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Abstract: Among European countries, Poland has the largest gap in the grain yield of winter wheat,
and thus the greatest potential to reduce this yield gap. This paper aims to recognize the main
reasons for winter wheat yield variability and shed the light on possible reasons for this gap. We
used long-term datasets (2008–2018) from individual commercial farms obtained by the Laboratory
of Economics of Seed and Plant Breeding of Plant Breeding and Acclimatization Institute (IHAR)-
National Research Institute (Poland) and the experimental fields with high, close to potential yield,
in the Polish Post-Registration Variety Testing System in multi-environmental trials. We took into
account environment, management and genetic variables. Environment was considered through soil
class representing soil fertility. For the crop management, the rates of mineral fertilization, the use of
pesticides and the type of pre-crop were considered. Genotype was represented by the independent
variable year of cultivar registration or year of starting its cultivation in Poland. The analysis was
performed using the CART (Classification and Regression Trees). The winter wheat yield variability
was mostly dependent on the amount of nitrogen fertilization applied, soil quality, and type of
pre-crop. Genetic variable was also important, which means that plant breeding has successfully
increased genetic yield potential especially during the last several years. In general, changes to
management practices are needed to lower the variability of winter wheat yield and possibly to close
the yield gap in Poland.

Keywords: wheat; yield potential; nitrogen; crop modelling; regression trees

1. Introduction

Wheat (Triticum aestivum), along with corn (Zea mays), rice (Oryza sativa) and soybean
(Glycine max), is one of the main crops used for food and feed production around the
world [1–4]. Poland is a substantial contributor to world’s wheat production. However,
the average yield of rain-fed winter wheat production is only 4.8 t ha−1 [5], which is more
than two times less than the potential yield under similar cultivation conditions [6]. Polish
wheat experimental farms report the average yield almost twice as high as the actual wheat
yield on the commercial farms [7]. The yield gap is calculated as the difference between
the potential yield of rain-fed crops and the actual yield of farmers [6,8]. Therefore, yields
from high-yielding experimental plots can be a target to get closer to the potential yield
and close the yield gap.

The yield of winter wheat in Poland has been steadily improving for last several years
due to cultivar genetic improvement and more intensive agricultural practices, but remains
very low in comparison to wheat yield obtained in western Europe [9,10]. Low values of
yield gaps are mainly seen in northwestern Europe in contrary to south-western and eastern
Europe [6,11]. Thus, even taking into account that the crop yields vary across regions with
the same climatic zones [2], there is a room to improve Polish wheat production and unlock
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the yield potential. According to Schils et al. [6], the largest discrepancies between the
actual grain yield and the modeled estimates of potential yield in rain-fed conditions were
in eastern and south-western Europe, with half of the potential growth in Europe being
found in Ukraine, Romania, and Poland. The growing global demand for cereals forces
the search for opportunities to increase production in order to meet future demands of the
global market [12–15]. High yields can be obtained on existing croplands with efficient
use of resources and minimal environmental impact [16]. Increasing wheat production
through more effective agronomic management can help to meet future food demand while
minimizing the expansion of agricultural land.

Until now, the yield gap analysis has been carried out using the results obtained
from the application of plant growth models [6,11]. The water available to plants during
the growing season, soil properties, solar radiation, and temperature also determine the
growth of crops. However, they are of primary importance when the nutrient supply from
fertilizers, pests, weeds, and diseases are effectively managed [17]. Thus, the aim of this
study was to identify the causes of the yield variability. Such analysis would identify
possible factors influencing the yield gap. The study focused mainly on the analysis of crop
management variables. It was done based on yield data collected from commercial and
experimental farms scattered throughout Poland between 2008–2018. The questions were:
if the yield variability can be minimized through proper crop management and if the yield
can be higher when proper fertilization and plant protection are applied? The results were
compared with the modelled potential yield of winter wheat.

2. Materials and Methods

To analyze the yield variability in winter wheat production in Poland, we evaluated the
impact of variables related to genotype, environment, and crop management on the yield
of 277 winter wheat genotypes grown on commercial and experimental farms scattered
across the whole Poland during 11 growing seasons (harvest years 2008–2018). Due to the
unbalance nature of the dataset, the multivariate CART analysis [18] was used to obtain
the causes of yield variability.

2.1. Experimental Data

The data used in this study contained observations from low-input to high input crop
management. Yield data of winter wheat were gathered from two sources: the Polish
Post-Registration Variety Testing System (PRVTS) in multi-environmental trials (experi-
mental fields) [8,19] and from individual commercial farms obtained by the Laboratory
of Economics of Seed and Plant Breeding of Plant Breeding and Acclimatization Institute
(IHAR)-National Research Institute (Poland) who performed surveys among farms holding
agricultural accounting data [10]. Each entry in the data used refers to one field. One
field is characterized by a cultivar of winter wheat, field characteristics i.e., its soil quality
expressed in classes and agronomic production management. In many cases, due to privacy
policy, the exact location of the field is unknown. Thus, Figure 1 indicates how many fields
are examined in each one of 16 voivodeships in Poland (the highest-level administrative
subdivision of Poland) during the period between 2008 and 2018. The total number of
experimental observations used in the analysis was 24,797 (6561 from commercial farms
and 18,236 from experimental ones).

Winter wheat was sown during the end of September and beginning of October and
harvested during the end of July and in August. For each yield entry soil class, genetic
and management related variables were described (Table 1). In the analysis, the winter
wheat yield was the dependent variable expressed as grain yield in tons per hectare. The
determinants of winter wheat yield variation applied for the construction of classification
and regression trees (CART) were variables related to soil and crop management and a
genetic variable (10 predictors; Table 1).
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Figure 1. Number of entries from each field type (1)—PRVTS (the Polish Post-Registration Variety
Testing System in multi-environmental trials, the experimental fields), (2)—IHAR (the Laboratory
of Economics of Seed and Plant Breeding of Plant Breeding and Acclimatization Institute-National
Research Institute, the farmers’ fields) in each of 16 voivodeships in Poland with the average yield
obtained at each field type. Numbers indicate voivodeships in Poland: 1 zachodniopomorskie (West
Pomeranian), 2 pomorskie (Pomeranian), 3 warmińsko-mazurskie (Warmian-Masurian), 4 podlaskie
(Podlaskie), 5 lubuskie (Lubusz), 6 wielkopolskie (Greater Poland), 7 kujawsko-pomorskie (Kuyavian-
Pomeranian), 8 mazowieckie (Masovian), 9 dolnośląskie (Lower Silesian), 10 łódzkie (Łódź), 11
lubelskie (Lublin), 12 opolskie (Opole), 13 śląskie (Silesian), 14 świętokrzyskie (Holy Cross), 15
małopolskie (Lesser Poland), 16 podkarpackie (Subcarpathian).

2.2. Statistical Analysis and Data Visualization

All calculations and diagrams in the CART model were built using STATISTICA
version 13 software and R [20–22]. The analysis of the main drivers of yield gap in Polish
winter wheat production was performed using the CART model [18] with a 10-fold cross
validation method to “prune” overgrowth trees created with STATISTICA software ver.
13 [20]. Classification and Regression Trees or CART is a term introduced to refer to Decision
Tree algorithms that can be used for e.g., regression predictive modeling problems. The
decision tree model algorithm works by splitting the data multiple times into multiple sub-
sets, so that the results in each final subset are as uniform as possible. The produced result
for regression trees consists of a set of rules used for predicting the outcome variable [23].
Here, the dependent variable was winter wheat yield and independent variables were the
agricultural treatments and parameters related to growth conditions investigated within
the field trials.



Agriculture 2022, 12, 32 4 of 13

Table 1. Variables used in the CART analysis.

Variable Variable Type in CART Unit Value

yield dependent quantitative mean ± SD (t/ha) 7.9 ± 2.2

nitrogen

independent quantitative

mean ± SD (kg/ha)
127.6 ± 32.4

phosphorus 52.7 ± 20.4
potassium 83.8 ± 28.0

fungicides

number of doses (total
number of observations

with this dose)

0 (6820)
1 (2772)

2 (12,356)
3 (2711)
4 (133)
5 (5)

herbicides

0 (326)
1 (18,015)
2 (5434)
3 (981)
4 (41)

insecticides

0 (9111)
1 (12,489)
2 (2883)
3 (207)
4 (106)
5 (1)

foliar fertilization

0 (9306)
1 (9497)
2 (5652)
3 (342)

pre-crop

independent qualitative
(number of observations)

cereal 5810
legume 6327

rapeseed 11,478
root crops 1182

soil quality
(class reflects the agricultural
value of soils, the lower the

class the more fertile the
soils, CM 2012)

I (best) 603
II 4239
III 12,880
IV 6632
V 160

VI (worst) 283

cultivar introduction year

1965–1979 33
1980–1994 212
1995–2009 11,161
2010–2020 13,391

Numerous recursive splits are performed during the creation of the CART tree. Their
goal is to search independent variables, enabling successive divisions of the yield into
different but intrinsically homogeneous subsets. The CART method also made it possible to
systematize the independent variables in terms of their impact on the dependent variable,
i.e., the yield of winter wheat. With each split, the impact of each variable is calculated and
then its importance in creating the final tree is estimated. This is how all independent vari-
ables are ranked. The independent variable that causes the greatest reduction in variance of
the dependent variable wins, and it is later presented in the final CART tree [9,24,25]. There
are many agronomic studies where the CART method was successfully used [8,26–30].

2.3. Modelling Crop Yield

The potential yield was calculated under conditions of unrestricted crop growth and
excellent management that avoided yield constraints due to nutrient deficiencies and stress
from weed and pest attack, and disease. Thus, the yielding potential depended mainly on
the weather i.e., solar radiation and air temperature during the growing season of the crop.
Moreover, the water-limited yield potential depends on the water supply, which is dictated
by atmospheric precipitation and the available water in the soil.
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In order to determine the potential yield of winter wheat, we used the Decision
Support System for Agrotechnology Transfer (DSSAT) program V4.7.5 available at https:
//dssat.net, accessed on 10 September 2021 [31–33]. A simplest possible file was created
to model a potential production experiment. A winter wheat cultivar was selected based
on default genotype files available in DSSAT. Then, the specific environmental conditions
were specified for selected fields. We used real weather data from a meteorological station
not more than 15 km away from the field and default soil types defined in DSSAT, i.e.,
deep, medium, shallow silty clay, and deep sand. The planting information was then input:
planting date, method, distribution, plant population, and planting depth. Simulation
options were then set, that the plant has unlimited access to the necessary amount of
nitrogen, phosphorus and potassium, and plant protection products.

3. Results
3.1. Descriptive Analysis

Yields of rain-fed winter wheat varied from 0.4 to 14.2 t ha−1. Lower yields come from
the commercial farms (yield from 0.4 to 9.92 t ha−1 with the mean 5.7 ± 1.5 t ha−1) and
higher from experimental ones (from 3.5 to 14.1 t ha−1 with the mean 8.8 ± 1.8 t ha−1). The
coefficient of variation (standard deviation divided by the mean) of the yields varied from
21% for experimental farms to 26% the commercial farms.

Figure 2 shows the yield changes over 11 years (medians, first and third quartiles).
Average yield values changed from 5.4 t in 2009 to 9.6 t in 2014. Table 2 shows the average
yields obtained in each of the studied years for each voivodeship marked in Figure 1. There
were no data for a small number of combinations of voivodships and years. The lowest
average yield value of 3.4 t was observed in the łódzkie voivodeship (no. 10) in 2012, and
the highest 11.5 t in the pomorskie voivodeship (no. 2) in 2015.
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Table 2. Grain yield of winter wheat [t/ha] in each voivodeship in each studied year for both
commercial and experimental farms together. Numbers of voivodeships are the same as in Figure 1.

No. Voivodeship 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

1 zachodniopomorskie 5.7 6.7 6.4 7.0 7.6 7.9 9.4 8.6 6.1 8.0 5.9
2 pomorskie 5.2 – 9.1 9.2 8.9 10.1 11.5 10.8 7.3 10.4 9.7

3 warmińsko-
mazurskie – – 4.6 8.3 9.1 8.2 9.7 10.1 7.6 8.9 7.9

4 podlaskie 6.7 0.0 5.0 8.1 7.8 7.5 9.0 9.5 6.6 10.0 7.2
5 lubuskie 4.1 4.3 4.8 4.0 3.6 4.6 – 10.1 8.2 6.6 5.5
6 wielkopolskie 5.7 6.2 6.5 5.8 4.5 5.9 10.2 8.1 5.2 6.8 5.4
7 kujawsko-pomorskie 6.2 5.7 5.4 8.4 3.6 9.3 9.5 7.2 5.6 8.5 5.4
8 mazowieckie 3.9 – 4.6 7.5 8.1 7.9 9.8 8.2 7.0 6.9 5.3
9 dolnośląskie – – 6.1 8.1 8.1 7.6 10.0 8.1 7.4 7.9 6.9

10 łódzkie – – 5.0 7.1 3.4 7.9 8.3 7.6 6.7 9.4 6.4
11 lubelskie 6.2 4.6 7.6 7.7 7.2 7.1 8.6 9.1 6.7 8.0 7.0
12 opolskie 5.5 5.3 5.4 6.2 5.4 7.6 9.7 9.7 9.0 9.5 8.1
13 śląskie 6.2 5.2 4.7 8.0 7.7 7.1 9.6 7.7 6.2 7.5 5.4
14 świętokrzyskie 6.2 5.9 5.2 5.1 7.8 7.5 8.6 10.1 7.4 9.0 7.9
15 małopolskie – – 4.4 4.4 9.0 6.1 8.8 6.5 8.7 9.5 7.3
16 podkarpackie 5.1 4.4 4.1 7.1 6.8 5.1 9.0 7.9 7.7 8.4 6.9

3.2. CART

The CART analysis of winter wheat yield from eleven growing seasons revealed
variables most influencing closing the yield gap. The variable giving the most yield
variability reduction is soil class (Figure 3, split ID 1). Generally, higher yields are obtained
on better quality soils. Wheat sown on soils of the best three classes I, II, and III gives an
average of 1.7 t ha−1 higher yield. On lower quality soils (IV, V, VI), higher wheat yield can
be obtained using doses of nitrogen higher than 97 kg ha−1 (Figure 3, split ID 2). When
applied in doses larger than 97 kg ha−1, it enables a yield of 8.2 kg ha−1 with legume as
a pre-crop (Figure 3, subset ID 6). For other pre-crops, with doses of potassium lower
than 87 kg ha−1, the yield was 5.8 t ha−1 in comparison to 7.1 t ha−1 for higher doses of
potassium.

The next split (Figure 3, ID 3) for better quality soils was done based on pre-crop. For
pre-crops, root crops, and cereals, the wheat yield is lower by 1.5 t (Figure 3, subset ID 10).
However, with doses of potassium higher than 104 kg ha−1 the yield was 8.8 t ha−1. For
the pre-crops legumes and rapeseeds, other split is done based on the rate of nitrogen. The
rate of nitrogen higher than 125 kg ha−1 gave the yield of 9.3 t ha−1. With higher doses
of nitrogen next split in CART was by soil class. The most fertile soils (class I and II) gave
the yield of 10 t ha−1 (Figure 3, subset ID 15). For soils class III, the yield was higher when
lower doses (0 or 1) of insecticides were used (Figure 3, subset ID 18). For doses of nitrogen
lower than 125 kg ha−1, the next split was done for variable cultivar (Figure 3, subset ID
14). Modern cultivars (registered in 2009 or later) enabled yield of 8.6 t ha−1, higher by
0.7 t ha−1 than for the older cultivars.

In all trees created in CART, the most important variables in yield improvement
were: nitrogen, pre-crop, soil-class, cultivar registration year, and fungicides (Figure 4).
Coefficient of Pearson correlation between observed and predicted yield was 0.59.
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Figure 4. The most important independent variables in the CART tree construction (the closer to 1
the more important variable in the CART tree).

The modelled with DSSAT winter wheat yield was between 6.5 and 10.4 tons ha−1.

3.3. Correlation and Regression Analysis

To support the CART results, we also performed an analysis of the correlation and
linear regression between yield and nitrogen for each of the years studied. In all cases,
the correlation was statistically significant for the significance level of 0.05 (Table 3). All
Pearson’s correlation coefficients were positive and ranged from 0.146 for 2016 to 0.428 for
2010. The linear regression equations shown in Table 3, presenting the effect of nitrogen
dose on the yield, confirm that the average yield increase is about 0.02 tons (20 kg of grain)
for each kilogram of nitrogen, but varies strongly between years (from 0.009 to 0.028 t, i.e.,
9 to 28 kg of grain for kg of N) depending on weather conditions.

Table 3. Pearson correlation coefficients between wheat grain yield (t/ha) and nitrogen fertilization
(kg/ha) for each studied year and linear regression equation presenting yield (Y) dependency on
nitrogen (N).

Year Correlation Coefficient p-Value Linear Regression

2008 0.395 <0.001 Y = 0.015·N + 4.128
2009 0.322 <0.001 Y = 0.010·N + 4.315
2010 0.428 <0.001 Y = 0.028·N + 3.532
2011 0.278 <0.001 Y = 0.019·N + 5.468
2012 0.381 <0.001 Y = 0.024·N + 4.936
2013 0.400 <0.001 Y = 0.026·N + 4.609
2014 0.251 <0.001 Y = 0.015·N + 7.635
2015 0.343 <0.001 Y = 0.024·N + 5.463
2016 0.146 <0.001 Y = 0.009·N + 6.054
2017 0.187 <0.001 Y = 0.013·N + 6.699
2018 0.176 <0.001 Y = 0.012·N + 5.144

4. Discussion

In this study, we analyzed winter wheat grain yield data covering a long period of
time, different environmental conditions of growth in Poland, and diversified agronomic
management. Data prepared in this way allow for drawing reliable conclusions about the
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causes of the yield variability in Poland. Thus, the data assessed in this study give a good
idea of the variables most influencing the reduction of the yield gap.

Besides agricultural management, the wheat growing conditions are influenced by
weather conditions [7,10,19]. The effect of weather variables were not assessed in this
study, because effective management of fertilizer resources is the most important factor
in yield variability and in the rain-fed conditions the effect of weather cannot be studied
properly [6,17]. The weather is of primary importance when the nutrient supplies of
fertilizers, pests, weeds and diseases are effectively managed [17].

The results show that the main cause of yield gap might be nitrogen deficiency for
the plant to use. On one hand, farmers apply not enough nitrogen, and on the other the
use of nitrogen is not efficient. As proved by many studies, nitrogen applied in excess is
not a driver of yield improvement [7,34,35]. However, in the commercial farms in Poland
there is still not enough nitrogen applied. For example an average nitrogen consumption
per 1 ha of agricultural land was 69.2 kg in 2009/2010, 80.7 kg in 2012/2013, 71.7 kg in
2015/2016 and 78.7 kg in 2016/2017 [5]. Based on the results, the amount necessary for the
proper growth and development of the wheat is at least 98 kg ha−1. Thus, there might be a
potential to improve site-specific nitrogen management. In work by Wójcik-Gront [7] on
winter wheat yield variability, nitrogen was not the most important variable, but in that
study, the average dose was 125 kg ha−1.

Another important variable contributing to winter wheat yield variability was soil
class which represents environmental conditions which affect grain yield potential. The
wheat growing environment has a significant impact on the yield. The production of wheat
requires high-quality soil; thus, the best available soil should be selected when growing
wheat [36–40]. Farmers who do not have access to valuable soils may consider growing
other agricultural crops to increase production efficiency. However, Deepak et al. [41]
showed that on lower quality soils higher yield can be obtained by proper fertilization and
pests management.

It is no surprise that, in the study, it turned out that the modern cultivars give higher
yield in winter wheat production. There are still farms which use old cultivars because they
use the seeds that come from their own production which is easy available and cheaper. In
the experimental fields, modern cultivars are used, as they provide a high stable yield [8,42].

When there is sufficient nitrogen to meet the plant demand, other factors become
limiting like fungicides [8]. Here, it is moderately important in explaining winter wheat
yield variability, as it is more visible in the tree construction when nitrogen deficiency is
mitigated. After supplementing nitrogen deficiencies, it will be possible to further increase
the yield by using the right amount of plant protection products. Consumption data show
that the trends in sales of plant protection products in Poland is still growing (insecticides
905 t of active substance in 2010 to 1809 in 2017, fungicides and seed treatments 5755 in
2010 to 7213 in 2017, herbicides 10,489 in 2010 to 13,655 in 2017 and plant growth regulators
1522 in 2010 to 2144 in 2017) (GUS, 2020). Of course, all plant protection products should be
applied in the recommended growth stages and weather conditions and should be matched
to the crop requirements.

In similar survey-based studies carried out in Germany by Macholdt and Honer-
meier [43], most important variables were the choice of cultivar, pre-crop, and chemical
plant protection [44–46]. Crop rotation with a higher share of cereals negatively affects
the stability of the yield of winter wheat, especially wheat monocultures. Diversified crop
rotation with favorable pre-crops (like legumes) positively influences the yield stability of
cultivated winter wheat due to better nitrogen nutrition and lower susceptibility to pests
and cereal diseases [43,47–51].

Variables less important in explaining winter wheat yield variation were: potassium
and phosphorus.

The potential yield obtained in this study ranged from 6.5 to 10.4 t ha−1. These values
stay in agreement with other study [2] and are comparable with yield values obtained for
the data gathered in experimental farms (from PRVTS). Schills et al. [2] obtained potential
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yield for Poland between 8.0 to 9.6 t ha−1. Genetic yield gaps equal to 3.5–5.2 t ha−1 were
estimated under rainfed conditions in Europe [52], showing that current local cultivars are
far from their optimum. The Baltic states had the highest yield gaps (>4 t ha−1) calculated
by Boogaard et al. [11].

In the near future, improving nitrogen use efficiency (NUE) can be done by site-specific
nitrogen fertilization based on remote sensing data from low-altitude (from unmanned
aerial vehicles) or satellite derived imagery [53,54]. Such methods of improving NUE are
very important, especially because of current circumstances including European Union
Green Deal policy which assume reducing mineral nitrogen fertilization of crops in near
future [55]. Various environmental issues demand changing of nitrogen fertilization form
to avoid nitrogen loses, e.g., application of N-fertilizers with inhibitors [56]. Another
issue which can affect nitrogen fertilization is high increase of nitrogen fertilizers prices
in 2021 (https://ahdb.org.uk/GB-fertiliser-prices, accessed on 20 December 2021) which
can be an economic limitation in nitrogen use by farmers. All these circumstances can
affect decisions of the farmers about N-fertilizers doses which will be applied in the next
years. Optimal recommendation of nitrogen fertilization should include comprehensive
approach where genotype, environment, and crop management are adjusted to obtain
the highest NUE [57]. It is not possible to recommend one optimal scenario for wheat
nitrogen fertilization, especially because weather variability within and between seasons in
quickly changing climate and more often occurred droughts which affect NUE [58]. The
recommendations should include negative effect of nitrous oxide emissions to atmosphere.
All these factors as well interaction of nitrogen fertilization with other agronomical and
environmental factors make it difficult to limit the yield gap by optimization of nitrogen
fertilization because it is very complex problem. Another problem in Poland for optimized
nitrogen fertilization is agrarian structure in Poland where farms are relatively small and
agronomic innovation cannot be introduced in short time [59]. We should be aware that not
all factors which were important for grain yield in the study can be controlled by farmers.
Soil quality is independent environmental factor which had significant effect on grain yield
of wheat but is out of control. Soil quality in Poland is relatively poor, much lower in
comparison to other EU countries [60], and causes lower grain yield potential of winter
wheat. Higher NUE in agronomic practice can be increased by breeding progress, which is
a very important factor reduction of yield gap [61].

Another factor which is difficult to control by farmers is pre-crop for winter wheat
because of very high share of cereals (about 70%) in Poland in arable land [7]. Because of
such large area occupied by cereals, it not always possible to cultivate winter wheat after
other crops (not cereals).

In the study, we were able to obtain main drivers of winter wheat yield variability
in Poland. In the future, it would be interesting to analyze geographical distribution of
yield gaps across the whole Poland to identify areas with most potential for improvement.
Whether yield gap reduction is desirable and feasible is a matter of farm economic objectives
and country environmental targets. However, application of genetic improvements and
changes to crop management practices are recommended in the Polish production of
winter wheat.

Unfortunately, sowing date was not included into analysis, because we did not have
access to sowing date which can be important factors which affects winter wheat yield
variability.

5. Conclusions

The yield gap analysis was performed using the CART regression trees. The winter
wheat yield variability was mostly dependent on the amount of nitrogen. Genetic variable
was also important in winter wheat yield variability. Thus, changes to management prac-
tices, especially optimization of nitrogen fertilization, selection of pre-crop, and selection of
modern cultivars are needed to decrease the winter wheat yield gap.

https://ahdb.org.uk/GB-fertiliser-prices
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