
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: mrinaligajbhiye29@gmail.com; 
 
Int. J. Environ. Clim. Change, vol. 13, no. 10, pp. 2581-2589, 2023 

 
 

International Journal of Environment and Climate Change 
 
Volume 13, Issue 10, Page 2581-2589, 2023; Article no.IJECC.105581 
ISSN: 2581-8627 
(Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)  

 

 

 

Crop Health Monitoring through 
Remote Sensing: A Review 

 
Mrinali Gajbhiye a*, K. K. Agrawal a, A. K. Jha a,  

Narendra Kumar b and Monika Raghuwanshi a 

 
a Department of Agronomy, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur-482004,  

Madhya Pradesh, India. 
b Department of Agronomy, College of Agriculture, Rajmata Vijayaraje Sindia Krishi Vishwa Vidyalaya, 

Gwalior-474002, Madhya Pradesh, India. 
 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 

Article Information 
 

DOI: 10.9734/IJECC/2023/v13i102924 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/105581 

 
 

Received: 27/06/2023 
Accepted: 30/08/2023 
Published: 08/09/2023 

 
 

ABSTRACT 
 

Agriculture is basis of livelihood for a major portion of world population. It provides food to humans. 
With the increasing population and climate change there is need to enhance production to fulfil the 
demand of growing population. Remote sensing technology has potential to predict nutrient 
requirement by providing various information related to plant and soil in quantitative terms thereby 
increasing productivity. It plays important role in monitoring crop health, crop growth and 
development, nutrient management, pest and disease management, water management and weed 
management. Evaluation of crop canopy provide various information regarding agronomic 
parameters. The data obtained from remote sensing provides a better alternative for natural 
management than traditional methods and this kind of management enhances efficiency of various 
resources by avoiding their overuse. By using this technology, we can improve traditional methods 
of agriculture and bring out changes in the field of agriculture. This paper reviews remote sensing 
technology for crop health monitoring, highlighting its importance with new ideas for agriculture. 
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1. INTRODUCTION  
 
Remote sensing is a technology that enables to 
acquire information about any object without 
coming into direct contact with the object under 
study [1]. Its application is transforming 
management and planning in the field of 
agriculture. With the introduction of new 
technologies, it seems a very bright future to 
move farm management to a next level of 
production and productivity. Agriculture 
production can be enhanced by proper use of 
major agricultural resources like water, fertilizer 
and pesticides, as when and where required. 
Fertilizer is one of the major resources that can 
affect crop health, thereby reducing yield and 
quality. Improper use of fertilizer leads to 
imbalance between organic content and nutrients 
in the crop. Hence, it is important to precisely 
apply nutrient to enhance the fertilizer use 
efficiency and reduce the loss from the farming 
system. This can be achieved by monitoring crop 
growth and development. Monitoring agricultural 
crop production during the growing season and 
estimating the potential crop yields are both 
important for the assessment of seasonal 
production [2].  Unfavorable climatic condition 
and growing conditions may result in variation of 
crop productivity. It was observed that effect of 
climatic variability on cropland productivity 
variation based on remote sensing observations 
in the Canadian Prairies was better than in-situ 
data [3]. Remote sensing helps to timely monitor 
these conditions and provide a model of crop 
with precision. The monitoring of crop health 
follows seasonal patterns in relation to biological 
life cycle of the crop. This technology enables to 
collect data timely with precision without 
destructive sampling of the crop. Remote 
sensing uses various sensors for recording data. 
These sensors sense the electromagnetic 
radiations. These sensors are available in two 
forms: passive sensors and active sensors. 
Passive sensors record the radiations that is 
reflected by the object or emitted from the earth 
surface. On other hand, active sensors (e.g., 
LIDAR, RADAR) are those which emits their own 
electromagnetic radiation [4]. In agricultural 
remote sensing, most of the sensors are 
designed to record a specific portion of the 
electromagnetic radiation. Interaction between 
the electromagnetic spectrum with any of the 
material can be used for the qualitative and 
quantitative analyses of various materials [5]. 

Remote sensing using space-borne sensors are 
tools for taking repetitive and synoptic 
observations. These data can be used for 
various assessment and management of field [4]. 
This technology has importance for the efficient 
utilization of available resources and to take 
appropriate measures to lower the appropriate 
loss caused by the climatic variation or any other 
stress factor. This paper reviews remote sensing 
and its application for crop health monitoring, its 
utility and future perspective in the field of 
agriculture. 

 
2. CROP HEALTH MONITORING  
 
Remote sensing is a tool for monitoring crop 
growth and development, nutrient deficiency, 
diseases, moisture stress, water management 
and weed management. It can be used to track 
the growth of crop at different time intervals. 
Timely information about crop can help to identify 
the problem by various vegetative factors. It is 
important to understand crop production 
response to agronomic management and 
environmental stress [6]. Vegetative indices like 
Normalized difference vegetative index (NDVI) 
measures the greenness over the time. It has 
been observed that NDVI is highly correlated 
with crop growth and health, and can be used for 
monitoring crop condition [7]. The crop condition 
can be monitored by (i) instantaneous monitoring 
method in which NDVI values of cropland is 
compared with those of the same period in the 
previous year and (ii) the crop growth process 
monitoring method that forms the crop growing 
profiles with time series NDVI images and 
assesses the crop condition by comparing inter-
annual crop growth profile [8]. Leaf area index 
(LAI) and crop biomass are two crucial pointers 
of crop health and development [8,9]. Remote 
sensing data on these pointers can assist to 
obtain significant information on site specific 
properties (e.g., soils, topography), management 
(e.g., water, nutrients and other inputs), and 
various stress factors (e.g., diseases, weeds, 
water, and nutrient stress) [10]. The data 
obtained used to estimate LAI and biomass for 
various crops. Several studies showed that LAI 
and biomass were highly correlated with several 
Optical Spectral Vegetation Index (OSVIs) and 
Radar Polarimetric Parameters (RPPs) [11], the 
LAI can be assessed from both hyperspectral 
and the 3D canopy models [12], the Red Edge 
Position (REP) extracted from ground 
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hyperspectral reflectance can accurately 
estimate the kinnow mandarin LAI and 
Chlorophyll content and this can be effectively 
used to assess crop health status in a wide 
range for real-time nutrition management in the 
orchard [13]. Crop health monitoring and 
quantifying crop stress due to biotic and abiotic 
stress can be done by using various indices for 
mapping and monitoring drought. Certain factors 
like evapotranspiration, soil moisture and 
vegetation conditions can be used to assess and 
monitor drought characteristics [14]. The indices 
for soil moisture status in rooting zone are given 
in Table 1. 

From remote sensing, several drought                  
indices can be obtained viz., Normalized 
Difference Water Index [20], Crop Water                  
Stress Index [21], Water Deficit Index [22].               
It can provide a good estimate of evaporative 
fraction, the ratio of ET and available radiant 
energy, with the AVHRR and MODIS data              
[23].  
 
These indices can be used to assess the crop 
health and stress condition; hence these data 
can be used to analyse the quality of the crop 
[51].  

 
Table 1. Various indices for soil moisture status in rooting zone 

 

S. no. Drought indices  Reference  

1 PDSI (Palmer Drought Severity Index) [15,16] 

2 Drought Severity Index (DSI) [17]  

3 Evapotranspiration Deficit Index (ETDI) [18]  

4 Standardized Precipitation and Evaporation Index (SPEI) [19]  

 
Table 2. Some vegetative indices used in agriculture 

 

Index  Application  References  

Normalized difference 
vegetative (NDVI) 

Biomass, breeding, phenotyping, yield, 
disease, nitrogen management, soil 
moisture, water stress. 

[24,25,26,27,28,29,30] 

Green NDVI (GNDVI) Water stress, biomass, diseases [31,9,32,33,34,35]  

Red edge normalized 
difference vegetation index 
(RENDVI) 

Yield, irrigation management, N-
status/application, diseases 

[36,37,38,39,40]  

Soil adjusted vegetation index 
(SAVI) 

Yield, biomass, diseases, N-
concentration and uptake, water stress 

[41,9,34,42,43,44]  

Ratio vegetative index Crop yield, biomass [45,9] 

Normalized pigment chlorophyll 
ratio index (NCPI) 

Water stress [46]  

Chlorophyll absorption ratio 
index (CARI) 

Chlorophyll content  [47]  

Chlorophyll vegetation index 
(CVI) 

Crop yield, biomass, N-uptake, soil 
moisture, water stress 

[48,49,37]  

Water balance index  Irrigation scheduling  [50]  

Normalized difference water 
content (NDWI) 

Vegetation water content  [49]  

Normalized water index (NWI) Soil moisture and crop yield [29]  
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3. NUTRIENT MANAGEMENT   
 
For proper growth and development of crop, 
sufficient amount of nutrients is required at right 
stage. Nutrient deficiency like in case of nitrogen, 
it reduces leaf chlorophyll content that results in 
low light absorption.  Nutrient requirement of crop 
plant can be estimated by studying leaf optic 
properties such as fluorescence, reflectance and 
transmittance. Chlorophyll fluorescence gives 
quick and precise information related to stress 
based on the fluorescence emission pattern of 
leaves, tissues and even the whole plant [52]. 
This emission is captured when part of light 
energy absorbed by chlorophyll for 
photosynthesis is re-emitted when excited with 
UV- a near 340- 360 nm or blue-green light [53]. 
The fluorescence emission at different level of 
plant stress was successfully detected and 
imaged on different crops for deficiency of 
nitrogen and zinc on maize (Zea mays), as well 
as heat and water stress on Zalea 
(Rhododendron sp.) [54]. It was observed found 
that green chlorophyll index based on NIR (800 
nm) and green (550 nm) wavelength were 
strongly related to Chlorophyll Concentration 
Index (CCI) as a measure of chlorophyll content 
[55].  Plant dry matter accumulation and grain 
yield were observed to be pointedly influenced by 
the absorption of Photosynthetically Active 
Radiation. It was positively related to yield 
production at tillering and panicle initiation stage 
[56].  Thermography is also used for nutrient 
deficiency. It can visualize stomatal movement 
without presence of an illuminizing source [57]. A 
high temperature for under fertilized barley 
(Hordeum vulgare L.) than well fertilized barley 
with nitrogen as reference nutrient was observed 
[58]. Reflectance in the red and near infrared 
region of the electromagnetic spectrum for 
estimating the nitrogen requirement of the crop 
using early season estimates of nitrogen uptake 
and potential yield have been developed [59]. It 
was observed that correlation of NDVI inflection 
point with Nitrogen content were found positive at 
maximum tillering stage followed by flowering 
stage, milky stage and least in tillering initiation. 
The results provide nitrogen estimation through 
hyperspectral instrument easily with less time 
consuming [60].  The NDVI increase with 
increasing leaf greenness and green leaf area, 
and can be used as a guide for in season 
nitrogen application [59]. [61] suggested that soil 
moisture, vegetation and soil crusts can 
contribute to the conservation of soil total 
nitrogen.  

 

4. WATER MANAGEMENT  
 
Remote sensing helps for precise application of 
irrigation water, estimation of soil moisture 
availability, water requirement at different growth 
stages and in mitigating water stress and hence, 
achieving optimum crop growth and yield. 
Remote sensing data can help to detect variation 
in the field and to apply variable irrigation with 
commonly used irrigation systems. This can help 
to overcome water stress resulting from 
extremely wet and dry condition, also to get 
maximum uniform yield in all the parts of the field 
while reducing water and nutrient losses [62,63]. 
Spectral reflectance in the visible region was 
observed higher in water stressed condition than 
the non-stressed condition. Vegetation indices 
like NDVI, RVI (Ratio Vegetation Index), PVI 
(Perpendicular Vegetative Index) and GI (Green 
Index) were found lower for stressed and higher 
for non-stressed crop [64]. [65] developed a high-
resolution soil moisture soil temperature service 
that can be used for real time decision support 
system in precision agriculture. Thus, this 
technology plays major role in efficient use of 
water and it can be further enhanced by the 
development of hyperspectral sensors.  

 
5. WEED MANAGEMENT  
 
Remote sensing is an efficient way for mapping 
weed patches in crop for site specific weed 
management [66]. Remote sensing with 
precision agriculture helps for better weed 
management practices [64]. Spectral signature 
helps to identify and differentiate between weed 
and crop plant related to their phenological and 
morphological attributes that are different from 
the crop [67]. [68] observed that radiance ratio 
and NDVI values were maximum in solid stand 
and minimum in solid weed plots. It was also 
found that pure stand can be easily distinguished 
from pure weed stand of R. spinosus after 30 
DAS. [69] noted that pure wheat can be 
distinguished from pure population of Malva 
neglecta after 30 DAS and remain distinguished 
upto 120 DAS and different levels of weed 
population can be differentiated amongst 
themselves after 60 DAS. Remote sensing 
technology thus can be used to identify weeds of 
different species and their infestation in field 
crops. Weed prescription maps can be prepared 
with Geographical Information system (GIS), on 
the basis of which farmers can be recommended 
for preventive control measures for weed control.    
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6. DISEASE AND PEST INFESTATION  
 
Remote sensing is a tool for disease and pest 
identification, spectral reflectance for chlorosis, 
yellowing of leaves and foliage reduction can be 
used for making correlation and interpretation 
[70]. Hyperspectral remote sensing technology is 
helpful in rapid assessment of physico-chemical 
response of crops to biotic stress like disease 
infestation without destructive sampling [1]. [71] 
found remote sensing as an effective and 
inexpensive method for pest and disease 
affected plant in oat and concluded that the 
difference can be evaluated by canopy 
characteristics and spectral references. [72] 
worked on different types of vegetation indices 
on Landsat imagery before and after defoliation 
for differentiating between healthy and unhealthy 
vegetation cover. It monitors the disease 
efficiently in the early stages of disease 
development, when it is difficult to distinguish the 
symptoms with field monitoring. Various 
techniques using RGB, multi-spectral, 
hyperspectral, thermal, and fluorescence imaging 
have been used to identify diseases in a wide 
range of crops [73]. Specific disease indices will 
amend disease detection, identification and 
monitoring in precision agriculture applications 
[74]. Spectral disease indices have possibility to 
improve disease detection, identification and 
monitoring in precision agriculture applications 
[75]. Diseases can cause considerable loss of 
crop production and thus their detection at the 
beginning and its spatial extent can help to 
contain the disease spread and lower production 
losses [67].  

 
7. CONCLUSION  
 
On the basis of findings of different research 
workers, it can be concluded that remote sensing 
can improve crop assessment and crop 
monitoring which can help in crop growth, site 
specific nutrient management, water 
management, weed management and monitoring 
pest and disease. This technology collects real 
time data with accurate position that leads to an 
effective analysis of data. Thus, we can identify 
different problems and solutions. Farmers can 
easily apply the solutions for the identified 
problems. Further, there is need to develop more 
accurate and new methodologies to crop health 
monitoring, disease detection under diverse 
climatic condition and field condition.  Hence, 
vegetative indices and remote sensing 
technology plays an important role in agriculture 

specially in the improvement of economy through 
crop health monitoring. 
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