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Abstract: A reduction in the production and consumption ofmeat and dairy acrossmuch of theworld is critical
for climate change mitigation, the alleviation of ecological stress, and improved health. We update an agent-
based model (ABM) of historic UK milk consumption and apply it to scenarios of dairy reduction and adoption
of plant-based milk (PBM) out to 2050. The updated model is comprised of a cognitive function, where agents
perceive the physical, health and environmental characteristics of milk choice, which is modified by habit and
social influence. We use European Social Survey 2018 and British Social Attitudes 2008 survey data to empir-
ically inform the model. Taking a backcasting approach, we calibrate parameters against published UK dairy
reduction targets (2030 and 2050), and test how di�erent price relationships, and characterisations of environ-
mental concern, may a�ect simulated milk consumption from 2020 to 2050. Scenarios for core targets (20%
less dairy by 2030 and 35% by 2050) largely produced plausible consumption trajectories. However, at current
pricing of dairy and PBM, simulated consumptionwasmostly unable to deliver on desired core targets, but this
improved markedly with dairy prices set to organic levels. The influence of changing environmental concern
on milk choice resulted in higher levels of dairy milk reduction. When modelled as transient, intense shocks
to public concern, consumption patterns did not fundamentally change. However, small, incremental but per-
manent changes to concern did produce structural changes to consumption patterns, with dairy falling below
plant-based alternatives at around 2030. This study is the first to apply an ABM in the context of scenarios for
dairy reduction and PBM adoption in service to UK climate-related consumption targets. It can serve as valu-
able bottom-up, alternative, evidence on the feasibility of dietary shi� targets, and poses policy implications
for how to address impediments to behavioural change.

Keywords: Plant-BasedMilk, Dairy Reduction, Sustainable Diets, Agent-BasedModelling, Calibration, Scenario
Analysis

Introduction

1.1 The global food system is at the intersection of several connected crises, imposing a severe planetary burden
that necessitates transformational change across all aspects of production and consumption. One key com-
ponent of this is the need for dietary reduction of meat and dairy across much of the world. The latter is the
focus of this study, and is responsible for around 1.7 GtCO2eq (GDP 2018), as well as stress on water, land, and
ecosystem pollution (Mekonnen & Hoekstra 2012; Poore & Nemecek 2018). However, there is heterogeneity in
the overall scale of impact of dairy milk at regional, national, and farm level, depending on factors such as ge-
ography, farming andproductionmethod (Guerci et al. 2013a,b; Poore&Nemecek 2018). Further, globally some
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malnourished and food insecure populationswould see important nutritional benefit in increasing the amount
of animal derived foods they consume (Mbowet al. 2019). While recognising this impact variability, there is clear
evidence that lower consumption of meat and dairy for many populations will deliver improvements across a
host of key sustainability dimensions (Poore & Nemecek 2018; Springmann et al. 2016).

1.2 The Climate Change Committee (CCC), theUK’s legally designated, independent public body that act as climate
change advisors to the government, recently published a set of targets to shi� toward more sustainable diets
(Climate Change Committee, 2020). Their central targets call for a 20% reduction in meat and dairy consump-
tion by 2030, rising to 35% by 2050. A further scenario was considered that elevated this latter target to 50%
by 2050. Here, the CCC assume that decreases in dairy consumption is met by an increase in plant alternatives
(that we take to be plant-based milks (PBM) in the study). These core targets are largely in-line with outcomes
from the UK’s Climate Assembly, a citizen engagement initiative that acts as a forum for everyday people to
discuss, critique and share ideas on achieving the UK’s ‘net zero by 2050’. Here, participants came to a gen-
eral consensus of a 20%-40% reduction inmeat and dairy by 2050 (Climate Assembly UK, 2020). However, civil
society and activist groups have gone further, with the Eating Better alliance arguing for UK meat and dairy
consumption to fall by 50% by 2030 (Eating Better, 2019).

1.3 This represents a fairly wide variability of potential future paths (20%-50% reduction by 2030, 35%-50% by
2050). Central to these di�erences in ambition is the interconnected andmulti-faceted nature of food and food
choice. Food choices are repeat, regular, contextual and complex decisions and are influenced by a host of
di�erent factors (Chen & Antonelli 2020; Monteleone et al. 2017; Sobal & Bisogni 2009). These influences are di-
verse in impact, scale of operation, and their ‘visible proximity’ to individuals. A definitive taxonomy is di�icult,
however, one recent review of extant literature in the space categorises food choice influence into one of three
areas; food-related features, individual di�erences, and society-related features (Chen & Antonelli 2020). Some
have critiqued the use of ‘choice’ in the context of food consumer behaviour (Smeaton et al. 2010), and there
is a well understood and growing evidence base on the activities and impact of powerful actors (corporate or
otherwise) on food systems and ultimately individual ‘choice’ (Clapp & Scrinis 2016; Lauber et al. 2021; Swin-
burn 2019; Tempels et al. 2017). Indeed, a sympathetic reading of the UK government’s decision not to include
any recommended climate-related dietary targets in its Net Zero Strategy, may reflect the perceived di�iculty
in e�ectively navigating these influences.

1.4 Given the contested nature of these target options, and the fundamental dynamics and influences at play, it
is important to understand how future dairy and plant-basedmilk consumption curves may evolve, and under
what conditions. Todate,manymajormodelling e�orts on climatemitigationhavenot sought to capture, or ex-
plicitly considered, the bottom-up dynamics of dietary change. Agent-based modelling (ABM) is one approach
that can yield useful insights onphenomena characterisedbymanydi�erent, autonomous, interacting entities,
whose collective micro decision-making can lead to emergent macro-level trends. In this sense, ABMs are well
suited to investigate individual food preferences and influences, and how these may generate societal-wide
dietary shi�s (for example of dairy to plant-basedmilk).

1.5 This study aims to narrow the research gap by developing and applying an ABM of milk choice for scenarios
of future UK dairy milk reduction, and a concomitant increase in plant-based alternatives. The UK is selected
as a country for investigation as it remains a sizeable dairy consumer, and has a number of published country
specific dairy reduction targets. We take three CCC targets (20% less dairy by 2030, 35% by 2050, 50% by 2050)
and the 50% by 2030 target from civil society, and construct and calibrate several di�erent scenarios to inves-
tigate how simulations compare against these desired consumption levels. Within this, we test how di�erent
representations of price dynamics and agent environmental concern may impact the overall success or failure
to achieve target levels. We consider a representation of current dairymilk-PBM pricing and the case if all dairy
milk was priced at organic levels. Change to environmental concern is characterised by two di�erent mech-
anisms, a stochastic temporary concern ‘shock’, and a continuous incremental gain in public concern. These
mechanisms a�ect the possibility of agents being triggered to shi� how much weight they ascribe to environ-
mental impact.

1.6 Specifically,weask: towhatextentdomodel scenariosofUK futuremilk consumption from2020 to2050deliver
on desired target levels, and are their trajectories plausible? Within this, we ask a secondary question: how do
di�erent price dynamics and environmental concern a�ect simulation outcomes andwhat are the implications
for achieving reduction targets?

Background: Agent-Based Modelling of Food Choice

2.1 Agent-based modelling (ABM) is an approach that seeks to understand a phenomenon or area of interest by
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focusing on individual decision-making and behaviour, rather than aggregate groups. ABMs can capture het-
erogeneity and incorporate diverse empirical data, for example in attitudes, preferences, biases, habits and
demographics across populations. It is distinguished from similar techniques, such as microsimulation, by the
possibility of social interaction between agents. A key feature of ABMs is the possibility for emergent macro-
level outcomes that cannot be predicted or constructed simply by the individual parts of the simulation. This
makes themwell-suited to explore macro-level paths for future (more) sustainable diets, by investigating indi-
vidual food choice and consumption behaviour.

2.2 ABMs have been employed to investigate healthy diets (Auchincloss et al. 2011; Zhang et al. 2014, 2021), sus-
tainable food (Lloyd & Chalabi 2021; Namany et al. 2020), and have gained traction as a tool in wider public
health research (see Tracy et al. 2018 for review). For themost part, these investigations have focused either on
individual dietary behaviour, or on the sustainability determinants of food systems at the supply level. Fewer
have combined these avenues to explore sustainable diets, although this is now receiving greater interest, with
studies that for example have assessedmeat consumption behaviour of UK consumers (Scalco et al. 2019), and
looked at the impact of global trade and climate change of food and nutrition (Ge et al. 2021).

2.3 We use a previously developed ABM of food choice that has been used to investigate and reproduce historic
UKmilk consumption trends (Gibson et al. 2021). Here, we update the model and apply it to a forward-looking
analysis ofUKdairy andplant-basedmilk consumption. This ABMuses the conceptionof food choice influences
from Chen & Antonelli (2020), incorporating aspects from each of food-related features, individual di�erences,
and society-related features. Specifically, price (Andreyevaet al. 2010; Annunziata&Scarpato2014; Baudry et al.
2017; Hoek et al. 2017), health (Kang et al. 2015; Verain et al. 2017), environmental/sustainability concerns (Ricci
et al. 2018; Verain et al. 2015, 2016, 2017), habit (van’t Riet et al. 2011), and social influence (Cruwys et al. 2015;
Higgs&Thomas2016; Pachucki et al. 2011). Drawingonandoperationalising empirical surveydata, agentsdi�er
in the basic values they hold and the relative importance they ascribe to these di�erent food choice influences.

Model Description

3.1 The core agent-basedmodel that we update and apply in this study was developed in Gibson et al. (2021) using
theODD (Overview, Design concepts, Details) protocol, a de-facto standard for documenting agent-basedmod-
els (Grimm et al. 2006, 2010, 2020). Here, we focus on the aspects of model development and other specific
elements of relevance, but provide additional details in Appendix B. The framework for agent decision-making
is given in Figure 1.

Overview

Purpose

3.2 Themodel’s overall objective is to produce consumption trajectories from 2020 out to 2050 for dairy and plant-
basedmilks (PBM). It does this bymodelling individual-level preferences and food influences (informedbyboth
theoretical grounding and empirical data) across physical, health and environmental perceptions, habit, social
influence and the active evaluation of prior-choice. These future consumption curves (reported in average ml
of milk per person per week) are directed, through parameter calibration via optimisation, to try and meet
dairy reduction targets posed by UK bodies for 2030 and 2050. Specifically, the study performs simulation ex-
periments to assess and compare six di�erent milk consumption scenarios that are distinguished by di�ering
model assumptions and target level.

Agents, state variables, scale

3.3 Agents represent consumers that each have a disposition to consider (or not) their milk consumption choices.
Agents construct a cognitive choice function for dairy and PBM, comprised of the perceived physical (modelled
as price), health and environmental characterises of each choice. These are computed at each time step of
the simulation, and are modified by other food influences (habit, social influence) and choice evaluation, each
governed by individual sub-models. The relative importance that agents ascribe to the physical, health, envi-
ronmental, habit and social influences is determined by empirical data operationalised from the British Social
Attitudes (BSA) 2008 survey (National Centre for Social Research 2010). The use of survey data to construct
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agent characteristics is a common approach in agent-based modelling. For example, Scalco et al. (2019) also
use BSA data in their study of UK meat consumption, and Khademi et al. (2018) use the California Health In-
terview Survey to inform their ABM of health-eating in Los Angeles. Upon an agent becoming ‘disposed’, the
quantity of each milk option is apportioned according to the relative size of each total choice function.

3.4 Agents have anexisting choicemirroring the average consumption levels of dairy andplant-basedmilks in 2019,
and form a social network. Social influence is stochastic, occurring as a function of interaction probability,
modulated by the relative importance an agent places on social influence in food, derived from the BSA 2008
survey data.

Process overview and scheduling

3.5 At eachmodel run, 1,000 agents are created (see Figures 7-9 in Appendix A for an exploration of di�erent agent
population size and resampling of agent attributes from survey data), initialised with an incumbent choice,
reflecting the consumption split between dairymilk and PBM in 2019, and randomly linkedwith other agents in
a network (see social influence submodel). Agents construct a choice function based on perceived information
aboutmilk characteristics, employingmemory e�ects to drawon information perceived in previous time steps.
Other food influence factors; habit, social influence, and the evaluation of choice, all impact the final choice
functions. The quantity of each type of milk consumed is calculated at each time-step (annually from 2020 to
2050), based on total choice function scores (see next section for details).

Design concepts

Basic principles

3.6 The basic structure of agent decision-making is given by the process flow diagram in Figure 1. In brief: agents
perceive physical, health and environmental characteristics of each milk choice; agents are then triggered (or
not) to enter a state of disposition to consider their milk options; a quantified choice function is calculated
for each option, comprised of the perceived characteristics and modified by habit and social influence; agents
may evaluate their choice and inform future decisions based on internal consistency between the impact of
their choices and the human values they hold.
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Figure 1: Flow diagram of agent milk choice influence and decision-making in the ABM.

3.7 The key functions that act upon agent choice are described in the sub-model section. Table 1 gives the param-
eters that operate within the model, a more detailed description of which is provided in Appendix A (Table 5).
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Parameter Sub-model Dynamic Range

1. Memory length Cognitive perception No [1,10]
2. Habit threshold Habit No [1,10]
3. Probability of interacting Social influence No [0,1]
4. Initial habit of incumbent Habit No [0,10]
5. Social blindness Evaluation No [0,1]
6. Post-choice justification Evaluation No [0,1]
7. Cognitive dissonance threshold Evaluation No [0,1]
8. No. of neighbours Social influence No [2,10]
9. Perception of health impact of PBM Cognitive perception Yes [1,3]
10. Perception of environmental impact of PBM Cognitive perception Yes [1,3]
11. Gradient of probability disposition Disposition No [14,16]
12. Perception of health impact of dairy Cognitive perception Yes [1,3]
13. Perception of environmental impact of dairy Cognitive perception Yes [1,3]

Table 1: Model parameters, value ranges, and the sub-model in which they operate.

3.8 At each time-step, the milk consumption of agents that are ‘disposed’ to consider their choices is given by the
relative proportion of each option’s choice function of the total summed choice function,multiplied by the total
milk consumption. For instance, if dairy and PBM have the same choice function value, an agent will consume
50% of the total available milk (expressed as ml per person per week) for each choice. Agents that are not in a
state of disposition at a given time-step repeat their previous choice andmilk consumption.

3.9 In the model, total average weekly consumption was maintained at 2019 levels over the simulation period out
to 2050. This was because we were primarily concerned with product substitution rather than absolute de-
crease in consumption. However, this is a clear motivation for future work, and as a starting point, Figure 6 in
Appendix A shows a simple extension to the scenario analysis by considering future non-constant (declining)
total consumption.

Details

Implementation and initialization

3.10 The model is implemented in NetLogo 6.0.4 (Wilensky 1999), a copy of which, along with associated Python
code, is available at https://www.comses.net/codebase-release/1bcb23b1-92b3-4974-bdef-11abeed3e6d3/.

Input data

3.11 Agents are initialised with basic human values (universalism and security values; Schwartz 2018, 2006, 2012)
using data operationalised from UK specific responses (n = 2, 167) of the 2018 European Social Survey (ESS)
(Norwegian Centre for Research Data 2018). The survey questions associated with these values are reproduced
in Table 6 of Appendix A. Survey responseswere on a six-point scale of ‘Verymuch likeme’ to ‘Not likeme at all’
and also included an additional three coding options of ‘Refusal’, ‘Don’t know’, and ‘No answer’. Specifically,
we take cross-tabulated data of the two relevant question responses, weighted to account for di�erences in
selection probability from the sampling design, and obtain the proportions that cover each of the 36 possible
response combinations. A random sample of these responses is taken, equal to the number of agents mod-
elled. Here, this was typically 1,000, which was tested with resampling and di�erent agent population size –
see Appendix A. The sample is loaded into the model and each agent is assigned a universalism and security
attribute accordingly. A uniform probability distribution determines the specific number that this takes, with
the six-point response scale converted into six equal sized bins between 0 and 1. E.g., an agent with a ‘Very
much like me’ response will have an equal probability of scoring between 0.833 and 1.000, and so on.

3.12 Agents are also assigned a weighting for each of the main food influence categories in the model (physical,
health, habit, social, environmental). These weightings are operationalised from British Social Attitude (BSA)
2008 survey data which included a series of questions on food influences, and assigned directly to agents at in-
dividual level. BSA 2008 contains 4,486 survey responses across a number of social attitude and demographic
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dimensions. This study was interested in the section on food influence, which contained 19 direct influences
(and options for ‘other’, ‘someone else decides’ and ‘no particular’ influence). Responses were recorded as ei-
ther 1 (having an influence), 0 (not having an influence), or -2 (did not answer). A�er removing null responses (-2
values), 2,238 responses remained, ofwhich 1,000were randomly sampled for inclusion in themodel to directly
represent agent influences (aswith ESS,multiple sampleswere tested at 1,000 anddi�erent samples sizeswere
drawn - see Appendix A). The 19 di�erent influenceswere assigned to one of fivemost closely aligned categories
(physical, habit, health, social, environmental), and then each category was scaled, so that categories had the
same total representation, summed and converted into a proportion of the total summed influence. Themean
weights across the sample were: physical = 0.344, habit = 0.214, health = 0.204, social = 0.123, environmental =
0.116. See Table 7 in Appendix A for details of the BSA survey questions.

Sub-models

Disposition

3.13 Gibson et al. (2021) compare two mechanisms of disposition, a threshold-based, and a probability-based ap-
proach. From that study, itwas found that the latter performedbetter in reproducingobservedmacro level data
of historicmilk consumption. And so, here, we opt to employ the sameprobability-baseddisposition approach,
which itself was influencedbyprevious studiesmodelling agent disposition dynamics in social networks (Galán
et al. 2012; Wang et al. 2017). The probability to become disposed to consider milk choice options is based on
howalike an agent’s neighbour choices are, anduses information entropy to calculatemaximumandminimum
‘alikeness’. Equation 1 expresses this disposition function:

p(disposition) =
1

1 + exp(−k( h
hmax

− 0.5))
(1)

wherek (parameter 11 inTable 1) is thegradientof theprobability logistic function; 0.5 is a coe�icient to limit val-
ues between 0 and 1; and h

hmax
gives a proportion of how homogenous or heterogenous an agent’s neighbours

aggregate choice is (see Equation 2), where hmax equals 1 (−log20.5). Equation 2 expresses neighbourhood
choice information entropy:

h = −(
fdairy
fall

)log2(
fdairy
fall

) + (−(
fPBM

fall
)log2(

fPBM

fall
)) (2)

where, fdairy and fPBM , are the frequency of an agent’s neighbours that choose dairy milk or PBM, and fall is
the total number of neighbours.

Cognitive perception

3.14 The cognitive perception sub-model represents how information regarding di�erentmilk choice characteristics
are perceived by agents. Central to this are the calibrated health and environmental perception parameters,
the value of which is varied to reflect its non-constant nature. I.e. perception of something can change with
time, space, context, and of course di�erent individuals. Values are drawn from a normal distribution, where
the means of these distributions are determined by the perception parameters, with standard deviation of 0.1.
A normal, rather than say a uniform, distribution is chosen as it gives a higher and symmetric probability of
producing a value close to the calibrated mean, while still allowing the chance of values to deviate strongly
from this.

3.15 For scenarios that consider current andorganicpricing,meansare takendirectly froma fixedvalue representing
the relative price relationshipbetweendairy andPBM.PricedataonPBMandorganic dairywas collectedonline
(in November 2021 via manual means) from publicly available data from three major UK supermarkets (Tesco,
Sainsbury’s,Morrisons). Averageprices for conventionaldairymilkwerecalculated fromUKFamily FoodSurvey
2017/18 data. Mean valueswere; 164p/l for PBM, 106p/l for organic dairy, and 60p/l for conventional dairy. Note,
prices for PBM and organic milk were simple averages and not weighted by product volume sold.

3.16 These prices were operationalised so as to enable adequate inclusion in the cognitive function. Here, a larger
price is a negative characteristic, and the model treats overall choice as a positive sum of all the di�erent in-
fluences. The PBM price was set at 1 (most expensive, therefore lowest score) and the price multiplier between
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PBM and current conventional milk or organic milk was assigned to these options accordingly. This resulted in
a value of 2.72 for current conventional milk, and 1.55 for organic milk. That is to say, PBM is 2.72 times more
expensive than conventional milk, but this is represented as a positive ‘bonus’ for dairy. This may not be the
optimal approach if we were concerned with more granular realism, but for the purposes of this study, this
abstraction was deemed a reasonable proxy.

3.17 The cognitive choice function (Equation 3) is comprised of the threemodelledmilk characteristics, weighted by
the relative importance placed on it (out of the five influence categories assessed).

f(cog.) = βphy(physical) + βhel(health) + βenv(environmental) (3)

where βphy , βhel, and βenv are the weights assigned to the perception of physical, health, and environmental
aspects of the milk choices. At initialisation, agents are assigned a set of weights drawn from BSA 2008 survey
data (see ‘Input data’ for more details).

Environmental concern

3.18 In this function, exogenous changes to agent environmental-based choice influence are modelled. It consists
of two variables: a probability of occurrence, and amagnitude of e�ect. The two di�erent approaches that sce-
narios S5 and S6 test are constructed from YouGov weekly/monthly public concern issue tracker data (YouGov
2021). Here, we approximate the longitudinal change in UK public environmental concern (given as a% of peo-
ple that rank ‘environment’ as a top issue) as the size of potential percentage change in environmental weight-
ing ofmilk choice influence (βenv from Equation 3). This percentage change in weighting is added to an agent’s
existing environmental weight, and subtracted from its physical (price) weight (βphy). This ensures that the
total influence weighting remains equal to 1, with the model controlling for any weight values that would be
outside of the 0 to 1 range.

3.19 In the case of scenario S5, the probability of a shock occurring was based on the instances of clear and dis-
crete concern spikes that have occurred over the data range (2010-2021). Over this 12-year period, three such
instances occurred, that coincided with the severe UK flooding of 2014, Extinction Rebellion protests in 2019,
and the start of COP26 in November 2021. From this, concern shocks were approximated as having a 3/12 or
25% chance of occurring on any given time-step in the model. The size of this e�ect was given by the aver-
age percentage change in concern between the start of a year and the point at which a spike occurred, which
was calculated at 15%. If a concern shock occurs, the new agent influence weights feed through themodel and
agents make choices based on these updated values. At the end of the decision-making process and time-step
(year), this e�ect is reversed to mimic the temporary nature of such concern shocks.

3.20 Scenario S6 followsa similar procedure, however, theprobability is set a 1, to reflect the continuousnatureof in-
creasing concern. The size of this e�ect wasmodelled as the total annualized observed change in concern from
2010 to December 2021 (latest tracker data). To account for unequal distribution of tracker data, an e�ective
daily value was calculated that was then annualized to give 1.65%.

Habit

3.21 In the model from Gibson et al. (2021), habit was treated as a multiplier to subsequent choice function scores
that had repeatedly returned the highest value of the options available. That is, if a choice function of a given
milk option consistently scored higher than the other option, eventually the habit bonus would trigger, fur-
ther entrenching this option. We take the same form of this habit function, i.e., the empirical function of habit
formulation from Lally et al. (2010), however, in this study it was applied slightly di�erently. Here, it was ad-
ditive rather than a multiplier, to ensure internal consistency with how the other four influence categories are
modelled (physical, health, environmental and social). That is, a mixed additive andmultiplicative weight and
influence construct could yield disproportionate weight e�ects to their values. For instance, if one weight is
added but another multiplied, this could increase or decrease their relative contribution, deviating from their
assigned proportions. And so, to avoid this we followed a wholly additive approach. Further, its total impact is
modulated by the weighting a given agent ascribes to the influence of habit on food choice. This is detailed by
the following equation:

f(habit) = βhab(peak habit− exp(−0.042(consecutive choices− habit threshold))) (4)

where peak habit (fixed at two, but future model iterations should examine this with robustness analysis) is
the maximum influence that habit can exert, consecutive choices is the number of repeat highest scored milk
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choices across time-steps, andhabit threshold is the level that habit e�ects are triggered. The numerical value
of the exponent (0.042) is directly from Lally et al. (2010) and βhab is the weight assigned to habit.

Social influence

3.22 This sub-model represents the process of how agents influence, and are influenced by, other agents in their
network (modelled as a small-world networkWatts & Strogatz 1998), referred to here as an agent’s neighbours.
Note, this does not represent ‘neighbours’ in the strict geographical sense, but is inclusive of broad social inter-
action (e.g. family, friends, within households, local environment). The total number of nodes on the network is
equal to the agent population. Each agent is initially connected to a number of neighbours set by the ‘network-
parameter’, which can take an even integer value between 2 and 10. The rewiring probability is set at 0.1. Social
networks also exhibit scale-free characteristics, and so a small-world scale-free network would perhaps give
a more realistic representation. However, this network type is not available among the core set of NetLogo
network extensions, which we acknowledge as a limitation of the study.

3.23 This studyadapts theoriginal formalismof social influenceemployedbyGibsonet al. (2021). Aswith theoriginal
model, an agent has a probability of interacting, where influence is modelled as the mean set of choice func-
tions across its neighbour network. However, instead of a free parameter thatwas termed ‘social susceptibility’,
the extent of this neighbour influence is governed by the weighting an agent ascribes to social food influence
(operationalised from BSA 2008 survey data). This is represented by the following equation:

f(social) = βsocf(cog.)mean neighbour (5)

where f(cog.)mean neighbour is the average value of neighbour cognitive choice functions andβsoc is theweight
assigned to social influence.

Total choice function

3.24 The total choice function for each option is then given by the weighted sum of each influence component, ex-
pressed by the following equation:

f(total) =f(cog.) + f(habit) + f(social)

=βphy(physical) + βhel(health) + βenv(environmental)

+βhab(peak habit− exp(−0.042(consecutive choices− habit threshold)))

+βsocf(cog.)mean neighbour

(6)

Evaluation

3.25 Agents have the opportunity to evaluate, learn from, and inform their future milk choices. This function re-
mains largely intact from Gibson et al. (2021), employing a conceptualisation of cognitive dissonance between
an agent’s human values (from ESS 2018 survey data) and the impact of their milk choice behaviour (see Ta-
ble 2). The minor update in this study is that agents now also look to minimise or escape a state of cognitive
dissonance by altering theweight (±10%per time-step) they ascribe to health and environmental components
versus physical (price) aspects. This is an e�ort to further draw on the empirical data from BSA 2008.

Milk
(per litre)

Sugar
(g)

Sat. Fat
(g)

Protein
(g)

GHG
(kgCO2eq)

Land
Use (m2)

Water
Use (L)

Dairy
milk 50.32 9.78 36.81 1.12 9.00 628.00

Plant-based
milk 31.99 1.96 13.75 0.85 0.64 174.73

Table 2: Health and environmental impacts of dairy and plant-based milks. Values are weighted according to
relativemarket/consumption shares of constituent products (e.g. whole, semi and skimmed for dairy, almond,
soya and oat for plant-based). Sources for nutrition data: Vanga & Raghavan (2018) and Röös et al. (2018). Dairy
GHG data are specific to the British Isles and from Clune et al. (2017). All other environmental data is sourced
from Poore & Nemecek (2018).
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Simulation Experiments, Calibration and Analysis

Scenarios and simulation experiments

4.1 The overall objective was to assess, through two sets of simulation experiments, the feasibility of possible UK
milk consumption trajectories out to 2050 under di�erent scenarios and target levels. A backcasting-type ap-
proach was followed, whereby scenario parameters were calibrated (see next section) to try and produce ‘de-
sired’ dairy reduction targets posed by the UK’s CCC and Eating Better alliance. The first set of experiments ex-
plored rising dairy milk prices, the second looked at how increasing environmental concern may reduce dairy
milk and increase PBM. Specifically, six scenarios (see Table 3) were constructed that looked at: a) di�erent
price combinations (current and organic dairy pricing); and b) di�erent mechanisms of changing the influence
of environmental concern in food choice. These scenarios were considered under di�erent levels of target am-
bition (the CCC’s core targets of 20% less dairy by 2030 and 35%by 2050; and extension targets of 50%by 2050,
along with the Eating Better alliance’s more ambitious 50% by 2030).

4.2 The six di�erent scenarios are as follows: S1, which most closely resembles a baseline, looks at a current price
relationship between dairy and PBM, with targets of 20% less dairy by 2030 and 35% by 2050; S2 instead con-
siders rising dairy prices set at average organic levels, again with targets of 20% less dairy by 2030 and 35% by
2050; S3 andS4 repeat theseprice relationships but look at themore ambitious targets of 50%by2030and50%
by 2050. These four scenarios do not explicitly consider significant changes to the environmental concern basis
of agent food choice, beyond themodelling of influenceweights and individual values endogenous to the ABM.
That is, the ABM represents the relative influence of di�erent food choice aspects as heterogenous weightings
drawn from survey data. These weightings can then dynamically change based on an agent’s individual values
and the choices they make.

4.3 However, in scenariosS5andS6, this agent-focused individual-level function remains, butanexogenous ‘societal-
wide’ factor to change environmental concern is introduced and tested. In scenario S5, this is represented by
a stochastic intense ‘shock’ that temporally shi�s agent’s choice influence weighting toward environmental
concern. Scenario S6 has a di�erent representation, looking at a smaller, incremental but sustained, increase
toward greater environmentally weighted influence. More details are given in the Model Description and ‘Envi-
ronmental concern’ sub-model sections. All scenarios and model runs had the same initial conditions of 1,000
agents, average dairy milk of 1395.80ml and PBM of 68.92ml per person per week, which ran at yearly intervals
from 2020 to 2050. Parameter values and ranges are those given in Table 1 of the Model Description section.

Scenario Pricing Environmental concern Target

S1 Current Endogenous, individual agent values CCC core: 20% less dairy by
2030 and 35% less dairy by 2050

S2 Organic Endogenous, individual agent values CCC core: 20% less dairy by
2030 and 35% less dairy by 2050

S3 Current Endogenous, individual agent values Eat Better: 50% by 2030 or
CCC extension: 50% by 2050

S4 Organic Endogenous, individual agent values Eat Better: 50% by 2030 or
CCC extension: 50% by 2050

S5 Current Exogenous, stochastic ‘shock’
and decay of concern

CCC core: 20% less dairy by 2030
and 35% less dairy by 2050

S6 Current Exogenous, sustained and
incremental increase to concern

CCC core: 20% less dairy by 2030
and 35% less dairy by 2050

Table 3: The scenarios constructed and implemented to model UK dairy milk and PBM consumption paths out
to 2050.

Calibration and uncertainty analysis

4.4 Calibrationwas performed for each scenario over the bounded range of parameters (see Table 1). The optimisa-
tionexercise tried tominimise theabsolutedi�erencebetween the simulatedconsumption levels fromscenario
outputswith that inferred by the target level at 2030 or 2050. That is, a set ofmodel parameterswere calibrated
at the micro level to give macro level consumption outputs that tried to meet UK dairy reduction targets. The
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general computational technique follows that employed in Gibson et al. (2021), and is summarised briefly here.
An optimisation exercise based on an evolutionary algorithm (EA) (Python’s DEAP package) first generated a
population of parameter sets (n = 75), sampled using a uniform distribution over each parameter’s bounded
range. The EA then started an ‘evolutionary loop’ on this population, producing children (n = 75), evaluating
the fitness of both population and children, and then selecting (n = 75) the most fit candidates to become the
population of the next generation. The loop ran for 20 generations. The fitness criteriawere theminimisation of
the absolute di�erence between the simulation output and target consumption level at 2030 and 2050. Given
the bi-objective nature of the optimisation, the EA produced a pareto-front of n candidate parameter sets for
further evaluation. Owing to time and resource constraints, we did not conduct hyperparameter optimisation
or ‘tuning’ of the EA process (i.e. through grid search or even another genetic algorithm). Initial conditions
were set at 1,000 agents, with a starting average dairy milk consumption of 1395.80ml and PBM consumption
of 68.92ml per person per week, which ran at yearly intervals from 2020 to 2050.

4.5 From these results, uncertainty analysis was conducted to simulatemodel outputs (milk consumption curves).
Saltelli sampling was used to generate parameter values over a ±2% range of the calibrated parameter sets
for each scenario. Sample size was given by the expression n(2p + 2), where n is the baseline sample and p
the number of model parameters. Following the general sample size adopted in Gibson et al. (2021) we sample
and run each parameter set 308 times. To assess the appropriateness of this value, i.e. is it under, over, or
adequately specified, we calculate the required sample size using a confidence interval approach set out by
Byrne (2013). Here, sample size is givenby the expression (zα

2
∗CV/w)2where zα

2
, the standardnormal, is 2.576

for 99% confidence, CV is the coe�icient of variation, andw is the target confidence interval width expressed as
a proportion of the mean, and set at 0.015. This expression is applied at each time-step from 2020 to 2050 for
bothdairy andplant-basedmilk simulationoutput. Calculated sample sizeswere as follows: dairy (mean = 62,
max = 101), plant-based (mean = 307, max = 470). From this, the initial sample size of 308 is deemed
a reasonable number, being comparable to the mean across plant-based simulation results, and significantly
larger than the requirements for dairy. Each of these sample parameter sets were run by the model from 2020
to 2050, and the outputs and performance compared against target levels.

Sensitivity analysis

4.6 Temporal global variance-based sensitivity analysis (TGVSA) was performed on themost representative (closet
to the mean) PBM model run for each scenarios S1-S4. Scenarios S5 and S6 used the calibrated parameters
from S1 and were not considered in the sensitivity analysis. Sample size (n = 1, 064) followed the minimum
threshold set out in Gan et al. (2014), drawn over a ±2% range of the central value. Continuous TGVSA was
computationally prohibitive, and so six time-step instances (2025, 2030, 2035, 2040, 2045, 250) were selected.
Python’s SALib package (Herman&Usher 2017)was used to conduct Sobol analysiswith Saltelli sampling to as-
sess the relative contribution of each parameter to total sample variance. Variance based sensitivity methods
such as this can in principle fully decompose output variance due to model parameters and all combinations
of interaction. However, quantifying specific higher order sensitivity indices (e.g., second and third) is compu-
tationally expensive and researchers typically limit analysis to a quantification of first-order (S) and total-order
(ST) (Saltelli et al. 2010). ST can be thought of giving an aggregate of all variance, and if S is known, then a
synthetic value of all higher-order e�ects (interactions) can be calculated. Further, this approach is capable of
dealing with non-linearity, which is common to these types of models.

4.7 Other experimental designs for global sensitivity analysis ofmultiple parameters are available (e.g., linearmod-
els, fractional factorial, Latin Hypercube Sampling (LHS)). Linear models and fractional factorial methods are
not generally appropriate for models with nonlinear e�ects (Saltelli et al. 2008). LHS would have been a possi-
ble approach, but we opt for the extended Sobol’ due to its coverage of the parameter space (for S and ST) in
as fewest samples as possible. In this sense it has been regarded as superior to LHS (Kucherenko et al. 2015;
Ligmann-Zielinska et al. 2014; Walzberg et al. 2021). Results of the analysis are shown in Figure 5 in Appendix A.

Results

Calibration

5.1 Thirteen parameters were calibrated against objective functions that looked to minimise the absolute di�er-
ence between reduction target and simulated milk consumption level for the given target year. That is, each
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parameter was not individually calibrated but rather, calibration was performed on themodel output resulting
from parameter values. An optimization approach via evolutionary algorithm was employed to conduct the
calibration exercise. Table 4 shows a summary of the calibration results for each scenario and the number of
parameter sets produced.

Parameter S1, S5,
S6 (n=8)

S2
(n=15)

S3
(n=1)

S4
(n=1)

1. Memory length 4.87
(1.07)

5.72
(1.99)

a 8.03
b 7.90

a 9.69
b 7.06

2. Habit threshold 5.81
(1.99)

4.08
(1.69)

a 5.48
b 7.64

a 9.64
b 9.19

3. Probability ofinteracting
0.33
(0.04)

0.31
(0.26)

a 0.77
b 0.17

a 0.93
b 0.95

4. Initial habit ofincumbent
6.70
(1.59)

3.47
(3.50)

a 8.64
b 4.09

a 3.76
b 8.49

5. Social blindness 0.98
(0.02)

0.62
(0.16)

a 0.73
b 0.92

a 0.58
b 0.93

6. Post-choicejustification
0.56
(0.20)

0.50
(0.31)

a 0.94
b 0.37

a 0.46
b 1.00

7. Cognitive dissonancethreshold
0.48
(0.31)

0.36
(0.14)

a 0.50
b 0.64

a 0.84
b 0.48

8. No. of neighbours 9.29
(0.24)

7.67
(2.49)

a 4.91
b 8.23

a 4.13
b 7.79

9.
Perception of
health impact of
PBM

2.50
(0.34)

1.45
(0.29)

a 2.961
b 2.941

a 2.981
b 2.981

10.

Perception of
environmental
impact of
PBM

2.47
(0.10)

1.77
(0.39)

a 2.982
b 2.872

a 2.642
b 2.932

11. Gradient ofprobability disposition
14.65
(0.27)

14.60
(0.29)

a 14.20
b 14.73

a 14.49
b 14.18

12.
Perception of
health impact
of dairy

2.58
(0.25)

2.05
(0.63)

a 1.051
b 1.091

a 1.141
b 1.571

13.

Perception of
environmental
impact of
dairy

2.62
(0.03)

2.36
(0.46)

a 1.882
b 1.062

a 1.022
b 1.372

Table 4: Parameter calibration results for each scenario. Multiple optimised parameter sets under S1,S2,S5,S6
are summarised by mean values and standard deviations (in parenthesis). S3-S4 produced one set of parame-
ters from a single objective calibration. ’a’ shows results from calibration against a 2030 target level, ‘b’ shows
the same for a 2050 target level.

5.2 Scenarios S5 and S6 used the calibration results from S1 (Table 3). Mean values and standard deviation (in
parenthesis) of calibrated parameter sets are shown for the bi-objective (multi-target) optimisation scenarios
(S1,S2,S5,S6). Under S3-S4, ‘a’ is the result of the 2030 target and ‘b’ refers to the 2050 objective target level.

5.3 Comparing parameters 9,10 and 12,13 for scenarios S3-S4 (highlighted 1 and 2 in the table), shows that calibrat-
ing for a 50% consumption reduction level generally produced a highly favourable perception of PBM relative
to dairy for health and environmental impact. Care must be taken when interpreting these calibration results.
Summarising multiple di�erent parameter sets has its limitations in that mean values within, and across, sce-
narios are not directly comparable due to heterogeneity across sets and some parameter dependence. Further,
as with many agent-based models, the interactions between parameters are o�en more influential than the
parameter values themselves.
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Simulation Experiments

Increasing dairy milk price

6.1 Figure 2 shows simulated dairy milk (navy lines) and PBM (pink lines) consumption from 2020 to 2050 for each
parameter set of each scenario. Historic consumption is plotted from 2010 to 2019. Target levels are shown
for a 20% reduction by 2030 (solid black line), 35% reduction by 2050 (dashed black line), and 50% reduction
level (dash-dot black line). For scenarios S3 and S4 (bottom row), both the 2030 (navy and pink) and 2050 (dark
and light grey) target results are shown. The le�-hand side shows results of milk pricing represented at current
levels, the right-hand side considers if all dairy were priced organically and PBM remined constant.

Figure 2: Results ofmodel simulationofUKdairy (navy) andPBM (pink) consumption for each calibratedparam-
eter set of each scenario. Target levels are shown for a 20% reduction by 2030 (solid black line), 35% reduction
by 2050 (dashed black line), and 50% reduction level (dash-dot black line). Scenario S1 show results for current
relative pricing between dairy and PBM, S2 consider if all dairy milk was priced organically, and S3-S4 repeat
this di�erent pricing but for the 50% reduction targets by 2030 or 2050.

6.2 Overall, the calibration-optimisation exercises succeeded in generating parameter sets that were able to pro-
duce model runs in the region of the desired target level. Figure 3 explores this in more detail. Scenarios S1-S2
show consumption patterns that o�er reasonable trajectories for dairy milk reduction (with concomitant in-
creases in PBM). This contrasts with the results of S3-S4 which display a rapid decrease in dairy (and rise in
PBM), and then a plateau from around 2025 onwards. The rate of change produced by these results to achieve
either the 50% by 2030 or 2050 target would appear implausible, though not impossible.

6.3 Figure 3 shows a one-dimensional heatmap of the distribution of scenario runs that surpassed or failed their
respective target. The central red line indicates this target (the ‘zero’ line) for each of the four scenarios in this
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simulation experiment. To the le� of the red line are scenario runs that ‘surpassed’ the dairy reduction target
(i.e., resulted in a consumption level below that of the target for the given year). To the right are scenario runs
that ‘failed’ tomeet the target (i.e., resulted in a consumption level above that of the target for a given year). The
percentage and absolute number of scenario simulation runs that met the target are shown for each heatmap.
Note, scenarios have di�erent total numbers of runs as the target optimisation calibration analysis produced
multiple candidate parameter sets. Figure 3a shows this for one ‘half’ of the bi-objective target exercise – 20%
reduction in dairy by 2030. Figure 3b shows the other ‘half’ of this – 35% reduction by 2050. Figure 3c shows
the results of a more ambitious 50% reduction by 2030, and Figure 3d shows this same target level for 2050.
For Figures 3c and 3d, single target optimisation calibration was conducted, producing a single parameter set.
As a result, they have fewer total runs.

Figure 3: One-dimensional heatmap ‘trace’ of the distribution of scenario simulation runs that surpassed of
failed the given target (red line). 3a shows this for the 20% less dairy by 2030 target, 3b shows 35% less by 2050,
3c shows 50% less by 2030 and 3d shows 50% less by 2050.

6.4 Scenario S2, where relative pricing was fixed at organic dairy to PBM levels (106p/l for organic vs 60p/l for con-
ventional and 164p/l for PBM), produced significantly higher proportion of successful runs than S1 (current con-
ventional pricing). Here, the rise in average dairy pricing lead to an increase in ‘successful’ runs of 39.8% to
56.5% for 2030 and 17.2% to 59.9% for 2050. Scenarios (S3-S4) that looked at more ambitious targets (50% by
2030 or 2050) mostly failed to meet or surpass the reduction level. Scenario S3 (current pricing) in particular
did not produce a set of calibrated parameters that would give the required target level. However, S4 was close
to this threshold, an expected result given this was the output of a single-objective optimisation exercise.
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Shi�ing environmental concern

6.5 Figure 4 shows the output of scenarios that explored twodi�erentmechanisms of change to the environmental
weighting of milk choice. Scenario S1 (same as in Figure 2) is given for comparison. Scenario S5 and S6 take
the same calibrated parameter sets as S1 and simulate consumption curves to test the impact of each of these
mechanisms. The first, S5, modelled temporary random environmental concern shocks, while S6 modelled a
sustained, incremental and permanent shi� toward greater environmental basedmilk choice influence.

6.6 Compared with S1, simulation outputs for S5 and S6 resulted in a larger decrease in dairy milk consumption
(and higher uptake of plant-based milk). However, when comparing S5 and S6, the latter shows a markedly
di�erent output, with PBM surpassing dairy milk consumption at around 2030 and 100% of model runs hitting
2030 and 2050 targets from the CCC.

Figure4: Resultsof simulationexperiments tomodel scenariosof shi�ingenvironmental concern inmilk choice.
Dairy is given by navy lines, PBM by pink. Target levels are shown for a 20% reduction by 2030 (solid black line)
and 35% reduction by 2050 (dashed black line). S5 shows results with the introduction of temporary environ-
mental concern shocks. S6 shows the samebut for sustained, incremental increases to concern. Both scenarios
use calibrated parameters from S1, which is shown for comparison.
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Discussion

7.1 Overall, scenarios produced plausible consumption trajectories for the core Climate Change Committee target
dairy reduction levels of 20% by 2030 and 35% by 2050. Both sets of experiments, rising dairy milk prices (to
organic levels) relative to plant-based alternatives, and changes to environmental concern, resulted in larger
decreases in dairy consumption than the baseline scenario S1. Within this, the largest impact on simulated
consumption trajectories was found with the introduction of small, but permanent, incremental increases to
agent environmental concern, and the impact this had on influencingmilk choice. Meeting extension targets of
50%dairy reductionby2030or2050 (S3andS4) appearedmoredi�icult toachieve,with simulation trajectories
that, on the face of it, would seem challenging to reproduce in the real-world.

7.2 Scenario S1, which most closely resembles a current baseline, did not produce a majority of runs that met
2030 and 2050 targets (just 39.8% and 17.2% respectively). As a reminder, scenario S1 contained the core ABM
decision-making and influence functions that governmodelmilk choice. These consist of: cognitive perception
of impact, social influence, habit, and choice evaluation, i.e. internal individual-agent factors that determine
consumption options and the observed calibrated substitution curves. S1 did not include the two external fac-
tors tested in the experiments. In other words, absent of the explicit price changes and environmental-concern
shi�ing interventions tested by this study, model simulations did not overwhelmingly deliver the CCC’s base
case dairy reduction targets. However, all things being equal, representing all dairy milk at average organic
prices (S2) showed a marked increase in successful model runs hitting, or surpassing, target levels. In this sce-
nario, 56.5% of runs met a 20% reduction by 2030 target, and 59.9% met the 2050 target (35% reduction).
Clearly, the wider land and sustainability impacts of shi�ing UK milk to 100% organic has not been explored
here, however, we use ‘organic pricing’ as an indicator of the more reflective actual costs of dairy milk (in the
absence of robust, but emerging, true cost accounting). An implication for policy should be to consider how
pricing structures can be used to motivate reduction of dairy consumption and uptake of PBM.

7.3 Scenarios (S3 and S4) were largely unable to produce a set of simulations that met the more ambitious targets
of 50% by either 2030 or 2050. This was particularly the case of S3, which could have implications for the feasi-
bility of achieving deep shi�s to sustainable diets in the absence of clear interventions. While scenario S4 also
largely failed tomeet the stated targets, it was, however, far closer, and these results demandmore considered
interpretation. Unlike scenarios S1 and S2 that conducted bi-objective optimisation, this set of scenarios pro-
duced a single set of parameters and therefore had less heterogeneity and uncertainty to explore. It is entirely
possible that calibrating via single-objective optimisation could produce a lower (evenmore ambitious) target.
If themetric for performance is relaxed, we see that almost all of these runs are less than 3%short of their target
level.

7.4 Scenarios S5 and S6 looked at how the introduction of random temporary shocks, or, smaller but sustained
increases to agent environmental concern, may impact milk choice and consumption. Shocks to environmen-
tal concern with the UK public have occurred in response to severe discrete weather events, as was the case
for the 2014 floods, or more recently, due to increased societal visibility and attention to climate change (Ex-
tinction Rebellion (XR) and COP26). However, environmental concern receded rapidly post-flood in 2014, and
concern just a�er COP26 had a 10%negative swing a�er reaching historic highs of 40%. The spike caused by XR
protests did not fully revert to pre-protest levels until the onset of COVID-19 in early 2020, where health issues
overwhelmingly topped the data. In general, UK public environmental concern remained stable at around 10%
from 2010 to 2018. From October 2018 (perhaps a response to the IPCC’s SR15 being released) to date, concern
has trended upwards, and is now at around 30%.

7.5 In modelling these di�erent observed public concern phenomena, via agent milk choice influence, we show
that both produced larger declines in dairy milk consumption than the S1 base scenario. However, even with a
significant and rapid rise in concern, the transient nature of shocks did not fundamentally alter the emergent
consumption pattern. In contrast, small, incremental but permanent increases to concern produced markedly
di�erent consumptionprofiles,withdairy andPBMcurves actually crossingover in 2030beforeplateauing from
2040. While recognising that transformative change toward sustainable food systems requires fundamental,
structural, measures that go beyond individual behaviour, there are nevertheless implications here for a shi�
toward more sustainable diets. One way to engender sustained and increasing change is a self-sustaining en-
vironmental information ecosystem where policy, responsible media, communities, and everyday lived expe-
rience act to mutually reinforce meaningful concern among the public.

7.6 Continuous improvementof bothABMmodelling e�orts and studies is key to thewiderdevelopmentof theABM
community, and its contribution to science, policy and practice. Giabbanelli et al. (2021) conduct a review of
ABMs on obesity, and o�er a checklist withwhich to appraise their quality. The checklist covers five dimensions
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(data, parameters, sensitivity, validation, documentation and reproducibility) that cover a total of 29 items. The
authors construct three tiers (T1 - best, T2, T3 -worst) basedonhowagiven studyperformsagainst eachof these
items.

7.7 Overall, themodel scoredmostly T1s, but had twoT2s (recent data, free parameters) and twoT3s (model design
sensitivity analysis, comparing outputs of validation) (see Table 8 in Appendix A for results). The four items that
score less than T1 are briefly discussed. Recent data – BSA survey data is from 2008, which would qualify as
T3, however, ESS, price and impact data are all from the last 5 years which would qualify as T1, and so, we
score this element as T2. Free parameters – all parameters are detailed, but the study has not attempted to
minimized the number of free parameters. Model design sensitivity analysis – sensitivity to model design is an
important aspect of model investigation and analysis. Although we do not conduct such an analysis here, we
do acknowledge that the model would benefit from this kind of robustness analysis and signpost this as an
important avenue of future work. Comparing outputs of validation – it is challenging to validate against data
given a forward-looking scenario-based study, however, the base model on which the ABM is developed was
validated against historic observed data. Someof these limitations are discussed inmore detail in the following
section.

Limitations and future research

7.8 Here, some study limitations, as well as opportunities for future research, are briefly described. A central inter-
est of the studywas to analyse possible influences and dynamics for the reduction in dairymilk by substitution
for plant-based alternatives. Although overall milk consumption has declined for several years, in the model,
total averageweekly consumptionwasmaintained exogenously at 2019 levels over the simulation period out to
2050. Future research could look to incorporate scenarios that looked at substitution alongwith declining con-
sumption, and assess their interaction and relative impact on overall reduction trajectories (we give an initial
exploration of this in Figure 6 in Appendix A).

7.9 The underlying data to construct PBM health and environmental impact is based on a weighted average of the
market share of the threemost widely consumed plant-basedmilks in 2019; soya (38%), almond (42%) and oat
(20%) (Kantar 2019). Themodel does not account for a changingmarket share (e.g., increase in oatmilk) or the
emergence of new entrants (e.g. potatomilk). Future research could look to disaggregate these di�erent plant-
based alternatives and include them as distinct options (with their own health, environmental and physical
characteristics) in the ABM.

7.10 Dataused togive someempirical grounding toagent influenceweightingswas from2008. To theauthorsknowl-
edge, this is still the latest and most comprehensive set of survey data for UK public food influences, however,
at over a decade old, it is likely that these influences have at least in part shi�ed. This is somewhat mitigated
by a model structure that allows agents to change their influence weights in response to cognitive dissonance
or external triggers. However, given the increasing focus on food systems, diets and sustainability, it would
be beneficial for an updated survey to be included in the next iteration of British Social Attitudes, or similar
large-scale survey.

7.11 Finally, althoughbuildingonanexistingABMcalibrated tohistoric consumptionofUKwholeandsemi/skimmed
milk, thismodel is still bynecessityonlyone representationof foodconsumption influence. Future researchand
modelling e�orts should assess, with rigorous robustness analysis, model choices and structure.

Conclusion

8.1 Dietary shi� toward lowermeat anddairy consumption is a critical lever tomitigate climate changeandaddress
wider socio-ecological challenges. Recognising this, various UK bodies (e.g., the Climate Change Committee)
have posed dairy reduction targets for 2030 and 2050. This study updated and applied an existing ABM of UK
milk choice to analyse scenarios for dairy consumption reduction targets, with concomitant increases in plant-
basedmilks.

8.2 Specifically: it enhanced empirical grounding with the introduction and operationalisation of food influence
food survey data from British Social Attitudes 2008; incorporated a set of plant-based impact data; developed
di�erent representative price relationships between dairy and PBM; and modelled di�erent mechanisms for
changes to agent environmental concern andmilk choice influence.

JASSS, 25(2) 3, 2022 http://jasss.soc.surrey.ac.uk/25/2/3.html Doi: 10.18564/jasss.4801



8.3 Takingabackcasting approach, it aimed togenerate andcompare several di�erent sets of parameter values and
model runs, calibrated, via optimisation, to try and produce target levels of reduced dairy consumption. Two
sets of simulation experimentswere conducted to assess, through the lens of agent-basedmodelling, the feasi-
bility of possible milk consumption trajectories out to 2050 under a) di�erent price combinations (current and
organic), b) di�erent mechanisms for changing environmental concern (exogenous ‘shock and decay’, exoge-
nous ‘sustained incremental’). These simulation experiments were conducted against di�erent levels of target
ambition (UK Climate Change Committee’s (CCC) core targets of 20% less dairy by 2030 and 35% by 2050; and
extension targets of 50% by 2050, along with the Eating Better alliance’s more ambitious 50% by 2030).

8.4 Key results showed that most model runs from scenarios with a dairy-PBM price relationship at today’s levels,
failed to deliver the core consumption targets (∼60% for 2030 and over 80% for 2050. However, if all dairymilk
were to be priced organically, this situation improves markedly with only around 40% of scenario model runs
not meeting core 2030 and 2050 targets. Although both simulation experiments that explored environmental
concern and milk choice showed larger decreases in dairy milk consumption, they produced two very di�er-
ent sets of results. Temporary concern ‘shocks’ did not structurally change consumption patterns, however,
the introduction of small, but permanent, incremental gains to environmental concern and agent milk choice
influence, actually resulted in dairy declining and falling beneath plant-basedmilks at around 2030.

8.5 For themore ambitious 50% targets, scenarios using a representation of today’s price relationship did not pro-
duce a single successful model run. However, organic pricing was able to almost universally achieve the 50%
target level within a reasonable band of tolerance. The study highlighted several areas for future research and
data needs, including: more recent, frequent, and accessible empirical data on food influences; and ABM de-
velopment of specific plant-based alternatives e.g. oat, soya, almond.

8.6 This paper presented the first attempt at applying an agent-based model of food influence to future scenarios
and trajectories of UK dairy and plant-based milk consumption, to achieve climate-related dietary reduction
targets. From a policy perspective, successful scenarios for core CCC targets displayed plausible trajectories,
and in this sense, o�er supportive evidence by way of the feasibility of modelled rates-of-change. However,
current price relationships between dairy and PBMmay pose a barrier to achieving desired targets, and policy
should consider measures to redress the imbalance of milk ‘price’ vs its social, economic and environmental
‘cost’. To support widespread adoption of sustainable diets, the UK public should experience deliberative and
meaningful environmental-related information and interaction to help engender sustained positive changes to
environmental concern.
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Appendix A

Supporting tables

Parameter Description

1. Memory length

The size of an agent’s memory that it
can recall previous information.
Cognitive perception is based on averaging
values in the memory.

2. Habit threshold

The number of consecutive choices
that return the samemajority
milk type consumption needed
before the e�ects of habit take place.
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3. Probability of interacting

The probability of an agent interacting
(exchanging information onmilk choice
function scores) with other agents in
its network.

4. Initial habit of incumbent
The initial number of consecutive
choices that have returned the
samemajority milk type.

5. Social blindness

The probability that an agent has the
ability to perceive the impact of its
choice and therefore the option of
evaluating it.

6. Post-choice justification

The threshold beyond which an agent will
simply justify the discrepancy between its
values and behaviour (milk choice impacts),
rather than act to resolve it.

7. Cognitive dissonance threshold

The threshold below which any discrepancy
between an agent’s values and its
behaviour (milk choice impacts) will not
trigger a state of cognitive dissonance.

8. No. of neighbours The number of neighbours in an
agent’s network.

9. Perception of health impact of PBM The perception of the health impact of PBM.

10. Perception of environmental impact of PBM The perception of the environmental
impact of PBM.

11. Gradient of probability disposition

The slope of the function that determines
how quickly the probability of being
disposed to consider choice of milk as a
function of the informational entropy of milk choices
in an agent’s neighbour network.

12. Perception of health impact of dairy The perception of the health impact
of dairy milk.

13. Perception of environmental impact of dairy The perception of the environmental
impact of dairy milk.

Table 5: Model parameters and descriptions.
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Question Survey Model use

She/he strongly believes
that people should care
for nature. Looking a�er
the environment is
important to her/him.

European Social
Survey, 2018

This question relates to
the ‘universalism’ value
and responses inform the environmental
value position of agents used
in evaluation sub-model.

It is important to him/her
to live in secure surroundings.
She/he avoids anything that
might endanger his safety.

European Social
Survey, 2018

This question relates to the
‘security’ value which contains the health
dimension. Note, the expanded 40 item
PVQ includes a direct question on health,
‘She/he tries hard to avoid getting
sick. Staying healthy is very important
to her/him’, but in the absence of this data
in the ESS, we opt for the most
relevant security value question.

Table 6: Questions from European Social Survey data used in the model.

Influence Category Influence Category

Quality/freshness Physical What family eat Social
Taste Physical Recommendations Social
Presentation etc. Physical Organically produced Environmental
Availability Physical Animal welfare Environmental
Price/value/special o�ers Physical Impact/fair trade/local Environmental
Healthy/low fat Health Impact on landscape Environmental
Vegetarian/special habits Health Packaging amount Environmental
Additives/E-numbers Health Other None
Habit/routine Habit Someone else decides None
Try new/di�erent Habit No particular None
Know how to cook/prepare Habit
Convenient to prepare Habit

Table 7: Food influence response options in the BSA 2008 survey, andmodel categorisation.

Evaluation Category Evaluation Item Score

Data Temporal Resolution T1
Runs T1
Spatial Resolution N/A
Fidelity T1
Recent Data T2
Data Access T1

Parameters Free T2
Agent Heterogeneity T1

Sensitivity Analysis Parametric Sensitivity T1
Model Sensitivity T3

Validation Output Validation T3

Documentation and Reproducibility Model Documentation
(made up of 18 items) T1

Table 8: Self-evaluation of ABM quality. See Giabbanelli et al. (2021) for details on the checklist.
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Further calibration details

The calibration exercises used an (single and bi-objective) evolutionary algorithm (EA) implemented in Python
(Van Rossum & Drake 2009). The NetLogo model and Python were linked via the NL4PY package (Gunaratne
2018), which allows the remote control, execution, andanalysis of themodel fromwithin aPython environment
(in our case Jupyter). The DEAP Python package was used to execute the EA (Fortin et al. 2012). Specifically, we
employed the “MuPlus Lambda” algorithm, using a simulated binary crossover, polynomial boundedmutation
and the NSGA-II selection algorithm. Candidate parameter sets were drawn from a uniform distribution over
upper and lower bounds andan initial populationof 75 individual setswere created,with the algorithm running
over 20 generations.

Additional results

Figure 5 shows sensitivity analysis for scenarios within themilk pricing simulation experiment (S1-S4). Tempo-
ral (5-year time step, 2025-2050) variance-based global sensitivity analysis was conducted for simulated PBM
consumption. Sensitivities are a sum of first order values and those due to interactions between parameters.
Across all values, themean proportion of sensitivity due to interactions was 75%, with 25% due to parameters.

Figure 5: Temporal (5-year intervals, 2025-2050) global sensitivity analysis applied to the PBM consumption
output from the most representative (i.e. closest to the mean) of each set of model runs in each scenario from
the price simulation experiment. Scenarios S3-4 are single objective optimization exercises and so only have a
single set ofmodel runs to consider. Results for each scenario record the contribution each parametermakes to
the total varianceover time. Maximumandminimumparameter sensitives are highlightedanda corresponding
parameter colour code shown.

Overall, scenarios S1 and S4were relatively stable but S2 and S3 decreased over time. Further, S3 and S4 (note,
results are for a 50% reduction by 2050 not 2030 target) show comparatively lower total variance, an unsur-
prising result, given the single, rather than bi-objective optimisation. In general, across scenarios, parameter
sensitivity was fairly equal with no dominance of one parameter over another. For scenarios S1-S2, maximum
sensitives were around the 11%-12% range, and minimum were around 5%. For scenarios S3-S4, maximum
sensitivity proportions were higher (within overall less variance) at 20%-34% of variance. The most common
parameter for minimum sensitivity was no. 11 (Gradient of probability distribution), occurring for three scenar-
ios (S1, S2, S4). The most common parameter for maximum sensitivity was no. 9 (Perception of health impact
of PBM), occurring for scenarios S3 and S4.

JASSS, 25(2) 3, 2022 http://jasss.soc.surrey.ac.uk/25/2/3.html Doi: 10.18564/jasss.4801



Figure 6 shows a scenario exploration that considers a declining, rather than largely constant, total average
milk consumption. Declining milk consumption is modelled as an annual decrease from 2019 levels, based on
average rates of decline from 2004 to 2019. By visual inspection, scenario S7 has a greater proportion of dairy
(navy lines) model runs hitting the 2050 target level (35% reduction) than scenario S1, although over a larger
spread. For scenarios S2 and S8, that both consider dairy milk price rising to organic levels, there does not
appear to be a marked di�erence in the proportion of successful runs (i.e., hitting the 2050 target). Declining
consumption leads to lower adoption and consumption of plant-basedmilks, as a sizeable portion of the target
is instead met with reduced demand. Indicatively, approximately 50% of the target level is due to less overall
consumption and 50% due to substitution to plant-based alternatives.

Figure 6: Additional scenarios (S7 and S8) that considered declining total consumption, at average rates from
2004-2019, rather than stable total milk consumption (S1 and S2).

Figure 7 shows the result of resampling di�erent sets of 1,000 responses from both the ESS and BSA. Scenario
S1 is selected for the resampling analysis, based on a single parameter set of the eight sets produced from cali-
bration. This parameter setwas selected on the basis of producing simulations runs that had the smallestmean
summed absolute di�erencewith the arithmeticmean of all the simulation runs of all the calibrated parameter
sets.
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Figure 7: Mean values of simulation outputs for scenario S1 with 10 di�erent populations of 1,000 agents, con-
structed with 10 samples of BSA and ESS data.

Themeans anddistribution of these resultswere compared at the point of the final time-step (2050). A one-way
ANOVA test confirmed that the means were significantly di�erent (F (9, 3070) = 107.12, p < 0.001). Post-hoc
analysis tounderstandwhichgroupswere significantlydi�erentwas conductedviaTukey’sHonestly Significant
Di�erences (HSD) (α = 0.05). Figure 8 shows a summary of this analysis. Of the 45 combinations, 12 (27%)
confidence intervals crossed zero, i.e. these pairs may have equal means. The other 33 combinations of means
show statistically significant di�erences at the 95% confidence level.
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Figure 8: Tukey HSD test for the 10 groups of simulation data produced by 10 di�erent samples of 1,000 agents.
Analysis conducted in Python.

Figure9a (le�-handside) shows theoutputof simulations for scenarioS1underdi�erent agentpopulation sizes.
Eleven di�erent populations were tested (100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000), and the
distributions of simulation outputs were analysed for stability. That is, we assessed at what point the change in
variance from simulation runs under di�erent sized populations slowed or stopped. This assessment is based
on calculating the coe�icient of variation (CV) for simulation means and standard deviation at the final time-
step (2050) for eachdi�erentpopulation size. Figure9b (right-handside) shows thatCVdecreasesaspopulation
size increases up to 1,000 agents, therea�er, CV remains relatively stable at around 0.03.
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Figure 9: Comparing the simulation output and coe�icient of variation of scenario S1 under di�erent agent
population sizes.

Appendix B

Model description – Additional details

Emergence

The key results of modelled outputs that emerge from the behaviours and interactions of individuals are the
macro-level average consumption of milk choice among the simulated population, the trajectories of these
curves, and their proximity to delivering on dairy reduction target levels.

Interaction

Individuals interact with other individuals through a social network (small-world structure) where information
exchange occurs. Themechanism bywhich information exchange occurs is not explicitly modelled, rather, this
is governed by a probability of interaction and a social influence weighting

Stochasticity

Information on health and environmental impacts of di�erent milk choice options that agents perceive is ran-
domly drawn from a normal distribution with mean values. In the environmental concern simulation experi-
ment, the occurrence of a public concern ‘shock’ is governed by a probability informed by observed data. Fur-
ther, stochasticity is reflected in the logistic function of neighbour milk choice information entropy and proba-
bility of an agent becoming disposed to consider their alternatives.

Heterogeneity

Heterogeneity is represented by the assignment of state variables among the agents. Principally, agents have
di�erent milk choice influence weightings operationalised from British Social Attitude 2008 survey data, and
di�erent basic human values assigned according to the distribution of UK results data from the EuropeanSocial
Survey 2018.
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Observation (incl. Emergence)

At each time step, the component choice functions and decision-making function for each choice and each
agent is collected.

Sub-models – Additional details

Cognitive perception

Memory e�ects are included, with agents able to store a limited amount of averaged information from a set
numberofprevious time-steps. At eachnewtime-step, new information is added toa rollingaverageofprevious
time-steps and information is removed beyond a threshold governed by the memory length parameter. The
upper and lower memory bounds (1, 10) follow the El Farol NetLogomodel by Rand &Wilensky (2007).

Evaluation

Agents have the possibility to evaluate the choices they make. Evaluation o�ers a mechanism for agents learn
fromprior experience and use this to inform future decisions. Cognitive dissonance in food choice is one theory
of evaluation (seeOnget al. 2017 for review), andwemodel this througha conceptualisationof tensionbetween
an agent’s human values and their milk choice behaviour. Here we use the theory of basic human values to as-
sign two values (security and universalism) to each agent, reflecting, broadly, their position on health and their
position on the environment. High importance for universalism values are associated with a deeper concern
and action toward environmental issues (Schultz et al. 2005; Schwartz 2012). Within Schwartz’s theory of basic
human values, health is orientated to the security value (Schwartz 2012). The European Social Survey (ESS)
includes questions from Schwartz basic human values. We take UK responses for universalism and security
questions and operationalise them to give a distribution of values relating to the environment and health.

Each milk choice has an associated health and environmental impact. At each time step, the aggregate impact
of the choices is calculated and then compared against the agent’s values on a relative basis. If this relative
impact is within a given proximity to their value position, determined by the ‘cognitive dissonance threshold’
parameter, no feedback is sent. However, if the di�erence is su�iciently large, the agent enters a state of cog-
nitive dissonance whereby their actions are incongruent with the values they hold. Here, agents pursue the
least costly path to try and escape this uncomfortable state. They will either reconsider their behaviour (next
choice) and become spontaneously disposed and alter the weight (±10% per time-step) they ascribe to health
or environmental components versus physical (price) aspects, or they will alter their value base slightly (±%
per time-step) to better fit the choices they make. If the di�erence between impact and value base is too large,
given by the ‘justification’ parameter, agents simply rationalise this dissonance and once again no feedback
occurs.
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