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Abstract
With the advent of billion-galaxy surveys with complex data, the need of the hour is to efficiently
model galaxy spectral energy distributions (SEDs) with robust uncertainty quantification. The
combination of simulation-based inference (SBI) and amortized neural posterior estimation
(NPE) has been successfully used to analyse simulated and real galaxy photometry both precisely
and efficiently. In this work, we utilise this combination and build on existing literature to analyse
simulated noisy galaxy spectra. Here, we demonstrate a proof-of-concept study of spectra that is
(a) an efficient analysis of galaxy SEDs and inference of galaxy parameters with physically
interpretable uncertainties; and (b) amortized calculations of posterior distributions of said galaxy
parameters at the modest cost of a few galaxy fits with Markov chain Monte Carlo (MCMC)
methods. We utilise the SED generator and inference framework Prospector to generate simulated
spectra, and train a dataset of 2× 106 spectra (corresponding to a five-parameter SED model) with
NPE. We show that SBI—with its combination of fast and amortized posterior estimations—is
capable of inferring accurate galaxy stellar masses and metallicities. Our uncertainty constraints are
comparable to or moderately weaker than traditional inverse-modelling with Bayesian MCMC
methods (e.g. 0.17 and 0.26 dex in stellar mass and metallicity for a given galaxy, respectively). We
also find that our inference framework conducts rapid SED inference (0.9–1.2× 105 galaxy spectra
via SBI/NPE at the cost of 1 MCMC-based fit). With this work, we set the stage for further work
that focuses of SED fitting of galaxy spectra with SBI, in the era of JWST galaxy survey programs
and the wide-field Roman Space Telescope spectroscopic surveys.

1. Introduction

Understanding the mass assembly of galaxies across cosmic time is a major goal of modern extragalactic
astrophysics; solving this question sheds light onto a galaxy’s underlying formation and evolution
mechanism. Galaxies are well-characterized by features like stellar mass, chemical composition, dust
attenuation, current star formation rate (SFR), and the star formation history. These parameters can be
accurately inferred from a galaxy’s spectral energy distribution (SED).

Within the last two decades, photometry-based SED fitting has become a pivotal method to measure the
above properties. Ground-based telescopes have been used extensively for large multi-wavelength galaxy
surveys—e.g. Sloan Digital Sky Survey (SDSS, Ahumada et al 2020), Dark Energy Survey (Abbott et al 2018),
and DESI Legacy Imaging Surveys (Dey et al 2019)—producing large high-quality complex datasets.
However, SED studies relying on photometry alone are subject to many challenges, such as the
age-metallicity-dust degeneracy (Worthey 1994, Ferreras et al 1999). SED fitting using spectra mitigate this
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challenge significantly, especially to constrain galaxy SFRs, formation timescales, and metallicities, with
measurement of absorption line indices and emission line strengths (e.g. Worthey 1994, Leja et al 2019b and
references therein.)

There are several cutting-edge SED-fitting pipelines with Bayesian frameworks that use Markov chain
Monte Carlo (MCMC) methods to infer galaxy properties—e.g. CIGALE, MAGPHYS, and Prospector (Leja
et al 2017a, 2019a, Carnall et al 2019, Johnson et al 2021). However, the computational time needed by the
fitting algorithms in these frameworks—e.g. MCMC or nested sampling has been recently is a major
bottleneck. With the next generation of telescopes, like the Vera Rubin Observatory/ Legacy Survey of Space
and Time (Ivezíc et al 2019) and the Dark Energy Spectroscopic Instrument (DESI; Aghamousa et al 2016),
tens of millions of optical and infrared galaxy photometry and spectra will be measured. Highly-resolved
spectra have higher information content and require more complex and flexible models for fitting. Finally,
datasets with spaxels (or spatial and spectral pixels) are increasing in number, e.g. data units in
integral-field-unit (IFU) spectrograph observations, with JWST IFU spectroscopy of a gravitationally lensed
galaxy (Khullar et al 2021), or the SDSS-MaNGA survey observations of star forming galaxies.

Fitting a large number of free parameters is computationally expensive. A five-parameter spectral model
within a typical SED fitting code—stellar mass, dust attenuation, metallicity, age—converges to a best-fit
model solution in 2–10 CPU h. Moreover, each galaxy spectra requires its own separate inference chains.
With the advent of spectroscopic surveys that may potentially observe tens of millions of galaxy spectra, the
cost of modelling spectra quickly becomes prohibitive. Thus, the need of the hour is to quickly and reliably
deduce the physical parameters of galaxies in large surveys, as well as to rapidly analyse thousands of spectra
from within one galaxy.

Deep learning applied to galaxy SED fitting allows, in principle, a mapping between an observed SED and
the target galaxy’s star formation history, with several studies in the last few years alone demonstrating the
efficacy of new methodologies (Leung and Bovy 2019, Lovell et al 2019, Hahn and Melchior 2022). These
methods allow regression of galaxy parameters, albeit without any uncertainty quantification.

Recent developments in deep learning methods have focused on uncertainty quantification. For example,
deep ensembles involve retraining a network many times with different initializations to enable uncertainty
quantification of the model outputs. (Ganaie et al 2021). Furthermore, with Bayesian neural networks
(BNNs), deterministic weights of the model are replaced by probability distributions, which allows the
model to provide uncertainties of its outputs (Valentin Jospin et al 2020) (training a BNN includes
assumptions of priors over the network weights and assumes that parameter posteriors can be approximated
by well behaved variational distribution e.g. Gaussian distribution or a mixture of multiple Gaussians).

Simulation-based inference (SBI; Cranmer et al 2019) combined with deep learning can mitigate
assumptions (e.g. tractable likelihood) that can plague analytic likelihood and posterior modelling, as well as
remove computational bottlenecks in statistical calculations. Many astrophysical studies have demonstrated
success with SBI in calculating posterior estimation in a rapid manner (Kacprzak et al 2018, Alsing et al 2019,
Zhang et al 2021, Huppenkothen and Bachetti 2022, Zhao et al 2022).

SBI of galaxy spectra is an exciting opportunity because these models (a) do not require the expression of
an explicit likelihood, and (b) can calculate approximate posterior distributions of galaxy parameters
efficiently, allowing for robust uncertainty quantification. Recent work has shown that photometric SED
data can be used with SBI for fast inference, e.g. Hahn and Melchior (2022), and Robeyns et al (2022).

In this work, we demonstrate a proof-of-concept SBI framework to analyse galaxy spectra and recover
posteriors efficiently for a five-parameter SED model. We expect to scale this work to upcoming galaxy
spectroscopic surveys—like the Dark Energy Spectroscopy Instrument Aghamousa et al (2016) and the
Roman Space Telescope High-Latitude Survey Wang et al (2022)— and for SED models with more complex
and flexible descriptions of galaxy properties.

In section 2, we describe the simulated data used in this study. In section 3, we describe the SBI network
architecture and analysis, and in section 4, we share our results and next steps. The fiducial cosmology model
used for all distance measurements as well as other cosmological values assumes a standard flat cold dark
matter (or CDM) Universe with a cosmological constant (ΛCDM), corresponding to WMAP9 observations
(Hinshaw et al 2013).

2. Data

We use Prospector (Johnson et al 2021) to generate simulated SEDs of galaxies. Prospector relies on MCMC
sampling for stellar population synthesis and parameter inference. It is based on the Python-FSPS
framework, with the MILES stellar spectral library and the MESA isochrones & stellar tracks (MIST) set of
isochrones (Conroy and Gunn 2010, Falcón-Barroso et al 2011, Foreman-Mackey et al 2013, Choi et al 2016,
Leja et al 2017a).
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Table 1. Simulated SEDs: model description and prior range.

Parameter Description Priors

Mtotal(M⊙) Total stellar mass formed Log10 Uniform: [108, 1013]
log(Z/Z⊙) Stellar metallicity in units of log(Z/Z⊙) Uniform: [−2.0, 0.2]
τλ,2 Diffuse dust optical depth Tophat: [0.1, 10.00]
tage Age of Galaxy (Gyr) TopHat: [0, 4]
τ e-folding time of SFH (Gyr) Log10 Uniform: [0.1, 1.0]

Figure 1. Five Galaxy SEDs randomly sampled from the training set used in this work, with five different values of the parameter
vector θ. The SEDs are normalized to their median: this respects the fact that the shape of the SED is primarily dictated by the
stellar metallicity, age and dust properties, while stellar mass is usually correlated with the amplitude of the SED flux. The SEDs
marked by solid lines have nebular emission features (such as the Hβ, [OIII]5007 Å and Hα), while dotted lines represent SEDs of
galaxies with absorption features and continuum breaks, such as 4000 Å.

We generate a training set of 10 000 rest-frame SEDs using a five-parameter model, with a delayed,
exponentially declining (i.e. delayed-tau) star formation history. The SFH—SFR as a function of time—is:

SFR(t, τ)∝ t/τ ∗ e−t/τ (1)

where SFR is the star formation rate, t is the epoch at which the star formation history is being evaluated, and
τ corresponds to the e-folding time in the delayed-τ SFH model.

This model incorporates physical priors used in survey studies of galaxy mass assembly (e.g. see Belli et al
2019). We sample the total stellar mass (M∗), the stellar metallicity log(Z/Zsol), a delayed and exponentially
declining SFH with age tage, the e-folding time τage (τ from here on), and dust attenuation (τλ,2,
corresponding to the optical depth of diffuse dust at 5500Å; from here on referred to as dust.) Each
parameter vector θ comprises these five parameters. Our SED model assumes a Kroupa Initial Mass Function
(Kroupa 2001). Nebular continuum and line emission are also present.

See table 1 for a description of the prior range for each model parameter. See figure 1 for five example
SEDs/spectra from our training set, highlighting the emission and absorption features depending on the type
of galaxy (young vs old stellar populations, respectively).

We smooth and resample the simulated SEDs to resemble a medium-resolution spectroscopic survey
using Prospector’s internal resampling utility. We use a velocity smoothing parameter (σv (km s−1), to
account for the contribution of Doppler broadening by stellar velocities, and resolution of the model
libraries), and fix it at 350 km s−1; this smoothing corresponds to R∼ 100, similar to a deep galaxy survey
conducted with the R∼ 100 JWST/NIRSpec prism (Zackrisson et al 2017). This results in a training set with
each galaxy SED sampling rest-frame 3750–9500Å, with 138 flux elements for each SED, which is the data
vector x corresponding to each θ.

To map our training set to observations, we add stochasticity to the training set in the form of Gaussian
noise, to the level of 5% of the flux at a given wavelength, representative of real data at signal-to-noise ratio
SNR∼ 20. We conduct data augmentation to scale 10 000 noise-less spectra in our base training set to 2×
106 spectra with Gaussian noise used in our SBI framework (see section 3).
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We also create an additional test of pectra conduct posterior diagnostics. We generate a set of 1000
spectra with noise, from the same parameter prior range.

3. Inference methodology

3.1. SBI
Our objective is to calculate posterior distributions p(θ|x) of the galaxy parameters derived from a typical
SED analysis, where θ is the set of galaxy properties, and x represents the galaxy spectra. We do this by
training our SBI model on the large stochastically-sampled training set of SEDs described in section 2. We
utilise Neural Posterior Estimation (NPE) (Papamakarios and Murray 2016, Greenberg et al 2019)) which
relies on neural networks to train on simulated SEDs with realistic noise, and allow us to estimate ‘amortized’
posterior distributions.

SBI/NPE requires computational time in advance of the actual inference, and evaluates the posterior for
different observations without having to re-run inference (this is known as amortization). This ‘amortized’
calculation of posteriors then allows us to infer the posteriors of a ‘real’ galaxy with computational time<1 s.
For more details and examples of amortized neural network-based posterior estimation, see Greenberg et al
(2019) or section 2 of Hahn and Melchior (2022). We provide a short summary below.

NPE uses ‘normalizing flows’ (Tabak and Turner 2013) as a density estimator, which employs an
invertible bijective transformation to map a complex distribution (i.e. the true posterior distribution in SED
model parameter space) to a simpler and faster-to-calculate distribution (often Gaussian, or a combination
of Gaussians). This results in the calculation of approximate posterior distributions, that are assumed to be a
good approximation of the underlying posterior distributions of parameters. In particular, we use Masked
Autoregressive Flow (MAFs; Uria et al 2016, Papamakarios et al 2017) incorporated within sbi (similar to
Hahn and Melchior 2022). MAFs perform well in modelling conditional probability distributions, such as
posteriors (see section 2 of Hahn and Melchior 2022 for more details).

3.2. This work
See figure 2 for a depiction of the SBI architecture used in this work. We use a supervised learning pipeline
within an SBI framework via the Macke Lab sbi toolbox (Tejero-Cantero et al 2020). To demonstrate a
proof-of-concept, we train on 2× 106 simulations (where each simulation is a noise-added version of an
SED in our training set) in an NPE framework. We use 25 hidden units and 10 transform layers without an
embedding network in this framework. Our model trains on features in the raw simulated data; this model
converges after 87 epochs and takes∼14 h to train. This analysis generates the set of approximate posterior
distributions for our five parameter SED model. We also test on other combinations of hidden units and
transform layers, and choose the above as the fiducial choice with more robust results.

3.3. Posterior diagnostics
We evaluate the results using a variety of statistical and diagnostic mechanisms. First, to test the precision of
our framework, we compare the recovered SED parameter values with the true values θ of the parameters
from our test set. Secondly, to test the health of the calculated posteriors, we also perform posterior
predictive checks (PPCs) and simulation-based calibration (SBC) checks (Talts et al 2018). PPCs validate that
the model SEDs corresponding to the distribution of θ values in a given posterior fall within the allowed
range. We do this by cross-checking whether our best-fit model-based spectrum looks similar to observed
data x (see figure 3).

SBCs provide a quantitative insight into whether the posterior uncertainties are balanced. In this test, we
sample θi values from the priors, and simulate observations (using our simulator) from these parameters.
Following this, we perform inference given each of these observations, which generates SBC posteriors of
their own. For a healthy posterior, the SBC ranks of ground truth parameters under the inferred posteriors
should follow a uniform distribution (rank plots aid in visually confirming this; see figure 5).

Finally, we compare our results to an MCMC analysis of representative SEDs from the test set.

3.4. MCMC analysis
We fit the same five-parameter SED model to representative galaxy SEDs in the test set using the inference
framework Prospector, which calculate Markov-Chain Monte Carlo (MCMC)-based posterior distributions.

We assume the following likelihood function:

lnLspec(x,θ,σ) =
n∑

i=1

ln

(
1√
2πσi

)
− 1

2

n∑
i=1

(xi−m(θ))
2

σ2
i
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Figure 2. The architecture used in this work to infer galaxy SED properties with spectroscopic data. We use a five-parameter
model and a training set with realistic spectra, that is trained by an NPE to generate approximate posteriors.

Figure 3. (Top) Corner plot for an example galaxy in our test set for a 5-parameter SED model. This plot shows pairwise
posteriors inferred from the MCMC (blue) and SBI neural posterior estimation (orange) analyses. We find that SBI and MCMC
recover SED parameters θ accurately, while SBI constraints for each parameter (for marginalized posteriors) is similar or
moderately weaker than MCMC constraints. (Bottom) Best-fit SEDs from SBI/NPE (black) and MCMC (blue) analyses, and
percentage residuals. Note that the difference in observed spectrum (orange) and NPE best-fit spectrum (black) is<3%, smaller
than the Gaussian noise applied to each simulated spectrum.

where (x,σi) are n independent spectral flux elements assumed to be drawn from a Gaussian distribution,
andm(θ) corresponds to the model spectrum for a given parameter set θ.

We use the same θ prior range and shape as the SBI/NPE analysis, in order to calculate the posterior
p(θ|x). We use emcee Foreman-Mackey et al (2013) to conduct the MCMC posterior sampling with 128
walkers, 128 iterations and a burn-in with the step set [4096, 4096, 2048, 512].
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Note that non-Gaussian or correlated uncertainties are seen in spectral datasets (e.g. magnitude upper
limits in the case of non-detections), which are not accurately captured by the above likelihood, making a
‘likelihood-free inference’ like SBI the ideal choice for this analysis. The results from the SBI analysis,
posterior diagnostics, and MCMC comparison are shown in section 4.

3.5. Computing resources
For our SBI analysis, we use the Python 3 Google compute engine backend (with the CPU processor AMD
EPYC 7B12), which for our network architecture takes∼14CPU hours to train 2× 106 simulated spectra
with noise. For every subsequent posterior estimation, this setup takes∼0.3 s.

For our serialized MCMC calculations, we utilise Prospector runtime on a 2.7GHz Quad-Core Intel Core
i7 processor, which takes∼14CPU hours to converge.

4. Results

In this proof-of-concept analysis, we test out to set whether an SBI framework can train on realistic noisy
galaxy spectra to estimate amortized posteriors robustly. To test the efficacy of our SBI framework, we use a
test set of 1000 randomly sampled SEDs from our prior range (see table 1 and section 2).

One such result is shown in the top panel of figure 3, for a galaxy with logMtot = 10.51 (M⊙),
log(Z/Z⊙) =−0.41, age= 1.63Gyr, τ = 0.11Gyr, and dust= 0.65 (a metal-poor dusty galaxy). We plot
pairwise posterior distributions estimated from both the MCMC (in blue) and SBI (or NPE, in orange) in
order to compare constraints across the five-parameter SED model. The truth values are plotted with black
dotted lines. In the bottom panel of figure 3, we show the maximum a posteriori SED models and model
residuals from the SBI/NPE (black) and MCMC (blue) analyses. Also overplotted are 1000 randomly
sampled SEDs from the posteriors (in grey).

We find excellent agreement between the median values of parameters across MCMC and SBI/NPE
posteriors (when marginalized over other parameters); these values are also accurate relative to the true
parameter values θ. We also observe that the age and metallicity constraints are similar in both analyses for
this test galaxy, while MCMCmass and dust estimation is more precise relative to SBI/NPE. This is the first
demonstration that the proof-of-concept analysis presented here is effective at recovering galaxy SED
parameters with spectroscopic observations.

On running inference on a sample of 1000 test galaxies sampled from the 16th–84th percentile range of
priors in this study, we find accurate recovery of SED parameters. See figure 4 for a comparison between true
and recovered values of each parameter, as well as χ plots to show goodness-of-fit across the simulated
spectroscopic dataset. The recovered values here are the 50th percentile parameter values, and the
uncertainties correspond to confidence intervals between 16th–84th percentile in the posteriors. Here, we
demonstrate accurate and precise parameter recovery across the majority of the prior range, specifically for
stellar mass (logM), while the constraints on metallicity and age are seen to be wider and less precise. We also
note that in our analysis, the recovered parameters are the most biased at the edges of the prior ranges, which
indicates that the underlying posterior distribution is not being captured in these parameter ranges. For
example, the 16th, 50th and 84th percentile of parameter values for a given galaxy are not accurate descriptors
of the underlying posteriors near the edges of the prior range. This can be potentially solved by training on a
spectroscopic dataset sampled from a prior range marginally wider than the target spectroscopic survey. We
also find no substantial difference in the quality of parameter recovery for star forming galaxies (emission
line galaxies; median values of the age parameter<0.75Gyr), or quiescent systems (galaxies with spectra
containing strong absorption line indices; median values of the age parameter>2.5Gyr).

We also run extensive PPC and SBC checks to test the accuracy and precision of our SED parameter
values, where we find that the posterior distributions in this analysis are well converged. See figure 5 for rank
distributions for each parameter—a healthy posterior follows uniform distribution (non-uniform
distributions indicates a poorly calibrated posterior; Talts et al 2018). This demonstration of well-calibrated
uncertainties in our SBI analysis is confirmed in figure 6, where we plot the rank cumulative distribution
function on the left panel. In both figures, the grey region corresponds to the 95% confidence interval of a
uniform distribution, which our parameter rank distributions follow.

The right panel of figure 6 shows the probability coverage curve of each SED parameter θ. The principle
behind a probability coverage plot is as follows: a well-calibrated posterior estimator will produce—for an
ensemble of SEDs in the test set—parameter uncertainties that accurately reflect the true underlying
uncertainty in the ensemble, e.g. a 68% posterior volume will contain 68% of the true SED parameter values
of the test ensemble. Generalizing from this, by plotting the fraction of SED parameters in the test set which
fall within the posterior volume as a function of the posterior volume, we obtain curves such as those seen in
the right panel of figure 6. A well-calibrated estimator will produce probability coverage curves that closely
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Figure 4. (Top) True vs. recovered values for SED parameters in the test set of 1000 spectra, sampled from the 16–84th percentile
range of priors in this study. This demonstrates the accuracy of the predicted models across the entire range of priors. Note that
only every alternate errorbar is plotted for visual clarity in the plot. (Bottom) Goodness-of-fit (χ) plots for each parameter, with
errorbars corresponding to a value of 1.

Figure 5. Simulation-Based Calibration rank plots for the SBI/NPE analysis. Each subplot corresponds to a parameter in the SED
model. The grey region corresponds to the 95% confidence interval of a uniform distribution, which our parameter rank
distributions follow.

Figure 6. (Left) The cumulative density function (CDF) of posterior ranks for each parameter in our SBI/NPE analysis relative to
the 95% confidence interval of a uniform distribution (grey). (Right) Probability coverage plot for each model SED parameter.
A well-calibrated posterior estimator will produce curves that closely follow the dashed line (See section 4 for additional
information).

trace the diagonal dashed line, while posterior estimates that are under-confident (i.e. over-estimate
uncertainties) will produce curves that fall on the upper-left part of the plot.

For our five-parameter model, we see that the NPE has fairly well-calibrated uncertainty predictions for
the age and τ parameters. On the other hand, it tends to over-predict the posterior uncertainties for three
parameters—stellar mass, dust and metallicity. This is consistent with the results in figure 4—in the
goodness-of-fits plots, the scatter in the differences between the predicted and true parameters values across
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the test set is smaller than what their error bars would suggest. However, we are encouraged by the fact that
the NPE analysis (a) accurately predicts the median best-fit values across the test set for those 3 parameters,
and (b) in most scientific applications, over-predicting the uncertainties in an analysis is preferable than the
alternative. We aim to continue to further improve the posterior uncertainty calibrations in future work.

We also demonstrate here a significant improvement in inference speeds compared with MCMC
inference. As mentioned above, the SBI/NPE model uses 25 hidden units and 10 transform layers: this
computation takes∼14 h to train on a CPU, and∼0.3 s per posterior estimation thereafter (MCMC
calculation for a single galaxy takes∼24 h in our setup). Accounting for the cost of training, we can
effectively infer accurate posteriors of 0.9–1.2× 105 galaxy spectra via SBI/NPE at the cost of 1
MCMC-based fit. This demonstrates that the amortization of posterior estimation in SBI with accurate
recovery of SED parameters is the biggest advantage of our proof-of-concept analysis.

4.1. Caveats
This work presents NPE analyses on spectra generated using (a) empirical templates within flexible stellar
population synthesis (FSPS) (MILES spectral libraries, and MIST isochrones; Falcón-Barroso et al 2011,
Choi et al 2016), and (b) with an assumption of uniform (or nearly uniform) SNR and Gaussian noise across
wavelength and for each galaxy spectrum. These assumptions have impact on both NPE and MCMC
inference of galaxy parameters.

For example, the age-metallicity-dust degeneracy is a systematic that is limited by the information
content of the templates, and the wavelength range sampled by the spectra that may or may not contain
discriminating information. This affects both MCMC and NPE analyses, and is expected to be mitigated with
upcoming spectroscopic surveys of statistical samples of galaxies (DESI, or the Prime Focus Spectrograph;
Greene et al 2022) as well as simulation studies such as UniverseMachine Behroozi et al (2013) and FIRE Ma
et al (2018).

In addition, SED inference using spectra is only weakly impacted by small (<10%–20%) variations in
SNRs across wavelengths (especially in the stellar continuum portions of a given spectrum. Several studies
analysing quiescent galaxy spectra Carnall et al (2019), Khullar et al (2022), Tacchella et al (2022) as well as
photometric SED fitting and parameter recovery Gladis Magris et al (2015), Leja et al (2017a) seem to point
towards this trend. Star-forming galaxies (with strong emission lines) have wavelength regions with peaked
SNRs, that improves constraints on parameters such as instantaneous SFRs and ages. This biases our
inferences in favor of young stellar populations with emission line spectra, albeit weakly. In figure 4, we
observe that both older and younger stellar populations are recovered with similar precision. Finally, we
expect spectroscopic surveys like DESI, PFS and the Roman High-Latitude Survey to improve this systematic
uncertainty, as they attempt to reach nearly uniform SNRs across wavelength.

5. Conclusion and next steps

In this work, we demonstrate a proof-of-concept for amortized NPE with an SBI framework, that utilizes
simulated low/medium-resolution galaxy spectra. This is the first-of-its-kind demonstration of this
technique on spectra, that will enable precise and rapid estimation of galaxy parameter posteriors for
billion-galaxy surveys. We also show here a significant improvement in inference speeds, while maintaining
accuracy in the recovery of parameters, with precision comparable or moderately weaker than MCMC
constraints.

While this work focuses on using an SBI framework to train on galaxy spectra directly (without any
summary statistics or embedded nets), we wish to scale this analysis with graphics processing unit
(GPU)-processing on suitable summary statistics (Khullar et al in prep). Moreover, the combination of
highly complex SED models (Leja et al 2019a, Suess et al 2022b) and high-resolution spectroscopy will
enable precise constraints on star formation histories of galaxies. This is especially true in the era of JWST
(Labbe et al 2022, Leethochawalit et al 2022, Nanayakkara et al 2022, Suess et al 2022a) and Roman Space
Telescope (High Latitude Survey; Wang et al 2022), where SED analysis of systematic spectroscopic surveys
will be bolstered with an SBI framework.

Finally, when using simulation-trained SBI models on future survey data, it is important to consider
possible performance issues that will arise from small differences between simulated and real data (due to
approximations, unknown physics or computational constraints, imperfect simulation of noise and other
observational effects). The drop in performance of simulation-trained models that are applied to real data is
a known issue that affects all deep learning models. Mitigation of these problems is an active area of research,
which already led to the development of a broad group of methods called Domain Adaptation (Csurka 2017,
Wang and Deng 2018). These methods allow deep learning model to learn the features shared between
simulated and real data and use only these features for inference. This leads to better alignment of the two
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data distributions in the latent space of the deep learning model, which leads to improved
performance (Ćiprijanovíc et al 2021, 2022). In future work, we will include domain adaptation methods in
our SBI frameworks.
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Ćiprijanovíc A, Kafkes D, Downey K, Jenkins S, Perdue G N, Madireddy S, Johnston T, Snyder G F and Nord B 2021 DeepMerge—II.
Building robust deep learning algorithms for merging galaxy identification across domainsMon. Not. R. Astron. Soc. 506 677–91
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