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Abstract
X-ray computed tomography is a common tool for non-destructive testing and analysis. One
major application of this imaging technique is 3D porosity identification and quantification,
which involves image segmentation of the analysed dataset. This segmentation step, which is
most commonly performed using a global thresholding algorithm, has a major impact on the
results of the analysis. Therefore, a thorough description of the workflow and a general
uncertainty estimation should be provided alongside the results of porosity analysis to ensure a
certain level of confidence and reproducibility. A review of current literature in the field shows
that a sufficient workflow description and an uncertainty estimation of the result are often
missing. This work provides recommendations on how to report the processing steps for
porosity evaluation in computed tomography data using global thresholding, and reviews the
methods for the estimation of the general uncertainty in porosity measurements.

Keywords: computed tomography, porosity evaluation, uncertainty estimation,
results comparison, segmentation , global thresholding

(Some figures may appear in colour only in the online journal)

1. Introduction

Porous materials and samples are common in a wide range of
scientific fields. For instance, permeability and reservoir char-
acteristics of porous rocks are useful parameters in the oil and
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gas industry and related fluid research [1], whereas in pale-
ontology, the shape and volume of pores are used to identify
fossils [2]. Porosity analysis is also widely used in engineer-
ing [3], manufacturing [4, 5], or material development [6] as
an indicator of a material’s strength [7]. Pores in metals often
indicate crack initiation locations in cyclic loading applica-
tions, and they even influence static strength and ductility of
materials, making non-destructive porosity testing valuable for
quality control purposes [8, 9].

Generally, porosity refers to a measurement of the pres-
ence of voids within a sample. Allaby [10] defines pores as
voids that can be empty or filled with trapped gas and/or fluids,
and surrounded by any type of material. Using this definition,
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porosity is the volume of all pores present in a sample [10]. It
is commonly expressed as a percentage of empty space within
the total volume of an object [11]:

Porosity [%] =
Volume of pores

Volume of solid (incl. pores)
× 100. (1)

The shape and volume of pores is connected to the mater-
ial’s formation, temperature, environment and type [12]. Pores
can be cylindrical, slits, conical, spherical, ink bottle-like,
and interstitial [13], but they can also feature more complex
shapes. Pores can form networks that may or may not be
accessible from the outside of the object (open porosity), or
they can be isolated (closed porosity) [14]. Pore characterist-
ics influence bulk density, mechanical strength, and thermal
conductivity of objects [8].

Various methods can be used to analyze the porosity of a
sample. The choice of a method depends on the type of poros-
ity present in the particular sample, as well as on other para-
meters. X-ray computed tomography (CT) is among the most
widespread and broadly applicable methods. CT is an imaging
modality which is based on the absorption of x-rays in mater-
ials [15], and makes non-destructive three-dimensional ana-
lysis of samples and their internal structures possible [16]. The
output of a typical CT measurement is a set of cross-sectional
slices stacked in a 3D volume (figure 1 Steps 1 and 2). This
forms a grid of voxels, which are volumetric elements with
a specific gray value determined by the density and atomic
number of materials contained within, and the x-ray energy
used [17]. The edge length of a voxel influences the best pos-
sible resolution of a measurement. The scanning, tomographic
reconstruction, and subsequent analysis of a CT dataset are all
potential sources of uncertainty and variation between meas-
urements (figure 1).

The various error sources in figure 1 influence the quality of
the resulting images, which in turn has a major impact on pore
segmentation and the subsequent porosity measurement [18].
In this case, quality refers to the combination of noise level,
contrast between material and pores, and sharpness of edges
between the two regions [19]. As an example of the complex
influences of the image quality on porosity assessment, image
denoising may decrease the amount of noise falsely detected
as pores, but it may also cause some smaller pores to be blurred
and therefore missed, skewing the results [20, 21]. Due to this,
it is important to report on the various sample, measurement,
and processing parameters used in a porosity study, and to
take uncertainty into account [18]. Data used in studies can be
shared through data repositories such as theGigaScienceData-
base, see Goodman [22], as in the case of Du Plessis et al [23].
The workflows and protocols can also be shared on services
like Protocols.io [24].

Characterization of porosity in a CT dataset is directly
related to the segmentation procedure, the partitioning of a
volume into two or more separate sections (e.g. material and
voids). Segmentation is based on the intrinsic characteristics
of voxels or regions of the volume, such as gray values, edges,
or texture [28].

Figure 1. The creation of a 3D dataset from a given object using
x-ray CT has three steps: (1) the scan or measurement, (2)
reconstruction, and (3) segmentation. Then, analysis (4) of the
volume can be done. Errors that occur during step 1 can lead to
tomographic artifacts (discrepancies between an object and its
image). In steps 2–4, other types of errors can lead to uncertainty in
the final analysed results. The red lines show the focus of this work.
Figure inspired by Villarraga-Gómez et al [25], Smet et al [26] and
Hiller and Reindl [27].

One of the most widely used segmentation methods is
thresholding [29], where voxels are separated into distinct
categories based on a threshold set for one or more of the
characteristics mentioned above. Thresholding can be global
or locally adaptive [30, 31]. The latter is mainly used for
complex objects, where the optimal threshold value may
change throughout the dataset [32]. On the other hand, global
thresholding defines a single threshold value for the entire
dataset, influencing all further analysis and interpretations
[29]. For its simplicity, ease of use, and ease of access, global
thresholding is the go-to segmentation method in many CT
data analyses.

Porosity analysis may yield different results based on
the chosen method of segmentation and researcher input
[33]. The conclusions drawn from a study can be ambigu-
ous if the methodology used for segmentation is not clearly
described. This has caused some researchers to call for
standardisation [18, 34–37]. It is commonplace to describe
measurement parameters used for data acquisition in poros-
ity studies, such as the tube voltage and current, and the
voxel size. However, to ensure reproducibility, the applied
segmentation approach should be described and the uncer-
tainty of the results should be estimated too. Otherwise, the
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Figure 2. The relationship between accuracy and precision shown
using multiple measurements (small red dots) and a reference value
(big green dot). Precision estimation can be determined with several
measurements. A standalone CT measurement (small blue dot) has
no reference value (the green dot is unknown) and different a
different approach must be adopted for precision and uncertainty
estimation. This figure was inspired by Pospíšil and Ludvík [48],
and Taylor [49].

reliability of these studies runs the risk of being disputed
[26, 29, 38, 39].

Measurements are typically expressed with an error ratio,
a confidence interval, or a standard deviation presented as
a ± value. This value is based on the cumulative effect of
device, measurement and processing errors [27, 40].

Knigge [41] states that a measurement does not need to be
accurate (close to the reference value), but its precision should
be known (figure 2). The accuracy refers to the closeness
between a measured value and a reference value [42, 43]. A
precise measurement is not necessarily close to the reference
value, but it has little variability when repeated. Thus, preci-
sion quantifies the reproducibility and level of uncertainty of a
measurement. International metrological standards for estim-
ating the measurement uncertainty exist [44–46], but they can-
not be directly applied for the purposes discussed here, as they
do not provide specific guidelines for the uncertainty of 3D CT
data segmentation [47].

Two causes of errors [42] can affect the precision and accur-
acy of a result, namely: systematic error (affects all meas-
urements in a similar manner, observable through repeated
measurements [50, 51]), and random error (mainly caused
by operator errors, and affects individual measurements and
thus the measurement precision [52]). Acquisition, hardware,
and reconstruction discrepancies all significantly influence the
final porosity evaluation.

A complex analysis of uncertainties in CT measurements
is the domain of metrology and of some industrial fields,

where calibrated devices or calibrationmethodologies are used
[51, 53, 54]. Without a ground truth, which is a measurement
that is considered to have the exact true value, accuracy of a
measurement cannot be assessed [55]. In terms of precision,
the influence of uncertainties stemming from the measurement
process is a complex issue, and it is already the subject of thor-
ough research [40]. In contrast, uncertainties associated with
segmentation are seldom referenced or explained thoroughly
within current literature.

This work offers an overview of CT data segmentation
methods that use global thresholding and are commonly used
for porosity analysis. Crucial aspects of the segmentation pro-
cess, which should be disclosed in studies, are identified in
the section ‘Thresholding and reproducibility’. The need for a
thorough description of approaches used in studies is suppor-
ted by a systematic review of recent relevant literature. Meth-
ods for the uncertainty estimation of porosity analysis in CT
data are discussed in the section ‘Uncertainties of CT data seg-
mentation’. Due to financial and time constraints, researchers
may often only have access to a single CT dataset for ana-
lysis [9], so particular attention is paid to those methods that
can be used in these situations. Uncertainty estimation is still
needed in such cases, but the approaches to perform it may be
less obvious. We hope to provide a practical overview of the
possibilities available to researchers to ensure the reproducib-
ility of their results.

2. Thresholding and reproducibility

Global thresholding methods can be divided into manual,
semi-automatic, and automatic [56], depending on the extent
of operator involvement in the selection of the threshold
value. Automatic algorithms calculate a threshold object-
ively based on the characteristics of the input dataset, such
as voxel grayscale values and features of the image histo-
gram (figure 3). Common automatic algorithms include min-
imum error thresholding [57], Otsu’s method [58], valley-
emphasis [59], optimal thresholding [60], histogram concav-
ity analysis [61], iterative thresholding (isodata method) [62],
entropy-based thresholding [63], Bayesian thresholding [64],
and others. The results of these may be used directly or further
fine-tuned manually. Manual threshold selection is subjective
and observer-dependent, and it is usually based on visualiz-
ing the segmentation result on a slice of the CT dataset and
tuning it until it is satisfactory [35]. The potential human bias
inherent in manual thresholding may lead to larger differences
between data segmented by different operators. Despite this,
manual thresholding is still very common due to its simplicity.

One of the simplest global thresholding methods is ISO50,
which sets a threshold at the mean of two extreme peak
values in the grayscale histogram of a dataset [65]. Results
of this method tend to be satisfactory when the analysed
histogram is bi- or multi-modal (figure 3) [66]. However,
Horner et al [67] showed that ISO50 might be influenced
by local variations in the image, in which case the threshold
should be modified accordingly. It is also challenging to
use it with low porosity values because the histogram of
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Figure 3. Tomographic images with a uni- (a), (d), bi- (b), (e), and multimodal (c), (f) grayscale histogram. The histograms show thresholds
set using Otsu’s method (dark dashed red line) and ISO50 (light green line). The multimodal histogram in (f) shows multi-level
thresholding, which divides the dataset into three parts. Boundaries of segmented areas are shown in (a)–(c) using an outline with colors
corresponding to the two thresholds. The slices show datasets measured in our laboratory: (a) and (b) are slices of a chalk sample, while
(c) is an image of a seed.

such data may lack a clear peak corresponding to pore
values.

Otsu’s thresholding [58] is another simple method, and
along with Kittler’s thresholding [57], it is one of the most
used algorithms for porosity segmentation (table 2). Similar to
ISO50, the results of Otsu’s method are affected by the mod-
ality of the histogram [29]. Algorithms such as Otsu’s method
can also be used for multilevel thresholding, which may be
used to classify datasets into pores, grains and high-density
inclusions (figures 3(e) and (f)) [68, 69]. In cases where a
dataset’s histogram is approximately unimodal, the algorithms
mentioned above are likely to perform poorly, and a threshold
can be set using probability-based algorithms [59].

There is no consensus in the scientific community about
which thresholding method is ideal for porosity analysis in
CT data. In fact, the wide selection of published specialized
algorithms in various fields suggests that the effectiveness
of an algorithm changes with the dataset type and applica-
tion [29, 37, 70, 71]. There is, however, an agreement that the
reproducibility of manual segmentation is lower than that of
an automated or trainable procedure, as remarked by Kalasová
et al [72].

A round robin test, which is porosity in a specific scan
evaluated by multiple operators, was reported by Du Plessis
et al [18]. This study found a good agreement in the qualitative
pore distribution assessment of ten operators, but quantitative
results varied significantly, partly due to the low porosity con-
tent in the test sample used. Works of Zikmund et al [11, 73]
and Baveye et al [37] also feature a comparison of various

manual segmentation strategies in addition to algorithm-based
ones. Significant discrepancies were found both within and
between these groups. Therefore, automated methods do not
ensure an accurate or reliable result either, as the choice of
algorithm significantly impacts the threshold value and the
obtained results (figure 3) [26, 29, 37, 38, 74, 75].

Regardless of the segmentation method used, porosity ana-
lysis needs to be reproducible for a reliable inter-study com-
parison of results. This means that parameters of the segment-
ation process should be described and explained thoroughly,
as remarked in multiple works [18, 34–36, 73].

2.1. Analysis of published porosity methodologies

To assess the trends regarding reproducibility in the current
literature, we chose 53 articles from geosciences and mater-
ial sciences (industry, engineering, metrology, agriculture,
and cultural heritage) that deal with porosity analysis in CT
data, and analysed their segmentation methodologies (table 2).
The articles were selected through Google Scholar using the
keywords CT, Porosity, Segmentation, Global Thresholding,
Quantitative analysis, and Uncertainty evaluation. Our selec-
tion was narrowed down to articles that were cited at least
once.

Twenty of the 53 articles (57%) featured either no descrip-
tion of the segmentation procedure, or their description was
not sufficient for their results to be reliably reproducible.
Ten of these articles (19%) had a description but was not
accompanied by any visualization of the histogram and

4



Meas. Sci. Technol. 32 (2021) 122001 Topical Review

threshold value. Out of the remaining 23 articles (43%),
ten (19%) featured a sufficient description and provided an
example CT slice showing segmentation results, along with
either a grayscale histogram of the slice, or an estimation of
the uncertainty of the results. These results can be considered
reproducible, but not optimally so. Only 13 (25%) of the sur-
veyed articles disclosed all parameters needed to ensure meas-
urement reproducibility, including a description, an example
slice along with its histogram, an uncertainty estimation or the
threshold value, and a mention of the software used.

Over the observed period (1992–2020), the overall thor-
oughness of thresholding methodology descriptions seems to
not have changed. There are no clear distinctions between
methodology descriptions in the various fields of study, except
that works dealing with soil porosity (21% of the studied art-
icles) are more prone to inter-study comparison, and therefore
they generally include a more thorough definition of the para-
meters used for thresholding.

The examined studies are mostly based on a single seg-
mentation method (43% of the examined articles), followed
by comparison (28%) and combination (19%) of segment-
ation methods. Otsu’s method is the most commonly used
(36%), both on its own and in comparison to, or in combin-
ation with, other techniques. It is closely followed by manual
global thresholding segmentation (34%). This is fairly consist-
ent across the fields, which shows that the choice of threshold-
ing method is probably mainly dependent on the operator
experience and sample type.

A mention of the software used, which is present in 68% of
the selected articles, can aid in the reproducibility of results.
The most commonly mentioned software in table 2 includes
VG Studio (15%; Volume Graphics GmbH, Heidelberg/D),
ImageJ/Fiji (15%; National Institutes of Health, Bethesda,
Maryland/US and LOCI, University of Wisconsin-Madison,
Madison, Wisconsin/US), and Avizo (13%; ThermoFisher
Scientific, Waltham, Massachusetts/US). We have observed
that industrial and engineering fields tend to utilize VG Stu-
dio and Avizo, whereas the selection of software used in
geosciences and geology is broader. This may be because the
complex samples in geosciences are difficult to process in gen-
eral purpose image processing software, forcing researchers to
use more specialized solutions.

2.2. Reproducibility

Analysis of table 2 and previous work done by Taina et al [76],
Lievers and Pilkey [77], and Iassonov et al [74] has led to
the identification of six major parameters of the thresholding
process, which should be included in a study to ensure result
reproducibility. These parameters include: histogram shape,
an image of a slice from the dataset showing pore determina-
tion, the chosen threshold value, description of the threshold-
ing procedure, and the name and version of the software used.
The parameters are also listed in table 1 [74, 76, 77].

The most common thresholding algorithms operate on
the grayscale histograms of images, and manually selec-
ted thresholding is often partly determined by the histogram
shape, too. Therefore, including an example histogram in a

Table 1. Thresholding parameters that ensure methodology
reproducibility, listed in the order of their importance. For the sake
of clarity, abbreviations used in table 2 are included here, as well.

Thresholding parameters

1 [h] Histogram
2 [s] Slice showing pore determination
3 [t] Threshold grey-level value
4 [d] Manual: Reason for the threshold choice (visual or

material-dependent, or with reference)
Semi-automated: Algorithm choice with reference
and modifications
Automated: Implemented software algorithm title and
values chosen

5 [u] Uncertainty estimation (±)
6 Software + version

study can aid its reproducibility. Likewise, including a slice
illustrating the final segmentation and the threshold value
provides a valuable visual and numeric reference.

Documenting the software used, alongwith its version,may
also be relevant for reproducibility. In some types of software,
the internal workings of the algorithms may not be accessible
to the end user (these algorithms are called black boxes). Due
to this, analyses carried out in different software may be hard
to compare, and the name and version of the software used for
a given study becomes relevant.

An important but often omitted piece of information
(table 2) in terms of reproducibility is the estimation of the
porosity result uncertainty. Porosity measurement in CT is dir-
ectly related to the segmentation process, which affects the
size, shape, distribution, and total volume of pores [71]. Differ-
ent segmentation methods may lead to an over- or underestim-
ation and increased uncertainty of porosity (figure 3) [33]. An
uncertainty range will therefore help other researchers assess
whether their reproduced results differ significantly from the
outcomes of the original study. However, uncertainty of poros-
ity in CT data may not always be straightforward to estimate.
The next section goes over a selection of possible approaches
to perform this estimation in a variety of scenarios.

3. Uncertainties of CT data segmentation

Several studies were conducted concerning the uncertainty
estimation of bothmanual and automatic threshold selection in
CT datasets [51, 53]. These works describe various procedures
for estimating the uncertainty of porosity analysis (table 3),
which can be separated into empirical, analytical, and sensit-
ivity approaches. All these procedures mitigate different kinds
of errors in the final uncertainty estimation.

Empirical procedures are based on the comparison of a CT
dataset with a reference. This reference may take the form
of a calibrated workpiece or a measurement conducted using
another calibrated method. Such procedures are demanding,
costly, and impractical for very complex or non-homogeneous
samples. Since these methods require a reference measure-
ment, they will increase the error sources of step 1 in figure 1
(mostly systematic errors) but will reduce operator errors.
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Table 3. An overview of uncertainty estimation procedures for porosity segmentation. The number of thresholds, objects, operators, and CT
datasets required for each method are listed, but the listed values should serve only as a general guideline. The arrangement of the table
follows that of the text below, with multi-dataset methods listed first, and single-dataset methods second. This table can be used to select an
appropriate method for a particular situation by matching it with the parameters in columns ‘Sample’ to ‘ground truth’.

Uncertainty
estimation
procedure Sample Object Dataset Operator

Thresholding
process Type

Ground
truth Reference

EMP. Methods
correlation

Open porosity,
destructible

1 ≥2 1 2 Comparison Yes [11, 130]

Calibrated
object (CAD)

Known shapes,
distribution

2 2 1 2 Comparison Yes [51, 53,
66, 102,
131]

Reference
object

Known
reference’s
porosity

2 1 1 1 Comparison Yes [131]

ANAL. Inter-studies All ≥ 2 ≥2 ≥2 ≥1 Comparison No [132]
Multiple scans All 1 ≥2 1 ≥2 Averaging No [133]
Multiple
location

Homogeneous 1 1 1 1 Averaging No [134]

Ground truth
creation

All 1 1 1 ≥3 Comparison
Averaging

Yes [135,
136]

SENS. Multiple
manual

All 1 1 ≥2 ≥2 Averaging No [37]

Manual ±n% All 1 1 1 1 ±n% Averaging No [73]
Erosion/Dilation All 1 1 1 1 ±n pixels Averaging No [137]

Analytical approaches use various statistical concepts to
enumerate uncertainty. They usually utilize multiple porosity
measurements in some way, so they can be time-consuming
and potentially expensive. This makes them unsuitable for
large amounts of data. Despite this, analytical approaches are
applicable to a large variety of samples. When this approach is
used, data processing errors are increased, and statistical and
operator errors are reduced.

Sensitivity approaches are based on the operator’s behavior,
knowledge of the dataset, and expectations. Here, an uncer-
tainty of the operator’s measurement is estimated using some
heuristics. Methods in this category can be unreliable if cer-
tain rules are not followed, but they are usually quick, cheap,
and easy to apply on any dataset and in a wide range of soft-
ware (table 3). Since sensitivity approaches are based on the
experience of the operator and visualization of the data, they
are expected to reduce systematic and analytical errors, but
increase random errors [73].

It should be emphasized that the uncertainty estimated
using any of these methods is relative, not absolute. Various
methods in the three categories described above are suitable
for different scenarios, depending on the number of samples,
operators, time, and other resources available.

The following text discusses the methods in table 3, and
offers recommendations concerning their proper application.
As the number of available datasets is likely to be a major
factor when choosing an appropriate method for uncertainty
estimation, the text is primarily divided into approaches for
multiple datasets and for a single dataset. Despite their import-
ance, approaches that require multiple datasets are described

briefly, as they have already been exhaustively described in
the literature. Single-dataset methods are often easier to apply
and fit a wide range of datasets, but they are rarely explained in
sufficient detail. For this reason, we describe those approaches
more thoroughly.

3.1. Several datasets

3.1.1. Empirical approach. Correlation of results of vari-
ous measurement methods for the same sample (figure 4(c);
table 3) is a common approach. For example, Taud et al [11]
and Robin et al [130] estimated the uncertainty of their poros-
ity measurement by comparing the results of CT and helium
injection measurements. Taud et al [11] found an uncertainty
of about ±2%. This approach is straightforward and reliable,
but the methods that are compared must be selected carefully,
and the measurement must be clearly planned out beforehand.
Additional demands are placed on the researchers who choose
this approach, as they need both access to, and the know-
how for, multiple measurement methods. Different methods
are suited for evaluating different types of porosity, making
the comparison complex. The voxel size of a CT scan strongly
influences measurement results, particularly in samples with
a wide range of pore sizes (e.g. concrete). For more precise
results, multiple CT scans might be required [138]. Simil-
arly, other quantificationmethods are limited to specific ranges
of pore sizes, making a direct comparison between meth-
ods challenging. Additionally, if a chosen method is destruct-
ive, the non-destructive nature of CT may no longer be an
advantage.
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Figure 4. Uncertainty estimation from several datasets: (a) calibrated object; (c) various measurement methods; (b) inter-study
comparisons; (d) multiple scan. The CT steps numbers are referring to figure 1.

A calibrated object is usually used in metrological stud-
ies to evaluate the results of the analyses of objects with
simple and reproducible shapes [53, 66, 102]. The calibrated
workpiece is measured using a method that is widely recog-
nized as accurate (figure 4(a)), such as coordinate measur-
ing machines [53] or any calibrated higher-resolution optical
device [40, 131]. This is an accurate and precise approach, but
it is hardly applicable inmost porositymeasurement scenarios,
where the assessed objects are complex and no calibration ref-
erence for porosity exists [139].

3.1.2. Analytical approach. Inter-study comparisons are
viable in cases where different measurements of the same
sample type can be found in the literature. For instance, Kerck-
hofs et al [132] compared their CT porosity results to another
study using the same device and parameters on the same
sample type (figure 4(b)). Correlation of different studies is
possible when a thorough description of the measurement
and segmentation is available, which eliminates any ambi-
guity of the process. In theory, only variations between the
samples play a role in this case. This is an easily applicable

10
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and potentially reliable method. However, measurement and
segmentation must be clearly described in the compared stud-
ies, as was noted before. As it stands, this method is rarely
applied.

The multiple scan approach is suitable for studies that
require high resolution and precision [133], and measurement
time and the amount of processed data are not major concerns.
An object is measured multiple times, producing several CT
datasets (figure 4(d)). These are then processed, the results are
averaged, and uncertainty can be enumerated statistically. The
precision of this method increases with the number of datasets,
but so do the demands in terms of cost, time, and processing
load.

3.2. Single dataset

3.2.1. Empirical approach. Scanning a sample of interest
together with a reference object of a similar density mater-
ial with known porosity is a possible approach to uncertainty
analysis (figure 5(a)) [131]. Both the sample and the reference
object are analysed in the same way, and the measured poros-
ity of both is calculated. The resulting value for the reference
object can be compared to its known porosity, adding confid-
ence to the measurement. This method can confirm the quality
of a CT image, which helps the quantification of the minimum
detectable pore size for the selected CT scan settings, and the
combination of several objects in one scan enables a direct
comparison of the results [131]. The drawback of this method
is that a bigger field of view is needed, potentially reducing the
image quality. It is also required to know the material of the
measured sample beforehand, as the reference material should
have a similar x-ray density as the sample. A large reference
library would therefore be needed for multi-material samples
and routine material measurements.

3.2.2. Analytical approach. Multiple location averaging is
suitable for sampleswith a homogeneous porosity distribution,
and it is useful when the number of measurements is restric-
ted (figure 5(b)). It is similar to the multiple measurements
approach, except it assesses multiple locations within a single
dataset instead of multiple datasets [71]. This is a low-cost
and simple method, which provides acceptable results if pores
are distributed evenly across the chosen locations. However,
its results can be biased if the dataset is not homogeneous, if
the number of chosen regions-of-interest is insufficient, or if
the choice of regions is biased. Observer error and mathemat-
ical uncertainty are major factors here, and the method is con-
sidered time-consuming and not particularly reliable [134].

Multi-segmentation based on various thresholding meth-
ods is suitable for datasets where uneven pore distribution
hinders the use of the previous method (figure 5(b)). Vieira
et al [135] averaged the results of manual thresholding and
two algorithms, and estimated the uncertainty of this averaged
reference dataset. Panigrahi et al [136] used a similar, although
more automated approach. The core idea of this method is to

perform multiple segmentations on a single dataset. The res-
ults of these can then be averaged to yield a single resulting
porosity value, and their variance can be assessed to determ-
ine uncertainty. It is inexpensive, requiring only a single data-
set and operator, and relatively time-efficient, as it can easily
be applied on any dataset and with any software. One draw-
back may be the higher time demand associated with multiple
segmentations. This method may also lead to a high uncer-
tainty, depending on the particular threshold values and choice
of algorithms (for example, see the differences between the
two methods in figure 3(f)), and human supervision may be
required in some cases to make sure the results of automatic
methods are not erroneous.

3.2.3. Sensitivity approach. Multiple manual thresholds
set by different operators can be applied in a similar manner
to the previous method, especially if the required manpower
is readily available (figure 5(c)). Zikmund et al [73] asked 20
CT and porosity experts to independently select a threshold
to separate pores and material in a single CT slice. They then
averaged the threshold values to represent the mean opinion
of the entire group. When compared with a different method,
Zikmund et al [73] concluded that the two showed good com-
pliance. The ease of application and general-purpose nature of
this method are its main strengths. On the other hand, finding
enough expert operators for a particular study may be diffi-
cult, and depending on their experience and number, biased or
overly uncertain results may be obtained [37].

Three segmentations at −n%, 0%, and +n% of an ini-
tial threshold (n being an arbitrary number) are also suitable
for any situation where uncertainty needs to be assessed using
only a single dataset (figure 5(d)). The three results are aver-
aged, and the precision of this average is then estimated based
on their difference [73]. The initial threshold choice can be
manual or automatic, as shown in figure 3. Then ±n% is
applied from this chosen threshold and the porosity is calcu-
lated for each threshold value. From figure 3, the±n%will be
added to the ISO50 (light green) or Otsu (dark red dashed line)
threshold. Zikmund et al [73] chose ±1% for their study. The
choice of n requires a careful and informed optimization by
an operator, who needs to adapt it to the particular grayscale
range and contrast of a dataset (figure 3). This method can be
used on any dataset, with any segmentation procedure and in
all study fields. It is cost- and time-effective, and easily repro-
ducible. It is crucial to keep in mind that the results here are
strongly influenced by the initial threshold choice, as well as
the choice of n.

Region erosion-dilation is very similar in concept and exe-
cution to the previous method. First, a global threshold is
set using any appropriate method, and pores are segmented
(figure 5(a)). Then, morphological erosion and dilation are
applied to the initial segmented volume, simulating multiple
passes of manual segmentation. To express uncertainty, the
initial porosity is divided by that calculated from the dilated
and eroded volumes, yielding a ±n% range of the porosity
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Figure 5. Uncertainty estimation from a single dataset: (a) single scan from a reference object and a sample of interest; (b) multiple
porosity averaging—multi-location, multi-segmentation, multi-manual threshold; (c) ± n%; (d) Erosion-Dilation. The CT steps numbers
are referring to figure 1.

number. The amount of erosion and dilation is a qualified
empirical estimation. For instance, Kalasová et al [137] used
0.3 pixels of erosion-dilation, which they set after thorough
testing. This uncertainty estimation method is quick, low-cost

and applicable to any dataset in any field. Similar to some
of the previously mentioned methods, the uncertainty can
be highly over- or underestimated depending on the initial
threshold and the amount of erosion-dilation chosen.
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All uncertainty estimation procedures described here have
their specific advantages and drawbacks. In order to choose
an appropriate method, we recommend to first define the field
of study and the level of precision needed (table 3). Then,
the choice of appropriate methods can be further narrowed
down based on the number of samples and number and types
of measurements that can be performed. It is common that
only one object and a single measurement of it are avail-
able. In that case, we suggest using one of the sensitivity
approaches, especially the last two mentioned. These do not
require a high commitment in terms of time, resources, or
expertise. Although the results of these procedures are strongly
dependent on the choices of the operator, a reliable uncer-
tainty estimate can be achieved if the rules outlined above are
followed.

4. Conclusions

CT is one of the leading methods for non-destructive 3D
material testing, and it is an ideal tool for porosity evaluation,
combining volume, distribution, and shape information in a
single measurement and dataset.

The segmentation procedure has a large impact on the
obtained porosity value. The global uncertainty can be reduced
through calibration for the measurement or by the use of
selected algorithm for the segmentation, but in any case,
this uncertainty has to be estimated and noted alongside
the final porosity result. The precision of the porosity value
can be estimated from a single dataset, but an assessment
of its accuracy requires a reference value. The uncertainty
estimation methods outlined in this work consider this dif-
ference between the availability of a reference value or not.
The best method for each study can be freely chosen from
the provided overview according to the available data and
values.

This estimation has to be coupled with a thorough descrip-
tion of the experimental method (i.e. quality) and the segment-
ation procedure to ensure a proper comparison and reproducib-
ility between porosity studies. As demonstrated in this work,
many otherwise well-developed studies lack these features,
which may lead to wrong interpretations and complicate any
attempt to compare different studies.

There is a great number of segmentation procedures, and
as the ideal approach often depends on the particular data-
set, standardisation is not possible across all fields. Instead,
this work aims to promote transparency of the methodologies
used in various studies, with a focus on the ubiquitous global
thresholding techniques.

We hope that a thorough description of the segmentation
procedure, as well as uncertainty estimation, will become
commonplace in future studies. It is the only way to verify
the reliability of the results, which is of high importance in
scientific studies utilizing x-ray CT.
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