,, ..., m,_,) € R" 1,
my,...,My_, € R be the first- GOS drawn from Kumaraswamy population whose pdf and cdf
are given by (5) and (6). Then the likelihood function is given b

#(a, B x) @B iz xff TS (1 — xP D=1 (1 = 1)1, 9)
hence, the logarithm of the likelihood functisngiven by

L(a,f; x) =rlna+rnp+aXl_Inx; + X=Bm; + 1) — 1]In(1 — xf)
+(Byy — DIn(1 — xf). (10)

Differentiating the log-likelihood function in (10) with respéca andf one can obtain

ZTLa = % + X720 (my + DI = x) + vy, In(1 — xf), ()
and

L TSI — SSHBm + 1) — 11 (gy, — 1) (12)

da «a i=1 i i=1 t (1-x) " A=+ 7

Equating the derivatives (11) and (12) to zero, one can db&iML estimator of the paramei@r
which is given by

-r
[Xr2l (my + DIn(1 — x%) +y,.In(1 — x®)]

(13)

BML =

and by substituting (13) in (12), the ML estimate of gagameter is obtained numerically.
Applying the properties of ML estimates, ML estimatof&R(x) and h(x), based on GOS model,
are derived. The Bayesian point estimation and credibeval of R(x) and h(x), based on GOS
model, are given in Section 3.

Ry, =[1- xa]B, (14)
and
B a1
Py (X) = iﬂfxa . (15)

The asymptotic variance - covariance matrix of the ML et for the two parametets
andg is

. _o o
1= var(@my) Cov(@pr, Pur) _1| o2 oadp (16)
Cov(@mr, PuL) var(Bu) nf ot - _ 0% ,
dpoa da?

amLBmL
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with

2 _ ay? ;
O T RIZBGm, + 1) — R (I |y gyt

da? (1-x¢ ) (1—»:;")2 (1-x&

i, (17)
et a9
and
a%L a%L -y (mi +1) x{’ln;ci —v xFInx, . (19)
2adf _ opaa (1-x%) (1-x%)

The asymptotic normality of the ML estimates can be usedmpute the asymptotic confidence
intervals for the parametessandg, and become respectively as follows

Gy + Zae), AT, (20)

and

BML t Z(l—r)/z‘/ﬁr(ﬁ)x (21)

whereZ(l_T)/ is a standard normal variate ant the confidence coefficient.
2

3. Bayesian Estimation

In this section, the Bayesian point and credible intervatimason for the parameters of
Kumaraswamy distribution based on GOS are derived.

Assuming that the parametersandf are random variables with a joint bivariate prior density
function that was used by [12] as,

9(a,p) = g:(Bla)g,(a), (22)
where

aB

2@+1 _aB
g1(Bla) = s e ,a>-1, 0> 0, (23)

and the prior ofx is

6-1

a
g:(@) = ﬁe_ﬁ, b>0,6>0, (24)
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which is the gamméd, b) density.Substituting 23) and (24) in (22) one can obtain the bivariate
prior density ofa and g as follows

m(a, B) a5+aﬁae_“(%+g), (25)

wherea > —1, §, b andw are positive real numbers.
The joint posterior distribution o andg could be obtained usir(@) and (25)as follows

n(a, Blx) < £(a, ; x).n(a, B), (26)
hence,
Statrpatr, @G-Sy Inx) ~BIE-ZIZ1 (mi+1)In(1-x%F) -y In(1-x§)]
"(a'ﬁlﬁ) =2 e :Tzl(1—2{")rc(oa+;+11)¢(0,1,0,0) : ' @7)
where
Wedhf) = fooo gb+arrc,~a(htp=ST_; Inx) i 28)

M, (1-x®)[f+o-ZI= L i+ DIn(1-xf) —yr In(1-x )] +a+d =
Bayes estimators are obtained based on four different tfpless functionsthe squared error

(SE) loss function (as a symmetric loss function), linear eeptial LINEX, precautionary (P)
and general entropy (GE) loss functions (as asymmetriddossions).

3.1 Squared Error Loss Function
The SE loss function is a symmetric loss function and tedeeform
L(6,0%) = c(6 —6%) 2,

wherec denotes a constant atlis an estimator. The Bayes estimator with respectogaaratic
loss function is the mean of the posterior distribution whadles the form

05 = E(0]x) = [, 6 q (6]x)de.

Hence, the Bayes estimators of the parametefs the rf and the hrfinder SE loss functioare
given respectively by

. $(1,1,00)
ASE = 50,100)" (29)
. ¥(0,2,0,0)
fsg=(r+a+1) 1(0,1,0,0) (30)
. ¥(0,1,0,~In (1-x%))
Ry (x) = H0A0in (5% a

1(0,1,0,0) !
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and

—at-yT .
x@ 1 (qer+1)adtarr+ie a(p-Xi=11nx;)

hsp () = [ da. (32)

A-xO) 7, (1-x®)[2-2I22 tmg+ DIn(1-x8) -7y ln(1—x$)]r+a+z¢(o,1,o,o)
3.2 Linear Exponential L oss Function
The linear-exponential (LINEX) is an asymmetric losschion defined as

L(6,0%) = e’@=%) —y(6 — 0*) — 1,
under LINEX loss function, the Bayes estima@6rof 6 is given by

Oinx = —InEg(e™?|x),

whereE, stands for posterior expectation. Thereftne,Bayes estimators of the parameterg,
the rf and hrbased on GOS under LINEX loss function are given by

. _ 1 (01,0
ANy =, nzp(o,l,o,o)’ (33)

o _ 1. 9(0,10v)
Binx = - In 0,1,0,0)’ (34)

N 1 _
Rinx(*) = = E(e™*®]x), (35)

where

E(e—vR(x)|§) —
1

5+a+rﬁa+‘re—v(1—xa)ﬁe—a(%—zz;l lnxi)e—ﬁ(v"'%—z:{:_l (mi+1)1n(1—Xf‘) ~Yr 1“(1—3‘7@))

0 00 Q@
fo fo T (1—x{)I(a+r+1)1(0,1,0,0) dpda,
and
hinx(x) = —In E(e™"n®]x), (36)
where
E(e —vh(x) |§)
a1 .
o o V@) yotatri1,~ap-Ti_ Inx)
= f TFa+l da.
0 or a a_yr-1 a a
Mi—,(1-xf )[U+z—2i=1 (mi+DIn(1-x{) —yy In(1-x7 )] 1(0,1,0,0)

3.3 Precautionary L oss Function

[13] introduced an alternative asymmetric loss function, @sd presented a general class of P
loss functions as a special case. These loss funajgm®ach infinitely to the origin to prevent
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under estimation, thus giving conservative estimators, edlyestzen low failure rates are being
estimated. These estimators are very useful when usioeation may lead to serious
consequences.

A very useful and simple asymmetric P loss function is

©*-6?

L(6%,0) ==

The Bayes estimator under P loss function can be obtainsd\igg the following equation

*\2 _ £(s]2)
G =5y

hence, the Bayes estimators for the parameters,f #melithe hrf based on GOS under the P loss
function are given by

o _ [pe1100)
D = 900’ (37)

B = (e (39)

(a+7)(a+r+1)(0,2,0,0)’

f(x) = | QLon@=xY)
Rp(x) = 1%(0,1,0,~In (1-x%))’ >

and
hp(x) = |SED, (40)

where

1 ¢r
(1_xa)aé‘+a+r—1e—a(3—2i=1 Inx;)

W =["

x@D(a+r+1) [T1_, (1-xf) [%—Zir;ll (mi+DIn(1-x{) -y ln(1—x.‘,")]r+a¢(0,1,0,0)

3.4 General Entropy L oss Function

In many practical situations, it appears to be realtstiexpress the loss in terms of ra%ib [14]
pointed out a generalization of the entropy loss functicamessymmetric loss function

L6,6%) o (9"/5)" — qlog(?"/g) - 1,

whose minimum occurs & = 0 and the shape parametee= 1, (see [15]). Wherg > 0, a
positive erro(8* > @) causes serious consequences than a negative error. Tag &synator
0;g of 6 under the GE loss is
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O5e = [Eg(0~D] V4,

Therefore, the Bayes estimators of the parametefs the rf and the hrf under GE loss function
could be written as

1

. _ ($Ca100\T
dee = (1/;(0,1,0,0) ) ' (41)
( ) =
« _ (Tla+r+1-q)(0,1-q,0.0)\ q
Ber = ( I(a+r+1)  (0,1,0,0) ) ' (42)
a2
% 1(0,1,0,gIn(1-x%))
Rep(x) = ( ¥(0,1,0,0) ) q’ (43)
and
-1
" r(a+r—-q+1)Q(xixr)\ q
hee(x) = (Tl)”) “ (44)
where
Q(x;, xp) =
. aé‘+a+‘r—qx—q(a—1)e—“(%—27';1lnxi)

——da. (45
0 (1-xa)-a M=, (1-x%)¥(0,1,0,0) %—Z{;}(mi+1)ln(1—x§")—yrln(1—x‘,")+q1n(1—x“)]r+a e (45)

The Bayesian analog to the confidence interval is callededilslity interval. In general,
(L(x),U(x)) is a 100(1 — )% credibility intervalof @ if

PLE)x< 0 < U = [P n(6]x)do = 1-1.

Since, the posterior distribution is given by (27), tleed0Qq1 — t)% credibility interval fora
based on GOS (k(x), U(x)), where

1
a5+a+re—a(y—§:{=1 Inx;)

Pla>LEx)|x|=[7
[ (_) |_] fL(E) %(0,1,0,0) [Ti—, (1-x{) %—Zir;ll (mi+DIn(1-x{) -y ln(l—x,‘i‘))]wr

=1- % (46)

arrda

and

1
P Y LED))

Pla>U®RX)x|=[>
[ (_) |_] fu(ﬁ) $(0,1,0,0) [T, (1-xf)[2-2IZ 1 (my+DIn(1-x8) —yr ln(1—x.‘,"))]

> 47)

rarrda

also, a 1001 — )% credibility interval forg based on GOS i@.(x), U(x)), where
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P[B > L(x)|x] = B** )

1 —
‘ a5+a+re—a(3—2{=11n Xi)g_ﬁ(a YL (mp+1)in(1-x%) -y 1n(1—x$))

% fLOEé) fo‘” M}, (1-x{)r(a+r+1)(0,1,0,0) dadf =1- % ' (48)
and

P[> L(x)|x] = po*

ey dnap = @9
4. Prediction

In this study, one and two-sample prediction are consideldl prediction and Bayesian
prediction for a new observation are used.

4.1 One-Sample Prediction

Suppose that the first r GO1,n,m, k), ..., X(r,n, M, k) have been observeahd we wish to
predict the future GOZ (r + 1,n,m, k), ..., X(n,n, M, k).

LetY,=X;,s=r+1,r+2,..,n,m;=m,Vi=1,..,r. The conditional density function of
thes™ future GOS, given the first is given by

S—-r _ k-1
k—[hm(F(ys) — Ry (F ()]s [1-F(y5)] f(}’s)’ me=—1,

I(s—r—l)! [1-F(ys)]*
f(ysla. B3 x) =
— -1
|2 [ (FO) = b (P e )7 B0y g,

Cr_1(s—r-1)! [1-F(ys)]¥r+1
(50)
where

_(1_y\ym+1
—(lm?1 , m=*-—1

hm(x) = , (51)
—In(l-x),m=-1

C{’—l = H?:l }/jv = s, T, (52)

and
Yi=k+m—j)m+1), Vje{l2,..,n-1} (53)

Therefore, the marginal density function¥pfwill be obtained for two different cases; for
m # —1 and form = —1.
Substituting (5) and (6) in (51) one can obtain,
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m(F(x)) _ {m+1 (1 — X“)B(m+1) m+* —1 , (54)
BIn(1 —x%), m=-—1

then, the conditional density function of & future GOS, given the first, from Kumaraswamy
distribution could be obtained from (54) and (50). Therefore,

( AaByS T30 e (1 -y P T A = )PV, m o -1,

Abdagin) =1 e (1 = %) K (1 - 9

Ir'(s-r)
lx Yoo [ In(1 = )] [ In(1 = y O], m = 1,

where
_ Cs—1 1
T (s-r-1)ICr_y (m+1)S T (56)
g = (-5 (57, (57)
Vr=jm+1) +ys, (58)
and
Vi=m+1D(s—7r—1-j) = Vrp1. (59)

4.1.1 Maximum likelihood prediction based on one-sample prediction

The ML prediction can be obtained using the conditionasitieifunction of thes™ future GOS,
given the firstr, which is given by (55) after replacing the shape pammsetandg by their ML
estimatest,;;, and By;.

The ML predictive estimator of the future G®Ss =r + 1,7 + 2, ..., given the first r GOS, is
given by

yS(ML) = f ySf(YSlaML' ﬁAML;E) d}’s, (60)

Substituting (55) in (60), one obtains

I( [ AaBrye T575 7 g (1= 3TN (1 = 5,9 dym % —1,
¥/ 1 kSTy& 5 s-r BuLk 61
Ysom) = { fxr I(s— r) ﬁML (1 _xTaML) e (61)
J
lzs S5 gl In( =P (1 -y ™)), m= -1,

whereA, a;, V;* andV; are given by (56), (57), (58) and (59).
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A (1 —-1) 100 % maximum likelihood predictive bounds (MLPB) for the fetobservatior;,
s=r+1,r+2,..,n,given the first r, such that

P[L(x) <Y, <U(x)] = 1 -, are as follows

P[Ys > L(ﬁ)lﬁ] = le(é) f1(Ys|&ML:BML}§)dYS =1- %1 (62)
and

PlYs > U)Ix] = fy 1Ol @un, i x)dys = 5. (63)

Substituting (55) in  (62) and (63) the MLPB for the future seation
Y, s=r+1,r+2,..,n given the first r based on GOS, are given by

PlY, > L(x)|x] =

1 ~ 5 anr—
fL(x)A“MLﬁMLYSaML !
x T30t a; (1 — y, )M T (1 - g @)y e
2 64
1 kS—ryaML—l . A S—T 2 ~BuLk N kBymL-1 ( )
fL(x)ﬁaMLﬁML (1 — x,ome) (1 — y,@m)
- ) ~ j
X B52p L g [= In(1 = x0T (1 -y dy,, m o= -1,
and
P[Y, > U(x)|x] =
1 P 5 a -
fu(x)AaMLﬁMLYSaML !
X Z;;S_l a; (1 — yS@ML)BMLVJ' _1(1 _ xr&ML)BMLVj’ dy, me 1,
(65)

ks—ryaML_l kBmL—1
S

o sy

N ) a j
X 25557 gy[=In(1 = xP P = In(1 -y )] dy,, m o= -1,

4.1.2 Bayesian prediction based on one-sample prediction

The Bayesian predictive density (BPD) function of the fuiyreould be obtained by applying the
following equation

h(yslx) = Jy f,” F(vs|a. B; x).-n(a, B|x) dB da, (66)

Therefore, the BPD of the futurg, s = r + 1,7 + 2, ... given the first r is given by substituting
(27) and (55) in (66) to be
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1 «r
0 gb+a+T+1,~alp= L= Inx;-Inys]

A

fO ys(1-yE j-, (1-x{)1¥(0,1,0,0)

X P (atr+1) rarz da, m#* —1,
BT 4o (=)= (rr+V ) In(1=x, D)=V} In(1-y59)]

hy (YSll) =

1
ks—ra6+a+r+1e_a[y—2{=1 Inx;-In }’s]

[oe]
fO Ys¥(1-ys¥)B(s—r,a+r+1) ]'[l-rzl(l—x{z)¢1(0,1,0,0)[%+(k—yr) In(1-x,%)—kln(1-yg%)]a+s+1

x 2525 () In(1 - 2 [In(1 -y da, m=—1,

(67)
hence, the Bayes predictive estimator (BPE) of the fufure = r + 1,r + 2, ... given the first r
under SE loss function is given by

ys*(SE) =
1 g7
1 foo ab+atr+1,~alp=Yi= Inx;=Inys]
A
fxr 0 (1-yH -, (1-xF)(0,1,0,0)

1
X (arrt)) ez da dy;, m# —1,

—— a —_
2§=S 1aj[g—zl-r:llln(l—xi)—(Yr+Vj)ln(l—xr“)—Vj*ln(l—ys“) ]

(68)

1 'd L
Sl—aks—‘raé‘+a+‘r+1e—a 5~2i=1 Inx;—In }’s]

1 oo V.
fxr fo (1-ys®)B(s-T,a+7+1) H{zl(1—xf‘)1p1(0,1,0,0)[%+(k—y-r) In(1-2x,%)—kIn(1-ys®)]a+s+1

x 23257 (77 In(1 = 2 [In(1 — ¥ da dy,, m= -1,

and the BPE of the futudé,s =r+ 1,7 + 2, ... given the first r under LINEX loss function is
given by

. -1 _
YVs(LINEX) = Tln E(e™s |§),
where

E (e‘“yS|§) =
1
Afl foo a5+a+r+1e—vyse—0![y—2ir=11nxi—lnyS]
Xy 20 1=-yH M=, (1-x)¥(0,1,0,0)

X (atr+l) 7rarz da dys, m#* —1,

252071 [ S-BTTE In(1-x) = (e +V ) In(L=x, D)=V In(1-ys@)]

(69)

1
ks—ra5+a+r+1e—uyse—a[;—f.ir:l Inx;~Inys|

1 foo
fxr f(’ Ys¥(1-ys®)B(s—r,a+r+1) ]'[{=1(1—xf‘)1p1(0,1,0,0)[%+(k—yr) In(1-x,%)—kln(1-ys®*)]a+s+1

x 35257 (77 In(t - xO) [In(1 - O/ da dy,, m=-1

j=0 j

A (1 —7) 100 % Bayesian predictive bounds (BPB) for the future obsienY;, s =r + 1,7 +
2,...,n, given the first r, such th@[L(x) < ¥, < U(x)] = 1 —z, are as follows
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PY; > L(x)|x] = le(é)h(ySB)dyS =1- %* (70)
and

PlYs > UR)|x] = [y h(slx)dys =7 (71)

2

Substituting (67) in (70) and (71) one can obtain

PlY; > L(x)|x] =
© a6+a+r+1e—a[%—2{=1ln x;=Inys]

1
4 fL(z) f(, ys(1-y@ TTI_, (1-x&)1(0,1,0,0)

(a+r+1)
X0 o kil - Frarz da dys, m# —1,
Zj=0 aj[;—2i=1 In(1-x)—(yr+Vj) ln(l—xT“)—Vj In(1-ys9)]
(72)
1 0 kS Tabtatr+1, "% %_ZLl lnxl-—lnys]
fL(z) J; s (-ys®B(s—r,a+r+1) [Ty (1-xF)1(0,1,0,0) [+ (k—yr) In(1 -2, %) —kIn (1-ys®)|4+5+1
x B35 () In(1 = 2 (In(1 =y da dy,, m = -1,
and
PlY, > U(x)|x] =
4 1 000[5+a+r+1e—176[%—21'{:1lnxi—lnys]
J u(x) J 0 ys(1-yH M=, (1-x%)1(0,1,0,0)
(a+r+1)
X da dys, m+ —1
5Th 7 4 [T (-2~ (i 4V ) In (=2, OV} In(1-y @) ° (73)

1
ks—‘ra6+a+r+1e—a[y—2{=1 Inx;=In J’s]

1 [¢e)
fU (x) fo Ys*(1-ys®)B(s—r,a+r+1) [T]_; (1-xF)11(0,1,0,0) [%+(k—yr) In(1-x,%)—kIn(1-ys®*)]a+s+1

x 25257 () In(1 = 2 In(1 -y da dy,, m=-1.

4.2 Two-Sample Prediction

Let X(1,n,m,k),...,X(r,n,m, k) be a GOS of sizea from Kumaraswamy distribution and
suppos€’ (1, N, M, K),...,Y(R,N,M,K), K > 0,M € R is a second unobserved GOS of dize
The density function of the GOS is given by,

(%[1 — FOOI Hf GlguFOIIF™, M= -1,
f(YSlarﬁ) = . (74)
(L~ FO ODlgnFOI M =1,

where
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(1M
[0t a2 4, M#—1,
gu(x) = (75)
—In(1 —x), M= -1,
and
Cios =Il=1ve’ v =K+ (N =M +1). (76)
Substituting (5), (6) in (75), then
1 s—1
a1 =—={1 - @ —yHFMO}" M = -1,
[an(FO) ™ = [arr {[ : 1} )
B5H—=In(1 —y®)]*71, M=-1
For the future sample of size, nlet Y, , denote the s®* ordered lifetime,

1 < s < n, then the density function of the G®Sfrom Kumaraswamy distribution is obtained
by substituting (5), (6) and (77) in (74) whére< y, < 1, hence

P L e
251, = kS _ B ~
) By (1 =y (= In(1 — y ) M = -1,
where
_ Cs—1
nm= (s—1)!(M+1)5—1’
and

¢ = (-1) (5;1) and t; = [y +j(M + 1)].

4.2.1 Maximum likelihood prediction based on two-sample prediction

The point and interval ML prediction for the parameteiandp is obtained based on GOS. The
results are specialized to Type Il censoring and upgerds.

The ML predictive estimator of the future observatignl <s <n, could be obtained by
substituting (78) in (60)

. _ 1 R

R NBuL Z;:cl) CjB(&_ML+ 1;ﬁMLtj), M+ -1,

Ys(SE) =\ ks
(s—=1)!

- o X (79)
L 5 Sl _ ~
aMLﬁML f() ysaML(l _ ysaML)BMLk 1(_ ln(l _ ysaML))s 1 dys,M = -1,

the ML predictive bounds for the GQJ1 < s < N are given by substituting (78) in (70) and
(71) therefore,
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{fL(x) naMLﬂMLys LD Y 01— aML)BMLt’ tdy,, M=#-1,
kST

P(Ys > L(x)|x) = m@mﬁh (80)
X fy YoM (1 = By Pu=1 (— In(1 = y™4))" dys, M = —1,

and
P(Y, > U(x)|x) =
(Joeo By BiZh (1 =yt ~t dy,, M % -1,

kS T ~ s
ooy QB (81)

(X Jy ey 91 = y My Bt (— In (1 — y M)~ dyg, M = —1.

4.2.2 Bayesian prediction based on two-sample prediction

The BPD function of the future observatiin 1 < s < N is given by using (27) and (78) as
follows

ha (ys|x) =
o e—a(%—ELllnxi—lnys)

f(’ [(%—Zir;ll(mﬁl)ln(l—xf‘)—y-rln(l x®)- ZJ ocjtjIn(1—yg)atT+2

9 (a+r+1)a5+a+r+1
¥s(1-y$H M=, (1-x{)¥(0,1,0,0)

da, M #* -1,

(82)
» —a(%—f,{_llnxi—lnys)
fo [(%—Z L (mi+DIn(1-xf) =y, In(1-xF)—KIn(1-y&)]4+7+2
(- In(1-y®))S~L(a+r+1)adtatr+l
da, M= -1,
ys(1=yE) M=, (1-x{)1¥(0,1,0,0)
hence, the BPE of the futurg, 1 < s < N under SE loss function is given by
—a(% ZL 1Inx;=-Inys)
fo fo Zf ll(m +DIn(1-xf) —yr In(1-x8)— Zf (l,cjt]ln(1—ys"‘)]‘“"”'2
(a+r+1)a5+a+r+1
dad M+ -1
A=y®) My (1-x8)¥(0,1,0,0) aays, #* -1,
}A’s(SE) = (83)

e—a(% 21 1Inx;-Inys)
fo fo [(%—Zir;ll (mi+DIn(1-x7) —yr In(1-x)-KIn(1-y&)]a+7+2
(-In(1-y®))S~L(a+r+1)adtatr+l

A-yH M=, (1-x7)(0,1,0,0)

dadys, M=-1,

the BPE of the futur&;, 1 < s < N under LINEX loss function is given by
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where

E(e™s|x) =

are

-1 B
Ys(LINEX) = Tln E(e Uys|§)

1 g7
flfoo e—vyse—a(5—2i=1lnxi—IHYS)
@ - -
0 70 [(E-3IZE (m+DIn(1-xf) =y, In(1-2H)-T528 ¢t In(1-y§)|a+7+2
(a+r+1)a‘5+a+’+1

Ys(1=y =, (1-xF)(0,1,0,0)

dadys, M+ -1,

P(Ys > L(x)x) =

and

P(Ys > U(0)|x) =

84
1, e_uysB—a(%—Z'L-r:lln x;-Inys) ( )
f(’ fO [(%—Z}:ll (mi+DIn(1-x{) -y In(1-xf)—Kin(1-yF)|a+7+2
(-In(1-y¥)S~L(a+r+1)abtatr+l
dady., M= -1.
ys(1=y$ M=, (1-x{)¥(0,1,0,0) s
A (1 — 1) 100 % BPB for the future observatignsuch thatP[L(x) < ¥, < U(x)] =1-7
1 - e—a(%—ELllnxi—lnys)
J.L(x) J‘0 [(%—Z{;ll (mi+DIn(1-xf) -y ln(l—x?)—Z?;é cjtjIn(1-ydjatr+2
(a+r+1)a5+a+r+1
da dy., M=% -1,
ys(1=y$ M=, (1-x{)1¥(0,1,0,0) s
(85)
1 © e—a(%—Z’{:llnxi—lnys)
fL(x) fo [(%—2{;11 (mi+D)In(1-xf) -y In(1-xF)-kIn(1-y )] a+7+2
(- In(1-y%)S~L(a+r+1)adtatr+1
da dys, M= -1,
Ys(1=y& M=, (1-xF)¥(0,1,0,0) s
1 . e—a(%—z‘{zllnxi—lnys)
fU(X) f(’ [(%—Zir;ll (mi+DIn(1-x{) -y ln(1—x.‘,")—2§;é cjtjin(1-ydHjatr+2
(a+r+1)a5+a+r+1
da dy, M=# -1,
YAy, —x@)p100) *& Vs (@6)

1
J‘U(x)

(-In(1-y%)S~1(a+r+1)adtatr+l

1 yr
e_a(5_2i=1 Inx;-Inys)

fO (G-ZIZ1 (mi+ DIn(1-x%) =y, In(1-xH)-KIn(1-y&)] @+7+2

Ys(1=y&H M=, (1-x)1(0,1,0,0)

da dys, M=-1.
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5. Some Applications

In this section, three hydrological real data sets aréyzaethto demonstrate how the proposed
methods can be used in practid@ check the validity of the fitted model, the Kolmogorov—
Smirnov and chi—squared goodness of fit tests are perfahmaagh Easy Fit 5.5 Software.

Application 1:

The first application is a real data set obtained floenShasta Reservoir in California, USA deals
with the monthly water capacity data and were takenHerrhonth of February from 1991 to
2010, (see [11]). The maximum capacity of the resergo#552000acre-foot(AF). In order to
apply the real data to Kumaraswamy distribution the data transformed to the interval [0, 1]
by dividing the capacities over the capacity of the reserVbe actual and transformed daté
water capacity of Shasta reservoir in Califorfiam 1991 to 2010 is shown in Table 1 in the
appendix.

Application 2:

The second application is the annual capacity of Naser dakrg the flood time from 1968 to
2010 obtained from [16] which is given in TableNaser Lake is located in the lower Nile River
Basin at the border between Egypt and Sudan. The totatitaphthe lake is 162.3 £0° Cubic
meter ?) at its highest water level. The lake was created frontatieel 960 to the 1968 together
with the construction of the Aswan High Dam upstrezrthe old Aswan Dam, about 5 km south
of the city of Aswan.

Application 3:

The third application is the annual water level behind the Higm Daring the flood time from
1968 to 2010 obtained frofii6] which is shown in Table 2. The highest water level ofDhe is
182 meter (m) above the mean sea level.

The Kolmogorov—Smirnovand Chi-Squaredtests showed that the observations follow
Kumaraswamy distribution. Easy Fit 5.5 software was useditfng the observations. The p
values are given, respectively, By244653230.63544848 and 0.6323368ables 3 and 6 show
ML and Bayes estimates of the parameters, the rf andohrthé real data based on Type I
censoring and upper records as special cases of GOStting se=0,k =1 andm = —1,

k =1, respectively. The confidence and credible intervals forprameters andf based on
Type 1l censoring and upper records are given in Tablesi47afable 5 shows ML and Bayes
predictive estimates and bounds for the first future obensbased on Type Il censoring under
one-sample and two-sample prediction. Table 8 shows ML andsBagelictive estimates and
bounds for the first future observation based on upper records onelesample and two-sample
prediction.

Remarks

It is clear from the p values given in each case thamtbael fits the data very well. The ML and
Bayes estimates values are very close to each dtrezach data set. In most cases, the length of
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the credible intervals are shorter than the confidencevaitefor both of the parametarsand S.
Both of ML and Bayes predictive estimates of the future masiens are very close to the value
of the actual observation. In general, the lengths of the Bay@sedictive intervals are shorter
than the ML predictive ones.

6. Simulation Study

In this section, a numerical example is given to illusttlageresults obtained on basis of generated
data from Kumaraswamy distribution. Also, to compare how #wmilts are close for both
methods; ML and Bayesian estimations. In order to get a ML Bagks predictors, all
computations are performed using Mathcad 14

Table 9 shows the ML and Bayes estimates of the paeas) rf, hrf, their biases, relative
absolute biases, estimated risks (ERs), relativenragaare errors (MSEs) and variances based on
Type Il censoring wher®y = 5000 is the number of repetitions,= 50, is the sample size, and

r = 45 is the number of survival unit§,= 9, w = 0.09, a = 2 andb = 0.9 are the values of the
hyper parameters. Table 12 shows the ML and Bayes essirofithe parameters, the rf, the hrf,
their biases, relative absolute biases, ERs, reldi8&s and variances based on upper records
whereN = 2000 is the number of repetitions,= 500 is the sample size,= 7 is the number of
records,R = 1043 is the number of samples that have r recards,7, b = 0.1, § =8, and

w = 0.1 are the values of the hyper paramet@ebles 10 and 13 show confidence and credible
intervals for the parametessandf based on Type Il censoring and upper records, respectively.
Table 11 shows the ML and Bayesian predictive estimates bounds for the first future
observation based on Type Il censoring under one-samplenaasiimple prediction. Table 14
shows the ML and Bayes predictive estimates and boundsefdirst future observation based on
upper records under one-sample and two-sample prediction.

Concluding Remarks

1. Based on Type Il censorint, is clear from Table 9 that the ERs for the estenaif the
parametersx , f and hrf under GE loss function have the less values than the
corresponding ERs under the SE loss function then the correspondingnB&sthe
LINEX loss function then the corresponding ERs under thas® function, and finally
the ML ones but the ERs of the estimates of the rf undelP toss function has the less
value than the corresponding ERs, then the correspondinguiides SE loss function,
then the corresponding ERs under the GE loss function hétethite ML ERs and finally
the corresponding ERs under the LINEX loss function.

2. Based on upper records, it has been noticed, from Tablddt2the ERs risks for the
estimates of the parameterandp and for the hrf under GE loss function have the less
values than the corresponding ERs, then the P loss functinaescnext after that the SE
loss function then the LINEX loss function, and finally Mk ERs. The ERs risks of the
estimates of the rf under the GE loss function haveetbe value than the corresponding
ERs, then ML ERs comes next, then LINEX loss functiderahat the SE and finally
the P loss function.

3. Both of ML and Bayes predictive estimates of the futlyservation are very close to the
value of the actual observations and the length of the Baygsedictive intervals are
shorter than the ML predictive ones. [Tables 11 and 14].
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4. In most cases, the length of the credible intervalslaoeter than the confidence intervals
for both of the parametersand S. [Tables 10 and 13]
5. Results perform better when n gets larger.

General Conclusion

In this study, ML and Bayes estimators for the shaparpeters, rf and hrf of Kumaraswamy
distribution, based on GOS, are obtained. ML and Baygsitiction for a new observation from
Kumaraswamy distribution, based on GOS, are derived BHyesian estimation is derived under
four types of loss functions. The results are applied basetlype Il censored data and upper
record values as special cases from GOS. Monte Carlolagion is used to construct the
comparisons between Bayesian and non-Bayesian estimatesowdn the results are applied on
real hydrological data.

In general, the length of the credible interval is shohtan tthe confidence intervalBoth of ML
and Bayes predictive estimates of the future observationgeayeclose to the value of the actual
observation. In most cases, the lengths of the Bayes fivedictervals are shorter than the ML
predictive ones. The Bayes estimates of the parameterérf based on Type Il censoring under
GE loss function have the smallest ERs. But the ERbeokstimates of the rf based on Type |l
censoring under the P loss function has the smallest BERsBayes estimates of the parameters,
rf and hrf based on upper records under GE loss functionthav@mallest ERs. We suggest using
the Bayesian approach under GE loss function for estipmatie parameters of Kumaraswamy
distribution.
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APPENDIX

Table 1. Actual and transformed data of water capacity of Shasta Reservoir in Californiafrom 1991 to 2010

Year Capacity (AF) Ratio to total capacity Y ear Capacity (AF) Ratio to total capacity
1991 1542838 0.338936 2001 3495969 0.768007
1992 1966077 0.431915 2002 3839544 0.843485
1993 3459209 0.759932 2003 3584283 0.787408
1994 3298496 0.724626 2004 3868600 0.849868
1995 3448519 0.757583 2005 3168056 0.69597
1996 3694201 0.811556 2006 3834224 0.842316
1997 3574861 0.785339 2007 3772193 0.828689
1998 3567220 0.78366 2008 2641041 0.580194
1999 3712733 0.815627 2009 1960458 0.430681
2000 3857423 0.847413 2010 3380147 0.742563
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Table 2. Actual and transfor med data of water level behind the High Dam and capacity of Nasser Lake during the flood time from 1968 to 2010

Y ear Water level (m) Ratio to maximum level Capacity of the lake (Billion m?) Ratio to total capacity
1968/196! 151.1 0.8302: 39.9% 0.2462
1969/197! 153.8: 0.8452: 46.4: 0.2860
1970/197 159.6¢ 0.8773t 61.3¢€ 0.3780¢
1971/197: 162.4¢ 0.8928( 69.82 0.4301¢
1972/197: 158.2 0.8692! 57.2¢ 0.3526¢
1973/197. 161.7: 0.8885: 66.7 0.4109¢
1974/197! 165.€0 0.9098¢ 80.0¢ 0.4932¢
1975/197! 172.4: 0.9474: 108.3% 0.6677:
1976/197 171.70 0.9434( 105.0¢ 0.6472!
1977/197 172.5. 0.9479: 108.8¢ 0.6706(
1978/197! 173.0¢ 0.9507¢ 111.2 0.6857t
1979/198! 171.2% 0.9410: 103.1: 0.6353t
1980/198: 171.18 0.9402° 102.4¢ 0.6314¢
1981/198: 170.3¢ 0.9360: 99.1¢ 0.6109(
1982/198: 165.83 0.9113° 81.0¢ 0.4992¢
1983/198 163.€0 0.8989( 72.9¢ 0.4494:
1984/198! 156.3: 0.8591" 51.4¢ 0.3170¢
1985/198! 157.2¢ 0.8639( 53.7 0.3308t
1986/198 154.6¢ 0.8497: 47.27 0.2912!
1987/198: 151.70 0.8335: 40.61 0.2505¢
1988/198! 164.4! 0.9033! 75.7¢ 0.4669:
1989/199 163.7% 0.8998: 73.52 0.4529¢
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(Continued) Table 2

Ratioto Capacity of the lake Ratioto
Year Water level (m) maximum level (billion m3) total capacity

1990/199: 162.t 0.8928!¢ 69.2° 0.4266°
1991/199: 163.9¢ 0.9009¢ 74.2% 0.4573¢
1992/199: 167.4¢ 0.9200¢ 87.0¢ 0.5364:
1993/199: 169.6¢ 0.93208 96.0% 0.5918(
1994/199! 17234 0.9469: 10¢€ 0.6654:
1995/1991 172.7¢ 0.9492¢ 109.97 0.6775
1996/199 175.4¢ 0.9641° 123.¢ 0.7627¢
1997/199: 174.7¢ 0.9601¢ 12C 0.7393°
1998/199! 174.7¢ 0.9601¢ 12C 0.7393°
1999/200! 175.7¢ 0.9658" 125.4: 0.7727(
2000/200: 175.8¢ 0.9662( 125.7: 0.7746!
2001/200: 175.7 0.9653¢ 124.9¢ 0.7698(
2002/200:. 175.1¢ 0.9623( 122.0: 0.7518
2003/200:- 172.0¢ 0.9453¢ 106.6¢ 0.6573(
2004/200:! 169.5¢ 0.9318: 95.8¢ 0.5905:
2005/200! 168.6¢ 0.9266¢ 91.8¢ 0.5659¢
2006/200 173.4: 0.9528¢ 113.2 0.6974°
2007/208 174.¢ 0.96043! 120.2¢ 0.7409°
2008/200! 173.c 0.9521¢ 112.¢ 0.6937°
2009/2011 169.7¢ 0.9329: 96.7 0.5958:
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Table3. ML and Bayes estimates of the parameters, the reliability and the hazard rate functionsfor the real data based on Typell censoring

.=§ Estimate ML E LTNEX Bayesian P GE
B a 3.40026 1.1637 1.15446 1.12227 1.11943
o B 5.64983 0.54158 e 0.54016 052823 | 2 0.58964
g R 0.93388 0.71942 ! 0.7188 0.71481 g 0.71447
o 0) 0.78081 1.01883 1.01464 0.60113 0.98691
g a 16.74034 3.19258 3.15845 3.13867 3.11225
'E £ B 3.1543 0.45389 S 0.45341 0.44856 p 1.38785
g0 R(D) 0.99997 0.94418 ! 0.94002 0.94388 ! 0.93955
< 0) 9.64624 10~ 0.36733 0.36168 0.03725 0.34103
o a 3.99842 1.01589 1.39187 1.00355 1.38328
S B 6.24748 1.39565 S 1.01341 138191 | & 1.38067
E R 0.66787 0.95574 ! 0.61415 0.61149 I 0.95296
z 10) 5.76047 0.61495 0.61112 0.96846 1.72369
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Table 4. Confidence and credible intervals of the parametersfor thereal data based on Typell censoring

_ Estimate M ethod L U Length

© 5 . ML 4.05215 497511 0.92296
g g « Bayesian 0.38516 0.8235 0.43834
7 k> = ML 1.12623 3.1672 2.04097
B Bayesian 1.39941 2.83843 1.43901
- ML 13.66676 19.81392 6.14716
25 cEd “ Bayesian 8.52279 10.40727 1.88448
FTAO = ML 2.18877 4.11983 1.93106
B Bayesian 1.33264 1.69111 0.35848

- ML 3.02107 4.17347 1.1524

g $ “ Bayesian 0.9504 1.40309 0.45269
> S B ML 3.3744 6.4051 3.0307
Bayesian 1.2958 1.8339 0.5381
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Table5. ML and Bayes predictive estimates and bounds for the first future observation based on Typell censoring
under one and two-sample prediction

Interval prediction Point prediction

Method Data X Method 95% ML Bayesian
L U Length SE LINEX
P Y oy s R e T
g é: ASNSnanl]-llgh Ny Ba?\%an §:§§§§§ 8:?)39%‘1‘ ?E{g{ 0.97642 0.90512 0.99106
© Naser L ake Bayesan | 0.76853 | 0.85476 0.08623 | 78722 0.78567 0.92033
9 Resvor Gavesan | 061004 | Osossa | Oarops| O0S208 | 092725 | 08495
A o e IR
PL hmrime | [ ombi omn 0w s | osous | o
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Table 6. ML and Bayes estimates of the parameter s, thereliability and the hazard rate functionsfor thereal data based on upper records

. Bayesian
N Estimate ML SE LINEX : P GE
73 a 2.87938 0.56821 0.5512 0.75379 0.54524
B B 7.11741 2.92655 2.5132 2.83783 2.79546
iz R(D 0.99064 0.40095 0.37096 0.73462 0.32607
h(t) 0.2709 2.16492 6.41408 3.52966 0.86183
a 15.25355 0.58792 0.570302 0.5724 0.57098
§5t B 12.27203 2.77572 2.456 2.70662 2.70067
5( A RO 0.94806 0.01892 0.01851 2796280 7.6721073
h(t) 1.16486 10.01844 6.82524 9.74035 0.07711
a 2.03326 0.6376 0.61568 0.60342 0.58708
% Q B 12.1715 2.26025 2.04275 2.14823 2.09643
85 R(D) 0.89291 0.52777 0.50311 0.0804 0.42221
h(t) 2.31374 4.71637 2.9797 5.23795 1.0127
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Table 7. Confidence and credible intervals of the parametersfor thereal data based on upper records

o Estimate Method L U Length
RS N ML 2.50455 3.25421 0.74966
g ; « Bayesian 0.34569 0.86736 0.52199
a g _ ML 3.31752 10.9173 7.59977

P Bayesian 0.34569 0.86736 0.52199

A ML 10.81512 19.69199 8.87687

25E “ Bayesian 1.712175 4.12684 2.41466
FTA _ ML 10.98379 13.56028 2.57649
P Bayesian 0.359898 0.89125 0.53135

A ML 0.3789 3.68763 3.30872

% < @ Bayesian 1.1104523 3.86483 2.75438
g q 2 ML 1.1445 22.05399 20.90989
Bayesian 0.3141846 1.154021 0.8398
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Table 8. ML and Bayes predictive estimates and bounds of the future observation for real data based on upper records

under one and two-sample prediction

==

Interval prediction Point prediction
Method Data X Method 95% ML Bayesian
L U Length SE LINEX
D
ShastaReservoir | x, | ML | 084018 ] 092055 0.0724% g g7085 | 0.867202| 0.8657;
2 Bayesan | 0.84797 | 0.91384] 0.06587
= 7
%.‘Q Aswan High Dam ML 0.96607 | 0.98464  0.01857 y 97195 | 0.971042| 0.97091
8 ... | Bayesan | 0.9660 | 0.9828( | 0.0168:
= 11 7731 82975/  0.05658
© Nasser L ake ML 0.77318 | 0.82975 05658 ) 78954 | 0.785467| 07853
Bayesan | 0.77304 | 0.81857| 0.04553
70867 | 0.954 0.24602
Shasta Reservoir ML 0.70867 | ©0.95469 002 08563 | 095994 | 0.95952
%_ c Bayesian | 0.85063 | 0.99917| 0.14854
(@] P!
55 | AswanHighDam | x | ML | 079218 094 923 901239 | 0.05895|  0.9585:
i Bayesan | 0.8508( | 0.9988: | 0.1479
Za ML 0.54267 | 0.82143 0.27876
Nasser L ake 0.69283 | 0.92988| 0.9291]
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relative mean square errors and variances based on Typell censoring

R=5000,n=50,r=45a=11,=09,=90w=0.09,a=2,b=0.9

Table 9. ML and Bayes estimates of the parameters, thereliability , the hazard rate functionsand their biases, relative absolute biases, estimated risks,

Method of

estimation Average ER Relative M SE variance bias Relative absolute bias
a 1.16508 0.06439 0.23069 0.06016 0.06508 0.05916
a B 0.96268 0.05182 0.25293 0.04789 0.06268 0.06964
2 R(® 0.92941 7.86678& 107+ 0.03022 7.8526% 10~* 1.1894% 1073 1.2814% 1073
h(t) 0.83145 0.05135 0.26527 0.05083 -0.02279 0.02668
a 1.04417 0.02041 0.12987 0.01729 -0.05583 0.05076
B 0.7618 0.04504 0.2358 0.02594 -0.01382 0.15355
& R(® 0.92449 6.3635910°* 0.02718 6.2244 10~* -3.73085 1073 4.01936¢ 1073
h(t) 0.81102 0.0331 0.21297 0.03123 -0.04322 0.05059
a 1.04176 0.02061 0.13051 0.01722 0.05825 0.05295
n ; B 0.76075 0.04653 0.23969 0.02714 -0.13925 0.15472
g % 2l R(®) 0.9273 1.1070x 1073 0.03584 1.10626< 1073 8.7018% 1073 9.3748% 1073
B h(t) 0.80563 0.03449 0.217308 0.03216 -0.04861 0.05690
=) a 1.03612 0.02094 0.13155 0.01686 -0.06388 0.05808
@ N B 0.75288 0.04985 0.24809 0.02891 -0.14712 0.16347
R(® 0.92491 4.8669% 10~* 0.02377 4,7575¢ 10~* -3.0855% 1073 3.5644% 10~*
h(t) 0.643442 0.03819 0.22876 0.12094 0.06999 0.081933
a 1.06929 0.01572 0.114163 0.014825 -0.030736 0.a2794
w7 B 0.850493 0.017963 0.148917 0.015512 -0.049507 055
O s R(t) 0.921401 6.41399107* 0.027284 5.94940410~* -6.8160% 103 7.343% 1073
h(t) 0.831445 0.030681 0.20504 0.0301615 -0.022794 68R6

1740




British Journal of Mathematics & Computer Science 4(12), 1710-1743, 2014

Table 10. Confidence and credible intervalsfor the parametersa and B based on Typell

censoring
M ethod L U Length
a ML 0.79163 1.53902 0.74739
Bayesian 0.81636 1.09053 0.27416
M ethod L U Length
B ML 0.68101 1.24527 0.56425
Bayesian 0.1.19364 1.56363 0.36966

Table11. ML and Bayes predictive estimates and bounds for thefirst future observation

based on Typell censoring under one and two-sample prediction

= Interval prediction Paint prediction

L 95% Bayesian

T Xg Method ML

s L U Length SE LINEX

o

g- ML 0.90301| 0.95263 0.04962 -

g X46 0.91968| 0.79827 1 0.86068
~

6 Bayesian | 0.91674| 0.96068 0.04394

%_ ML 0.05802| 0.97745% 0.91942

£ D

93 xq 0.55698| 0.98899 0.90713

o

E Bayesian | 0.53261| 0.98182 0.44921 °
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Table 12. ML and Bayes estimates of the parameters, the reliability ,the hazard rate functions, biases, relative absolute biases, estimated risks, relative

mean squar e errorsand variances based on upper records

R=2000,n=500,R=1043,r=7,a=1.1,=0.9,a=7,b=0.1,6 =8, w = 0.1, R(¢t) = 0.92822, h(t) = 0.85424,t =0.1

e'\::t?tr;]gtdlg:l Estimate Average ER Relative M SE variance bias Relative absolute bias
a 1.9592 4.25305 1.87481 3.51393 0.85972 0.78156
O B 1.00664 0.03957 0.22102 0.0282 0.10664 0.11849
= R(t) 0.83299 5.48356¢ 1073 0.01208 2.14086¢ 1073 0.05501 0.05927
h(t) 1.61733 0.64929 0.91032 0.19532 -0.65512 0.7669
a 0.85722 0.01349 0.10559 4.079:x 1073 -0.2428 0.22071
B 0.99702 0.03638 0.21191 0.02696 0.09702 0.1078
& R(®) 0.83176 0.01149 0.01238 2.18786¢ 1073 -0.09646 0.10392
h(t) 1.54029 0.60592 0.69347 0.16166 -0.66653 0.76283
- a 0.86002 0.06171 0.22584 4.12273% 1073 -0.23998 0.21816
E =|5 B 1.00179 0.037793 0.2164 0.02757 0.10179 0.1131
5 % - R(t) 0.83244 0.01133 0.01221 16102 1073 -0.09577 0.10318
a h(t) 1.57752 0.70032 0.81982 0.1772 -0.72328 0.84669
2 a 0.82507 6.4715X 1073 0.07313 3.86354 1073 -0.27493 0.24994
Q N B 0.95107 0.02661 0.18126 0.02401 0.05107 0.05674
R(D) 0.77974 0.03566 0.03842 0.01361 -0.14848 0.15996
h(t) 1.51533 0.56839 0.65051 0.15678 0.64157 0.73426
4 0.81927 5.6873% 1073 0.06856 3.82835¢ 1073 -0.28073 0.25521
w ; B 0.94312 0.02537 0.17699 0.02351 0.04312 0.04791
© Sl R(t) 0.82111 0.01422 0.01532 2.74943% 1073 -0.10711 0.11539
h(t) 1.05452 0.083 0.09717 0.04289 -0.20028 0.23445
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Table 13. Confidence and credible intervalsfor the parameter s based on upper records

M ethod L U Length

a ML 0.69312 3.28151 2.58839
Bayesian 0.5599803 1.880402 1.32042
M ethod L U Length

B ML 0.3673¢ 2.6831° 2.3157¢
Bayesian 1.751033: 2.16227 0.4112:

Table 14. ML and Bayesian predictive estimates and bounds for thefirst future obser vation
based on upper recordsunder one and two-sample prediction

- I nterval prediction Point prediction
2 95% Bayesian
S | x| Method o L A
= L u Length SE LINEX
% ML 0.9123 | 0.9725575 0.06026
i
% X7 0.97064 | 0.97277| I | 0.975951
5 Bayesian 0.96236 0.99242 0.03006 ®
%_ ML 0.50374 0.93783 0.43409
-
% xq 0.76684 | 0.907721 I 0.9842
o) =
E Bayesian 0.69438 0.99928 0.3049
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