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Abstract

In this research, numerical solutions of continuous optooatrol problems governed by linegr
damping evolution with delay and real coefficients are gomesl. The necessary conditions
obtained from the knowledge of calculus of variation for ogtioontrol problem constrained by
delay differential equation is a linear two-point boundaajue problem involving both delay
and advance terms. Clearly, this coupling that existsdmiwhe state variable and the control
variable is not amenable to analytical solution hence atditgnerical approach is adopted. We
propose an augmented discretized continuous algorithm vidrajicaprogramming, which is
capable of handling optimal control problems constrained bgyddifferential equations. The
discretization of the problem using trapezoidal rule (@ step second order numerical scheme)
and Crank-Nicholson with quadratic formulation amenablguedratic programming technique
for solution of the optimal control problems are considered.oAtrol operator (penalize
matrix), through the augmented Lagrangian method, is construstpdrtant properties of th
operator as regards sequential quadratic programming techrimudstermining the optima
point are shown.
Keywords: Trapezoidal rule, Cranck-Nicholson, Augmentedraagian, Conjugate Gradient
Method.
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1 Introduction

Optimization is the act of obtaining the best result ungieen circumstances. In design,
construction and maintenance of any engineering systemineers have to take many
technological and managerial decisions at several stagesltirhate goal of all such decisions is
either to minimize the effort required or to maximize thsirdel benefit. Since the effort required
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or the benefit desired in any practical situation can beesgpd as a function of certain decision
variables, optimization can be defined as the processnding the conditions that give the

maximum or minimum value of a function. It can be takem®an minimization since the

maximum of a function can be found by seeking the minimainthe negative of the same

function.

Jamshidi et al. [1] considered the near optimum solution ofdl@ving class of linear systems
with input-time delay;

X)) =A()+BUI+ CYt T 210
u)=a(), T-t,<t<T (210)
Wherex € R',u € R'are the state and control vectafsp andC are constant matrices of

appropriate dimensiond, is the final timea(t) is the control initial function. They obtained
control vector which minimizes a quadratic cost functional;

t
:%I(X'Qx+ U RY di, 2.11)
f

wheret, is the initial time,t; is the final time,Q and Rare scalars through the introduction of

small parametes and Maclaurin series expansion. The control has an esedbdck portion and

a truncated series open loop gain. For all orders of appatixing, only one Riccati equation must
be solved and the new approximation needs only the previstiosyhas in some near optimization

techniques. Their method was attractive computatioraity can be easily extended to nonlinear
and time-varying systems.

The function space algorithm constructed by Di-Pillo [2] ssffeajor set-back in terms of
implementation and convergence. This was due to approximatigpteaddin computing. The
difficulty encountered in function space algorithm prompted Bdcil.€[3] to adopt the control
parameterization techniques in the numerical solution of @ptiontrol problems.

Ibiejugba et al. [4] proposed a Control Operator and sofniés Application”, discovered the

numerical set-back in function space algorithm which canifsemvented in order to reduce its
high level of sophistication and make the algorithm accessilboth specialists and non-
specialists in control theory. They constructed a cordpalrator (A) which rendered conjugate
gradient algorithm amenable to solution of continuous optiroatrol problems and used their
explicit knowledge of the operator to devise an extended corjggatlient method (ECGM).

Jaechong [5] considered the linear delay differential equatianacterized by a quadratic cost
functional, where he introduced a new linear operatoudh sway that the state equation subject
to a starting function can be viewed as an inhomogeneous bouradaeyl problem, and derived
the adjoint operator of the new operator, and then definfothwal adjoint operator which play an
important role in the characterization of the optimal mdnflthough the method avoids the usual
semi-group theory treatment to the problems but only givesnduessary theory for such
problems.
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Cai et al. [6] developed an optimal control for lineastsyns with time delay. In the proposed
control method, the differential equation with time delayhef $ystem dynamics was first written
into a form without any time delay through a particular tramsétion. Then, the optimal

controller was designed using the classical optimal contedry. A numerical algorithm for

control implementation was presented. Since the obtained sskpneof the optimal controller

contains an integral term that is not convenient forim@-kalculation, the time delay was
considered at the very beginning of the control design and noxamaton and estimation were

made in the control system. Thus the system performance ahiitptwere prone to be

guaranteed. Instability in responses might occur onlysifistem with time delay is controlled by
the optimal controller that was designed with no consideraif time delay. They demonstrated
the effectiveness of proposed optimal controller by sitrariastudies.

Smith [7] considered a black box solver using evolutionaryrithgo for optimal control problem
governed by delay differential equation and the resulthe#ier compared to existing algorithms,
though it took a longer computational time

Olotu et al. [8] proposed an extended discretized scheme noirexshe convergence profile of a
quadratic control problem constrained by evolution equation veth coefficients. With an
unconstrained formulation of the problem via the penaltyiplidt method, the discretization of
the time interval and differential constraint is cadriout. An operator, to circumvent the
cumbersome calculation inherent in some earlier schamb as function space algorithm, is
established and proved.

Olotu et al. [9], Bock Hans G and Karl JP [3]: A mukiBhooting Algorithm for Direct Solution
of Optimal Control Problems. Proceedings of tfelRAC World Congress, Budapest developed
a discretized algorithm via quadratic programming teakesq In the developed algorithm, the
optimal control problem is discretized and through the augmémtgiingian method, a penalized
matrix is constructed to reduce the problem of ill-conditionifige optimal control problem then
becomes large sparse quadratic programming problem ametmablgugate gradient method.

In this work, the discretized algorithm is extended to opticoatrol problems governed by delay
differential equations. Where both the objective function &edconstraint with delay term are
discretized and a control operator (penalized matrix) is fatedl which render the problem
ameanable to conjugate gradient method.

2. Method of Solution

Consider optimal control problem of the form,

min J (X, u)=]'(px2(t)+ que(9) dt (2.1)

X(t) =ax()+ bx t= )+ cy ), O[O, Tj

Subject t
x(t) = h(t), tO[-r,0]

2.2)

In order to make (2.1) and (2.2) amenable to conjugate egiadiethod, we shall replace the
constrained problem by appropriate discretised optimal cqaorioblem.
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Breaking the interva[O,T] into Nequal intervals with knoty <t <t, <...<t, and say

T-0
At =0.1 with h= 0 (2.3)

Discretise (2.1) using trapezoidal we have,
[P+ aur(9) = E{Z[p(f(w f(x)+ o f(w)+ q_l)]}

J(pe(h+ () dtzg[i[ {0+ Cx))* ¢t tu.l))ﬂ

(2.4)
Since X(t,) = h(t) from equation (2.2)
Generating matrix for the coefficients af° and u”we have,
" ph _
ph . (% ]
' %
h s
pz x (2.5)
X % = % WU oy h +A
QE Uy
gh n
h |LYr ]
i 93]
Where
_hoe
A =2 PHE() ®
This can be re-written in quadratic form as,
Z"MZ + A AR

Where Z is a column vector of dimensidx (2n+ 1), M is a square matrix of dimension

(2n+1)x (2n+ 1)
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Discretising the constraink(t) = ax(t) + bX t— 1+ cy ), totally using crank-Nicholson and
assume that there exi¥}, such thaX(t, — ) = X,_,. This is true for rational values ofand we

ensure that our point of discretization falls exactlyroto avoid off grid points.
Hence,

. - 1
x= 2= L (i o)+ (0 X} (1Y @8)
Xk+1 = d)& + E( )§+1—r + %—r)+ K lé+1+ ltJ) (2-9)
Where d :w
(2—-ah)
bh
e=
(2-ah)
_ ch
(2—-ah)

Now, the resulting discretised optimal control problem is,
T
minl =" px +qu (2.10)
k=1
Subject to: X =0 + e %+ x)+ (Y, + vy (2.11)

r
Considering (2.11), there exist such thatm = ™ where = A

For tO[-r, 0] ,where X(t = r) = X_, is known to be constant we have,
Whenk =0,

x=dx+ex, +ex+ fur fi

X —ex, —ex — fy- fy= dy (2.12)
Whenk =1

X, =dx+ex +ex+ fy+ fi

X,—dx—ex, —ex — fy- fu=0 (2.12ii)
Whenk =2,

X =dx+ex, +ex + fyr fy
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X—dx,—ex, —ex — fy- fy=0 (2.12ii )
Whenk =m-1
Xp = dx, +ex,  +ex + fy+ fy,
Xo = OX — €%y~ &%~ fy-— fy,=0 (2up

similarly, for t 0[O, T] where X(t =) = X,_, is unknown, we have,

For k=m,
X = OX, + €%,y + €%+ fy,+ fy
Xy 0%, — €%, — €%, — fy,— fy=0 (23D

When k = m+1,
Xz T OX T €X,, ey, + fy,+ fy,
Xm+2_d)§n+1_e)$n+2—r_ €%~ flrjfrz_ f%lzo (2.v2)

Whenk =n-1,

X, =dx_ +ex +ex, + fy+ fi,

X —dx, -ex, - ex — fy- iy, =0 (2.iti )
Generating an augmented matrix from the system of mougt.12) — (2.12viii) we have,
F ]
% (2.13)
1 0 0 0 0 O o-f -f 0 0 0 O 0 0 %, | [dx+ex +ex,]
-d 1 0o -f -f 0 || Xna ex,  +ex,
0 d 1 0 o -f -f 0 : :
0 -d 1 0 0o o0 -f -f offx |_ ex, .,
-e -d 1 0 0 O —-f ~f oflu |~ 0
0 e -e 0 -d 1 0 0 O -f -f oy 0
: -e -e 0 -d 1 : : 0 -f -f 0] :
/0 0 0 e -e 0 -d1 0 0O 0O O O -f -f]lu, 0
urml
_un
This can be written as
JZ=W (2.14)
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Where J is a block matrix of dimensiofi X (2n+ 1) with representation) = (CE E) where
[C] is anNX N sparse matrix with principal diagonal eleme[ﬁ]“ =1, and lower diagonal
elements—d for everyi,j such thai = j +1. [E] is Nx(Nn+1) bidiagonal matrix with
[E]ii =—f and upper diagonal elementd for everyi, | such thatj =i +1. The column
vector [W] is of order NX1 with entries given by[W]n: Ccx + ex + ex, and
[W]il =ex,, 1=2,3,..m and[W]il =0,i=m+1m+2,..,n. [Z] is also a column

vector of dimensior(Zn + 1) x1.

Where J is of dimensiomx(2n+1),Zis of dimensio{2n+1)x1 andW is of dimension
nx1

Hence by parameter optimization, the discretised optimabl@m becomes a large sparse
guadratics programming problem written as,

minl (z)=Z"MZ+ A (2.15)
subject tc
DZ =W (2.16)

The unconstrained minimization problem by augmented Lagnarfigiection is,

minL,(z)= Z' MZ+ A+AT| DZ- V\}’+%|| Dz W (2.17)

On expansion we have,

. 1 2 1
minL,(z) = ZT(M+; D'D)Z+(A" D—z W' D Z+( ,g\—/lTWIrz W W (2.18)

minL, (z)=Z" A Z+ BZ+ C (2.19)
_ 1 — T 2. 7 _ T 1
Where A, =(M +;D D),B=(4 D_ZW D) andC =(A -4 W+;WTV\)

Equation (2.19) is the quadratic programming problem whisbligable using conjugate gradient
method.
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Theorem 3.3: Considering the formulated quadratic function in equatioh9j2.where A, €

1

REm+DX@n+1) | the penalized matrixy, = { M +=D'D |is said to be positive definite if it
u

obeys these properties:

D If A,is real

(2) If A, symmetric

(3) If the principal minors opr are positive.

Proof:

(1) Since for every, ; € A,, a;; € R Itimplies tha#, is real
T
(2) Matrix 4, is said to be symmetric (#1,)" = [M + iDTD] =A,= [M + %DTD]. SinceAlis
a positive symmetric diagonal matrix. Then
1

T
(A)T {M +—DTD} {(EDTD)HMT}
U 7
1 oty T 1ol T
= [(—D D) +M } = [M +=(D D)}
U U
(commutativitylaw)

(A) {M o1 DTD} = {MT +£(DTD)T} = {M +£DTD}
H M 7]

Hence(4,)" = 4,

(3) LetM; represents the leading principal minaAgfthenvi = 2,3, ...,

M, @
=" o]
a. m
m;
Where a =|:
m_y;

Where m® are the last entries of the principal ming#¥l, ) providedi = 2

Since
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[ ph+1+C? -C 0 0 0 -D cD 0 0 - 0
-C ph+1+ G -C 0 0 0 -D CD 0
0 -Cc ph+1+ G . : 0 0 0
: 0 K . =C : : D CD :
0 0 -C pg+l 0 0 0 0 0
-D 0 0 0 D2+gn 0 0 0 0
A= 2
cb -D 0 0 0 D2+qg 0 0
0 cD 0 0 0 0 0
0 -D 0 0
0 0 cD 0 0 D2+qg
0 0 0 0 0 0 0 q-

Ap € R@n+1x(2n+1)
Since all the entries are real, the matrix is saidbéoreal. The matrix is also symmetric
since(4,)" = 4,.

The submatrices are:

When i = 1, we have,

|M1|:‘ph+1+C2‘>0’ Vp >0

Wheni = 2, we have,
|M |: ph+1+ C -C
? -C ph+1+ C
IM,|=(ph)? +2C? ph+ 2 phr C+ C+1
IM,| = (ph)*+2C ph+ 2 phr G+ C>0, vp>0

Hence, M, is positive.
Wheni = 3,we have,

ph+ C*+1 -C 0
IM;|=| -C ph+ C+1  -C
0 -C ph+ C+1
= ph+ C*+1 ph+1+C C i dC —C
—-C ph+1+ C 0 ph+1+C
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= ph+1+ C*[(ph+1+ C)( phr 1+ C)- C|- E( phi+ €)

= ph+1+C*[(ph’+ ph+ C ph phil+ & € ph G- Tph & °
=(ph)*+(pH*+3C(pH°+2(ph*+3 ph4C(pH3 E ppr & B G
Since p,h > 0,

=(ph)® +(3+3C*)((ph?)+ (4C+3C'+ 3)pir C+ C+ C+ 1> (
Hence,|M3|>O.

Hence by mathematical induction, if it's true for valeéd =1,2, 3;-- then, assume it’s true for
i =k, then we shall proof that it is true for=K +1and we have,

M O
|M k+l| = h
T
ak+1 qz
Myt
Where Ay =|
L

By Cholesky, M, ,, is said to be positive definite if there exist a lowértgular matrix( Li,j )

such thatM,, = LU

- M a -
k K+l _ Gk 0 GkT Ik+1,1
T h|=|
ak+1 qz Ik+1,1 I k+1k+1 0 Ik+l,k+1

Where G, is lower triangular matrix with positive diagonal entréegh thatGkGI =M,

M “ Kt —_ Ek ETk 3k Ik+l,1
h = | T
1

T T T 2
ak+1 qE k+1,1Gk |k+J k+1+I ket 1,k

Thus we have,
Gk|k+1,l = ak+1

T 2 _
And Ly diaatli e 1=0 >
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Hence, since the diagonal entries Gf are greater than zero, it is nonsingular, so the linear
system of equation has a unique solution giverikblyl :G‘Zla'k+1 and a positive value for

| s 141 CBN be obtained

h
Provided a5- Ly 1y >0.

Hence,
M, O h
0<detfs,)=def( . _h|) dew, )ﬂz—aki W V0
K+1 A
2

h _
=detM, )[QE - (G, Ik+1,1)T (GkGE )yt Gl

h
=detM, )(qE - Ik+l,l| -I|<—+l,l :

h
Sincedet(M, )> 0, it follows thatq > lerdiers> 0.

_ _ T
Hence |, 1 = qE I erd 12

We solve the unconstrained minimization equation (2.19) bjugate gradient algorithm in the
inner loop and enforce the feasibility condition in the outmp as stated in the following
Algorithm.

We solve the unconstrained minimization equation (2.19) bjugate gradient algorithm in the
inner loop and enforce the feasibility condition in the outep as stated in the following
Algorithm.

221 NUMERICAL ALGORITHM FOR SOLVING QUADRATIC
PROGRAMMING PROBLEM

(1) Choose ZyoeRN™MS™M ¢ > 0,u>0,1>0,d > 0.Setj =0
(2) Set i =0andp, = —go = —VL,(Zo,)
a1 gi
p! 4p;
(4) Set Zjiv1 = Zj; + aip;
(5)Compute VL, (Z; ;1)
(6)I1f VL, (zj,iﬂ) = 0andjZ;;,, = K, Stopelsegoto(7)
(7) If VL,(2ji41) # 0,5€tgips = VL,y(Z;i11)
Pi+1 = —ZGiv1 t Vibi

(3) Compute a; =
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T
Ji+19i+1

‘}/. =
' 97 gi

(8)Set i= i+1 and go steg3d)

(9) Elseif JZ;,# K or JZ, - K=0, thel
Set ey = A
/]j+1 :/11‘ T4 (JZJ - K)

(10) Set j= j+1land goto stef2)

What necessitated this algorithm was the problem of ill-¢mmdiassociated with the control
operatorAp generated from the non-linear optimization problem xiaréor penalty method.

3. Numerical Examples and Presentation of Results

Example 1.Consider the optimal control problem,
1
min |(x,u):j(x2(t)+ W (1)) dit 3.1)
0
Subject tc

(1) =5x(t)+ x(t- 0.3)+ 3.02L ¢), xt)} 11 f 0.3, (3.2)

We now present the result of the investigations baseUenonerato(Ap) . The results presented

here shows the accuracy and the efficiency of the DiseceContinuous Algorithm via Quadratic
Programming using augmented lagrangian function to optimal ¢quroblem as compared to
Discretised Continuous Algorithm via Quadratic Programmising exterior penalty function.
Takenu = 1000, = 0.01 for both scheme.

Table 1. Comparison of two methodsfor Problem 1

Iterations Congtraints Satisfaction Objective Value
Olotu et al. (2011) New Scheme  Adekunle (2011) New Scheme

1 0.1410 0.6995E-1 0.4886 0.7773
2 0.2574E-1 0.1268E-1 0.8141 0.8568
3 0.2811E-2 0.1383E-2 0.8793 0.8726
4 0.2837E-3 0.1395E-3 0.8864 0.8744
5 0.2840E-4 0.1397E-4 0.8872 0.8745
6 0.2840E-5 0.1397E-5 0.8872 0.8746

The objective value using exterior penalty method is 0.88hdewobjective value using
augmented lagrangian is 0.8746.The effect of the delayises®en in the objective value using
the two schemes as shown in the Table 1 above compared to wheatwlitlay term.
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Example 2. Consider the optimal control problem,
min I(X,u)='|1.(x2 (t)+ U (1) dt (3.3)
Subject tc O
X(t) =5x(t)+ x(t—-0.3)+ 3u(t), x(t)= 1tJF0.3,0 (3.4)

We now present the result of the investigations baseUenonerato(Ap) . The results presented

here shows the accuracy and the efficiency of the Digete€Continuous Algorithm via Quadratic
Programming using augmented lagrangian function to optimal ¢qroblem as compared to
Discretised Continuous Algorithm via Quadratic Programmising exterior penalty function.
Takenu = 1000, h = 0.01 for both scheme.

Table 2. Comparison of resultsusing existing scheme and the developed scheme

Iterations Constraints Satisfaction Objective Value
Adekunle (2011) New Scheme Adekunle (2011) New Scheme

1 0.1989 0.9826E-1 0.8247 1.4163
2 0.3768E-1 0.1822E-1 1.4989 1.5773
3 0.4139E-2 0.1993E-2 1.6393 1.6100
4 0.4180E-3 0.2012E-3 1.6548 1.6136
5 0.4184E-4 0.2014E-4 1.6564 1.6140
6 0.4185E-5 0.2014E-5 1.6566 1.6140

The objective value using exterior penalty method is 1.656@ewobjective value using
augmented lagrangian is 1.6140.The effect of the delayites®en in the objective value using
the two schemes as shown in the Table 2 above compared to wheeis theidelay term.

4. Conclusions and Recommendation

We have shown that discrete delay optimal control problem eaolbed via Conjugate Gradient
Method using exterior penalty method and augmented Lagnamgéthod to construct the control
operator4,. However, it is observed that the new scheme gives arbetsult in terms of
accuracy. Hence, it is a better scheme.

Based on the efficiency and robustness of this scheraetherefore recommend it for delay
optimal control problems constrained with partial difféi@l equation. It can also be extended to
generalized optimal control problems governed with delay diffefesdization.
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