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ABSTRACT 
 
The heat transfer coefficient between the absorber plate and air can be considerably 
increased by using artificial roughness on the underside of the absorber plate of the solar air 
heater. An experimental study has been carried out for enhancement of heat transfer 
coefficient of a solar air heater having roughened air duct provided with artificial roughness in 
the form 60° inclined discrete rib. Increment in friction factor by provided with such artificial 
roughness element has also been studied. The effect of system parameters such as relative 
roughness height (e/D), relative roughness pitch (P/e) and relative gap position (d/W) have 
been studied on Nusselt number (Nu) and friction factor (f) with relative gap width (g/e) 1 and 
Reynolds number (Re) varied from 4105 to 20526. Considerably enhancement in heat 
transfer coefficient has been achieved with such roughness element. Using experimental 
data correlations for Nusselt number and friction factor have also been developed for such 
solar air heaters, which gives a good agreement between predicted values and experimental 
values of Nusselt number and friction factor. 
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NOMENCLATURE 
 
Ao: Cross-section area of orifice, m2; AP: Area of absorber plate, m2;  Cd: Coefficient of 
discharge of orifice; CP: Specific heat of air at constant pressure, j/kg K;  D: Hydraulic 
diameter of duct, m; e: Rib height; e/D: Relative roughness height; fs : Friction factor of 
smooth duct; f: Friction factor of roughened duct; g: Gap width, m; H: Depth of duct, m; h: 
Convective heat transfer coefficient, w/m2K; (∆h)o  Difference of manometric fluid levels in U-
tube manometer, m; (∆h)d   Difference of manometric fluid levels in micro manometer, m; K: 
Thermal conductivity of air, w/mK; L: Length of test section, m; m& : Mass flow rate, kg/s; Nu: 
Nusselt number of roughened surface; Nus: Nusselt number of smooth surface; P: Pitch of 
rib, m; P/e: Relative roughness pitch; Qu: Useful heat gain, w; Tf: Mean temperature of air, K; 
Ti: Inlet temperature of air, K; To: Outlet temperature of air, K; TP: Average temperature of 
plate, K; β: Ratio of orifice diameter to pipe diameter; η: Efficiency parameter; ρ: Density of 
air, kg/m3; mρ : 

Density of manometric fluid, kg/m3; V: Velocity of air, m/s; W: Width of duct, 

m; α: Angle of attack, (°) 
 
 
 
1. INTRODUCTION 
 
The thermal performance of flat-plate solar air heater is generally poor because of two 
reasons: low thermal capacity of air and low convective heat transfer coefficient between air 
and the absorber plate. The low value convective heat transfer coefficient is generally 
attributed to the presence of a viscous sub layer, which can be broken by providing artificial 
roughness on the heat-transferring surface. The artificial roughness has been used 
extensively for the enhancement of forced convective heat transfer, which further requires 
flow at the heat-transferring surface to be turbulent. However, the artificial roughness results 
in higher frictional losses leading to excessive power requirement for the fluid to flow through 
the duct. It is therefore, desirable that the turbulence must be created only very close to the 
surface i.e., in laminar sub layer only, where the heat exchange take place and the core of 
the flow is not unduly disturbed to avoid excessive losses.  This can be done by keeping the 
height of the roughness elements small in comparison to the duct dimensions (Gupta et al., 
1993). The ribs in the rectangular solar air heater disturb the flows, promote flow mixing and 
turbulence, break the laminar sub layer, and induced secondary flows, thus increasing the 
heat transfer rate. A large number of studies for heat transfer enhancement and flow 
characteristics have been performed for various rib design parameters, such as the shapes 
of rib cross-sections, rib heights, angles of attack, rib-to-rib pitches, and rib arrangements.  
Han et al. (1985) investigated the effect of the ratio of rib pitch to height, and rib height to 
equivalent hydraulic diameter on friction factor and heat transfer coefficient for Reynolds 
number range of 7,000 to 90,000, relative roughness pitch range of 10 to 40, and relative 
roughness height range of 0.021 to 0.063. He found that the maximum values of friction 
factor and the Stanton number occur at a relative roughness pitch of 10. Both the average 
friction factor and Stanton number increase with increasing relative roughness height. Han et 
al. (1989) investigated that angled or inclined ribs give higher heat transfer rate than the 
transverse ribs, and narrow aspect ratio ducts perform better than wide aspect ratio ducts for 
constant pumping power. The angled ribs give higher heat transfer rate than transverse ribs, 
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because of the secondary flow induced by the rib angle, in addition to breaking the viscous 
sub-layer and producing local wall turbulence. Han and Park (1988) investigated the 
combined effect of the rib angle of attack and the channel aspect ratio on the heat transfer 
and friction characteristics of developing flow in short rectangular channel with a pair of 
opposite rib roughened walls for Reynolds number range of 10,000 to 60,000. They reported 
that the maximum heat transfer and pressure drop is obtained at angle of attack of 60° and a 
square channel provides a better heat-transfer performance than the rectangular channel.  
 
It is found that the transverse ribs enhance the heat transfer coefficient by about 1.7 times 
than that of the conventional smooth duct due to the flow separation at ribs and reattachment 
of flow between two adjacent ribs. Further studies (Han et al., 1978; Gee and Webb, 1980; 
Sethumadhavan and Rao, 1983) showed that parallel angled ribs provide a better heat 
transfer performance than transverse ribs because of the secondary flow induced by the rib 
angle in addition to the breaking of viscous sub-layer and producing local wall turbulence. In 
order to promote higher levels of flow turbulence, further experiments were performed by 
displacing the angled ribs according to a crossed arrangement or a V-shaped arrangement 
with the apex of V pointing upstream or downstream (Han et al., 1991; Kukreja et al., 1993; 
Gao and Sunden, 2001). Due to development of two vortices cells compared to only one cell 
formed with inclined ribs. It is interesting to note that the V-shaped ribs performed better 
when pointing upstream (Han et al., 1991). Gao and Sunden (2001) found that, for a 
rectangular channel 60˚ V-shaped ribbed on both sides produced higher heat transfer 
enhancement when pointing downstream of the main flow direction (rather than upstream), 
seemingly contradicting result of (Han et al., 1991). 
 
The next step, aimed at achieving even more efficient rib displacements from the heat 
transfer point of view, consisted in interrupting the continuity of ribs, on the ground that 
broken V-shaped or parallel ribs can create more secondary flow cells and produce more 
local turbulence than the continuous V-shaped or parallel ribs. Lau et al. (1991) investigated 
the turbulence heat transfer and friction for a fully developed flow in a square duct with 
inclined and transverse discrete ribs. The average Stanton number in the 90° discrete rib 
case is about 10 to 15 percent higher than that in the 90° transverse rib case. For a given 
pumping power, 60° and 45° discrete ribs enhance the ribbed wall heat transfer about 5 to 19 
percent and about 11 to 33 percent more than the corresponding angled full ribs. Parallel 60° 
discrete ribs have the highest ribbed wall heat transfer and parallel 30° discrete ribs cause 
the lowest pressure drop. Han and Zhang (1992) investigated the effect of the broken rib 
orientation on the local heat transfer distribution and pressure drop in a square duct with two 
opposite roughened walls. The results show that 60° parallel broken ribs or 60° V-shaped 
broken ribs provide higher heat transfer augmentation than 45° parallel broken or 45° V-
shaped broken ribs. It has also been observed that 60° parallel broken ribs or 60° V-shaped 
broken ribs perform better than 60° parallel continuous ribs or 60° V-shaped continuous ribs. 
The heat transfer augmentation is about 2.5 to 4 times for the broken rib configuration and 
about 2 to 3 times for the continuous rib configuration with about 7 to 8 times pressure 
penalty as compared to smooth duct. Cho et al. (2000) examined the effect of the angle of 
attack and the number of discrete ribs. The region between the discrete ribs accelerated the 
flows, and the accelerated flows increased the heat transfer coefficient locally. Cho et al. 
(2003) investigated the effect of a gap in the inclined ribs on heat transfer in a square duct 
and reported that a gap in the inclined rib accelerates the flow and enhances the local 
turbulence, which will result in an increase in the heat transfer. They reported that the 
inclined rib arrangement with a downstream gap position shows higher enhancement in heat 
transfer compared to that of the continuous inclined rib arrangement. Cavallero and Tanda 
(2002) have investigated experimentally forced convection heat transfer in channel with rib 



 
 
 
 

British Journal of Applied Science & Technology, 1(3):67-93, 2011 
 
 

70 
 

turbulators by means of liquid crystal thermography and revealed that average heat transfer 
coefficient for the ribbed surfaces is higher than those for the unribbed surface by a factor of 
up to 2 for continuous ribs, while by a factor of up to 3 for broken ribs. Tanda (2004) 
investigated heat transfer in rectangular channels with transverse and V-shaped broken ribs 
with p/e = 8 and found that pairs of high heat transfer coefficient lobes are located aside the 
line normal to ribs (when transverse) or aside the bisector of ribs (when V-shaped). Most of 
the investigators carried out so far have applied the artificial roughness on two opposite walls 
with all four walls being heated. It is noted that for the application of this concept of 
enhancement of heat transfer incase of solar air heaters, roughness elements have to be 
considered only on one wall, which is subjected to uniform heat flux while the remaining 
three walls were insulated. Therefore, the solar air heaters were modeled as a rectangular 
channel having one rough wall and three smooth walls. This makes the fluid flow and heat 
transfer characteristics distinctly different from those found in the case of channel with two 
opposite roughened walls, roughened annular and circular tubes. Further the range of 
Reynolds number applicable in solar air heaters are of lower range in comparison of the heat 
exchangers.  
 
Many investigators (Prasad and Saini 1988; Gupta et al., 1993; Verma and Prasad 2000; 
Karwa et al., 1999; Karwa et al., 2001; Bhagoria et al., 2002; Muluwork et al., 1998; Momin et 
al., 2002; Karwa 2003; Sahu and Bhagoria 2005; Saini and Verma 2008; Varun et al., 2008) 
investigated the effect of artificial rib roughness in various forms on the airflow side of the 
absorber plate to enhance the thermal performance of solar air heaters. Studies carried out 
by these researchers have shown that the geometry of rib, namely shape, pitch, angle of 
attack and height, affects significantly the heat transfer and friction characteristics of the duct. 
 
It has been found (Lau et al., 1991; Han and Zhang 1992; Cho et al., 2000; Cho et al., 2003; 
Cavallero and Tanda, 2002; Tanda, 2004) that discrete inclined or V-shaped rib arrangement 
can yield better performance as compared to continuous rib arrangement. Moreover, since 
the use of broken ribs increases both heat-transfer and friction, evaluation criteria have to be 
developed to demonstrate the performance advantage relative to smooth passages of equal 
hydraulic diameters. However, investigators have not been carried out so far to optimize the 
rib position, rib height of the 60°inclined discrete rib and also to locate the optimum position 
of gap. The present work has been taken up to determine optimum position  and height of rib 
elements as well as optimum location of rib gap, while discretizing the 60° inclined (non-
transverse) ribs for enhancing the performance as compared to smooth solar air heater.  
 
In the present work, experimental investigation on the performance of solar air heater ducts, 
having the absorber plate with artificial roughness in the form of 60° inclined rib, provided 
with a relative gap width (g/e) = 1, has been carried out. The flow Reynolds number has been 
varied between 4105 and 20526. The variations of Nusselt number and friction factor as a 
function of roughness parameters including gap position, roughness pitch and roughness 
height have been evaluated to compare with smooth plate solar air heater. Using 
experimental data correlations have been developed for predicting the Nusselt number and 
friction factor for such solar air heaters.  
 
Table. 1 summarizes the various arrangements of discretizing the inclined ribs employed by 
these investigators.  
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60˚, to achieve maximum enhancement of heat transfer (Han and Park 1988). The schematic 
of the geometry of inclined discrete rib used in this experimental is shown in Fig. 1. 
 
Table 2. Dimensionless roughness parameters and range of Reynolds number 

 
Sl. No. Roughness and flow parameters Range of parameters 

1 Reynolds number (Re) 4105.2-20526.2 (6 values) 

2 Relative roughness height (e/D) 0.0249, 0.0374 and 0.0498 

3 Relative roughness pitch (P/e) 8, 12 and 16 
4 Relative gap position (d/W) 0.15, 0.25 and 0.35 
5 Relative gap width (g/e) 1 

 
 

 
Fig. 1. Geometry of 60˚ inclined discrete rib roughness 

 
3. EXPERIMENTAL PROGRAM 
 
3.1 EXPERIMENTAL APPARATUS 
 
The experimental setup is an open loop flow system has been designed and fabricated to 
conduct experimental investigation on the heat transfer and fluid flow characteristics of a 
rectangular duct having 60° inclined discrete ribs roughness on the heated surface. The 
experimental data collected are to be used to develop correlations for heat transfer 
coefficient and friction factor. Fig. 2 is a schematic diagram of the indoor experimental setup 
including test section. The experimental setup consists of a test duct along with entrance and 
exit sections, a blower and control valves, a calibrated orifice plate and various devices for 
measurement of pressure and temperature drop. The blower sucks atmospheric air through 
the duct, having artificial roughness produced by fixing 60° inclined discrete ribs on the 
underside of the top plate. The flow through the duct can be controlled by means of control 
valves provided on the line. Mass flow rate of air was measured by means of an orifice meter 
on the suction side and connected to an inclined manometer. The wooden rectangular duct 
has internal size as 2200 mm × 158 mm × 23 mm depicting an aspect ratio of 6.9 as shown 
in Fig. 3. It is constructed from wood. The test section has a length of 1000 mm with a cross 
section of 158 mm × 23 mm. It consists of an entrance section, a test section and an exit 
section having lengths as 550 mm, 1000mm and 650 mm respectively. It may be noted that 
for turbulent flow regime, ASHRAE Standard 93-77 (1950) recommends entry and exit 
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lengths as 5 √   and 2.5 √  respectively, which has been used in designing the 
duct for this experimental work. In the exit section three equally spaced baffles are provided 
after the test section at each 75 mm lengths for the purpose of mixing the delivered air. At 
the end of duct a plenum was provided to connect the rectangular duct with circular pipe. An 
aluminum plate 1000 mm x 158 mm x 8 mm is used as artificially roughened plate at the test 
section of the duct. The artificial roughness was produced by pasting the aluminum wires on 
to the underside. The diameter of wire has been varied to get different heights of roughness. 
This plate is heated from the top by means of an electric heater assembly and is subjected to 
uniform heat flux. An electric heater having a size of 1000 mm x 158 mm was fabricated by 
combining series and parallel loops of resistance heating wire fitted on 5 mm asbestos sheet. 
The back side of the heater was insulated with glass wool, to minimize thermal energy 
losses. The heater placed 42 mm above the roughened absorber plate with the help of 
wooden spacers. A mica sheet of 0.5 mm thickness is provided between the electric heater 
and the roughened aluminum plate to avoid the direct contact between heater coil and 
absorber plate. Energy input to the heater was controlled by a variac so that desired levels of 
heat flux values could be attained. Ambient air was sucked through the duct system by 
means of a centrifugal blower driven by a 3-phase, 5 HP, 230 V and 2880 rpm motor. The 
blower is used to suck the ambient air through the rectangular duct using pipelines and 
delivered to atmosphere. The air flow rate is regulated at desired rate by providing two 
control valves, one on the inlet side and other on the outlet side of blower. The mass flow 
rate of air through duct is measured  by  orifice meter, which is calibrated for flow rate 
measurement by experimentally measuring orifice meter co-efficient (Cd) as proposed by 
Scott et al. (2002) and an average value of Cd can be taken as 0.61.  
 
Copper –constantan thermocouples were used for air and absorber plate temperature 
measurements as shown in Fig. 4. Before installing the thermocouples in place, they were 
calibrated under similar environmental conditions. Fifteen have been fixed using fast drying 
epoxy resin, through 2 mm deep hole of 1.5 mm diameter at the back of the plate. After the 
mixing section, three thermocouples arranged transverse of the duct to measure the exit air 
temperature. All thermocouples were connected to digital voltmeter through a selector switch 
so that the output could be measured in milivolt. The bulk temperature of the entrance 
section is measured by providing one thermocouples at the entrance section. The pressure 
drop across the test section of the duct was measured by means of a micro-manometer 
having a least count of 0.01 mm. The micro manometer consists of a movable reservoir, a 
fixed reservoir and an inclined transparent tube connected to these reservoirs. An air bubble 
is trapped by means of a hypodermic needle. The movable reservoir is mounted on a sliding 
arrangement using a lead screw having a pitch of 1.0 mm and a graduated dial having 100 
divisions; each division showing a movement of 0.01 mm of the reservoir. The movable 
reservoir is displaced up or down to maintain the air bubble at the specified location for any 
pressure difference between the two reservoirs and the movement of the moving reservoir is 
noted as the pressure difference across the two pressure tapings connected to the 
reservoirs.  

 
3.2 EXPERIMENTAL PROCEDURE 
 
Before starting any experiments, all the thermocouples were checked carefully so as to 
indicate the room temperature and all the pressure tapings were checked for air leakage, if 
any. The micro manometer and the inclined U – tube manometer were properly leveled.  
After proper checking of instruments, the test setup was checked and readied for conducting 
experiments. The power supply to the centrifugal blower and the electric heater was switched 
on and the desired flow rate was set with the help of control valves. 
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Fig. 5 Plate and air temperature profile along the duct length 
 

4. DATA REDUCTION 
 
Steady state values of the plate and air temperatures in the duct at various locations were 
used to determine the values of useful parameters, namely mass flow rate” m& ”, heat 
supplied to the air” uQ ” and heat transfer coefficient “ h  “ calculated as 

( ) 5.0

41
..2

⎥
⎦

⎤
⎢
⎣

⎡
−
∆

××=
β

ρ o
od

P
ACm&                                                                             (1) 

Where ( ) ( ) θρ sin81.9 ××∆×=∆ moo hP  

( )ioPu TTCmQ −= &                                                                                         (2) 

( )fpP

u

TTA
Qh
−

=                                                                                             (3) 

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Air

Plate

Duct length

T
em

pe
ra

tu
re

( o C
)

Entrance Section Test Section Exit Section



 
 
 
 

British Journal of Applied Science & Technology, 1(3):67-93, 2011 
 
 

77 
 

Where the temperature pT  and fT are average temperature values of absorber plate and 

fluis respectively. The average value of plate temperature ( pT ) was determined from the 
detailed temperature profile of the absorber plate indicated by 15 thermocouples at various 
locations. The typical variation of the plate and air temperatures along the length of the duct 
is shown in Fig. 5. The convective heat transfer coefficient was then used to obtain Nusselt 
number, Nu , as 

K
hDNu =                                                                                                                       (4)      

The friction factor was determined from the measured values of pressure drop, ( )dP∆ , 
across the test section length, between the two points located 1m apart. 

( )
2...4

..2
VL

DP
f d

ρ
∆

=                                                                                                 (5) 

Where, ( ) ( ) mdd hP ρ×∆×=∆ 81.9                                                                                                      
 
It may be noted that prior to actual data collected , the test setup was checked by conducting 
experiments for a smooth duct. The Nusselt number and friction factor determined from 
these experimental data were compared with the values obtained from the correlations i.e. 
Dittus-Blasius equation for friction factor (Bhatti and Shah 1987) and Dittus-Boelter equation 
for Nusselt number (Kays 1966) in case of smooth duct. These equations are given below: 

            Blasius equation:  
25.0Re085.0 −×=sf                                                                                          (6)      

Dittus-Boelter equation: 
4.0PrRe024.0 ××=sNu                                                                                                (7) 
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Fig. 6. Friction factor vs. Reynolds number for smooth duct 
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Fig. 7. Nusselt number vs. Reynolds number for smooth duct 

 
The comparison of measured and predicted values of friction factor and Nusselt number are 
shown in Fig. 6 and Fig. 7, respectively. The agreement is seen to be reasonably good. The 
above comparison ensures the accuracy of experimental results proposed to be obtained 
from the present experimental set up and instrumentation. 
 
5. RESULTS AND DISCUSSION 
 
The effect of various flow and roughness parameters on the heat transfer and friction 
characteristic for flow of air in the rectangular duct are presented below. Results have also 
been compared with those of the smooth duct under similar flow and thermal boundary 
conditions to determine the enhancement in the heat transfer coefficient and friction factor. 
 
Fig. 8 shows the variation of Nusselt number for 60º inclined discrete ribbed and smooth duct 
with Reynolds number and relative roughness pitch for given values of relative gap position 
and relative roughness height. The values of Nusselt number are found to increase with 
increasing Reynolds number in all cases as expected. The 60º inclined discrete ribbed ducts 
can be seen to yield higher Nusselt number as compared to that of the smooth duct as is 
evident from the comparison of such plots with that of smooth duct. 
 
The data of Fig. 8 has been replotted in Fig. 9 to bring out the effect of relative roughness 
pitch wherein it can be seen that the Nusselt number increases with increase of relative 
roughness pitch, attaining maximum value at relative roughness pitch of 12 and then 
decreases with further increase in relative roughness pitch. It is observed from the plot that 
the variation of Nusselt number with relative roughness pitch is insignificant at lower values 
of Reynolds number but at higher Reynolds number, the variation is substantial. 
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Fig. 8. Nusselt number Vs Reynolds number for e/D= 0.0498 and d/W=0.35 
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Fig. 9. Nusselt number Vs relative roughness pitch for e/D= 0.0498 and d/W=0.35 

 
Fig. 10 shows the effect of the gap position on Nusselt number for 60º inclined discrete 
ribbed. It can be seen that the Nusselt number increases with increase in relative gap 
position (d/W) attaining maximum value at relative gap position of 0.35, the effect being more 
pronounced at higher values of Reynolds number. Although the plots have been shown for a 
fixed relative roughness pitch of 12, the trend is general and the same trend is seen at all 
relative roughness pitch values. 
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The introduction of a gap in the inclined ribs allows release of secondary flow and main flow 
through the gap. The main flow is a developed flow with thicker boundary layer, and due to 
the presence of viscous sublayer, it leads to a low amount of heat transfer. In fact, the ribs 
are introduced to break this retard flow and let it reattach again with the surface to enhance 
the heat transfer (Prasad and Saini, 1988). However, in case of gap in the inclined rib, the 
secondary flow along with the rib joins the main flow to accelerate it, as shown in Fig. 11, 
which energizes the retarded boundary layer flow along the surface. This increases the heat 
transfer through the gap width area behind the rib. 
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Fig. 10. Nusselt number Vs relative gap position for P/e= 12 and e/D=0.0498 

 
Fig. 12 shows the plots of Nusselt number as a function of relative roughness height (e/D), 
for 60º inclined discrete ribbed for given values of other roughness geometries parameters. 
Plots show a monotonic rise in the value of Nusselt number with an increase in the relative 
roughness height. The 60º inclined discrete ribbed with relative roughness of 12 and gap 
position to width ratio (d/W) of 0.35 provides the maximum values of the Nusselt number in 
the order of 2.57 times of the smooth duct. 
 
Fig. 13 shows the effect of Reynolds number and relative roughness pitch on friction factor in 
the range of Reynolds number investigated for fixed value of other parameters. It is seen that 
the value of friction factor decreases with increasing Reynolds number in all cases as 
expected due to the suppression of viscous sub-layer with increase in Reynolds number. The 
60º inclined discrete ribbed ducts can be seen to yield higher friction factor as compared to 
that of the smooth duct. It is observed that for a relative roughness pitch of 12 has maximum 
friction factor and that of 8.0 has minimum value. The data of Fig. 13 has been replotted in 
Fig. 14 wherein it can be seen that the friction factor increases with increase in relative 
roughness pitch, attaining maximum value at relative roughness pitch of 12 and a further 
increase of relative roughness pitch results in the decrease of friction factor. 
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Fig. 13. Friction factor Vs Reynolds number for e/D= 0.0498 and d/W=0.35 
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Fig. 14. Friction factor Vs relative roughness pitch for e/D= 0.0498 and d/W=0.35 
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Fig. 15. Friction factor Vs relative gap position for e/D= 0.0498 and P/e=12 

 
Fig. 15 shows the effect of gap position on friction factor in the range of Reynolds number 
investigated and for fixed values of other parameters. It shows that the value of friction 
increases with increase in relative gap position. Fig. 16 shows the effect of relative 
roughness height on the friction factor for fixed value of other roughness and flow 
parameters. It reveals that there is a monotonic rise in the value of friction factor with the 
increase in the relative roughness height for a given value of Reynolds number.     
 
The investigation shows that 60º inclined discrete ribbed duct with relative roughness pitch 
(P/e) of 12, relative gap position (d/W) of 0.35 and relative roughness height (e/D) of 0.0498 
yields the maximum value of friction factor in the order of 3.72 times that of smooth duct.       
 
6. CORRELATION FOR NUSSELT NUMBER 
 
The statistical correlations are developed here to cover total 162 experimental data 
corresponding to all the twenty seven roughened absorber plates. Regression analysis is 
carried out to find a relationship that yields a best fit equation for Nusselt number. Fig. 17 
shows the Nusselt number as a function of Reynolds number. A regression analysis to fit a 
straight line on graph through the data points yields the following power law relationship 
between Nusselt number and Reynolds number.     
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Fig. 16. Fri

 

 

 

 

 

 

 

0.020

0.016

0.020

0.024

0.028

0.032

0.036

0.040

P/e 
d/W

Fr
ic

tio
n 

fa
ct

or

iction factor 

Fig. 17

Bri

              

              

              

              

              

              

              

0.025 0.03

= 12
W = 0.35

 Re = 4105.23
 Re = 9179.58
 Re = 12315.70
 Re = 14801.63
 Re = 15899.50
 Re = 20526.17

Vs relative r

7. Nusselt nu

ritish Journal of A

             

             

             

             

             

             

             

30 0.035 0

e/D

roughness h
 

 
mber Vs Rey

Applied Science &

              

              

              

              

              

              

              

0.040 0.045

eight for P/e

ynolds numb

& Technology, 1(

       

       

       

       

       

       

       

0.050

 
e= 12 and d/W

ber 

(3):67-93, 2011

84

W=0.35 

 



 

Fig. 1

Bri

Fig.18.  
N

19. 
( )⎢
⎣

⎡
.0Re

ln

ritish Journal of A

( ) 947.0Re
Nu

 V

 

( ) 290.0947 /
100

De
Nu

Applied Science &

Vs e/D 

⎥
⎦

⎤
0   Vs ln(P/e

& Technology, 1(

e) 

(3):67-93, 2011

85

 

 



 

Fig

Fig. 20. 

g. 21. Compa

( ) 9.0Re/Nu

arison of Nus

Bri

( ) 290.0947 / De

sselt number

ritish Journal of A

( ) 885.50 /eP ×
 

r for experim

Applied Science &

(( ln237.1exp −×

mental values

& Technology, 1(

( )) )2/n eP
   Vs 

s with predic

(3):67-93, 2011

86

 

d/W 

 
cted values 



 
 
 
 

British Journal of Applied Science & Technology, 1(3):67-93, 2011 
 
 

87 
 

 
The coefficient Ao will in fact be a function of other influencing parameters. Now taking the 
parameter of relative roughness height of rib (i.e. e/D) in to consideration, the value of 

( ) AoNu =947.0Re  corresponding to all values of relative roughness height (e/D) are plotted 

against relative roughness height, as shown in Fig. 18. The regression analysis to fit a 
straight line on graph through points yields: 
 

( )
( ) 290.0

947.0Re D
eBoNu

=                                                                                                      (9)       

 
Such a relationship was indicated by plots of Nusselt number as a function of relative 
roughness height of rib (e/D). Hence Bo is a function of other influencing parameters. Now 
considering the parameter relative roughness pitch (P/e), the value of 

( ) ( ) 290.0947.0 /Re
100ln

De
Nu  

has been plotted against ln (P/e) in Fig. 19. From the regression to fit  
 
a second-order quadratic, one obtains. 
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It can be rearranged as, 

]))/(ln(237.1[885.5290.0947.0 2

exp)/()/((Re) ePePDeCoNu −×=                    (11)       
 
Where Co is a function of parameter representing ratio of gap position to width of absorber 
plate.       
 

Finally a plot of ( ) ( ) ( ) ( )( )( ) CoePDeNu eP =× − 2/ln237.1885.5290.0947.0 exp//Re/  as a 
function of d/W, shown in Fig. 20 has been plotted. The regression analysis to fit a straight 
line on graph through points yields: 

( ) ( ) ( ) ( )( )( ) ( ) 115.0

/ln237.1885.5290.0947.0
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exp//Re
2 WdDo

ePDe
Nu

eP
=

× −
                             (12) 

 
The equation can be rearranged as, 

]))/(ln(237.1[115.0885.5290.0947.0 2

exp)/()/()/((Re) ePWdePDeDoNu −×=                          (13) 
 
The values of coefficients Ao= 0.009, Bo=0.025, Co=2.611057415×10-3 and Do= 3×10-5 are 
obtained from fitting the curves in Figs. 17 to 20. 
 
The final correlation for Nusselt number can be written in the following form, 
 

]))/(ln(237.1[115.0885.5290.0947.05 2

exp)/()/()/((Re)103 ePWdePDeNu −− ××=  (14) 
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3. Statistical correlations for Nusselt number and friction factor have been developed as 
a function of gap position, rib height (or depth), pitch and Reynolds number. These 
correlations have been found to predict the values of Nusselt number and friction 
factor with average absolute standard deviation of 3.8% and 3.4%, respectively.        
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