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Abstract

Tidal interactions between short-period exoplanets and their host stars drive orbital decay and have likely led to
engulfment of planets by their stars. Precise transit timing surveys, with baselines now spanning decades for some
planets, are directly detecting orbital decay for a handful of planets, with corroboration for planetary engulfment
coming from independent lines of evidence. More than that, recent observations have perhaps even caught the
moment of engulfment for one unfortunate planet. These portentous signs bolster prospects for ongoing surveys,
but optimizing such a survey requires considering the astrophysical parameters that give rise to robust timing
constraints and large tidal decay rates, as well as how best to schedule observations conducted over many years.
The large number of possible targets means it is not feasible to continually observe all planets that might exhibit
detectable tidal decay. In this study, we explore astrophysical and observational properties for a short-period
exoplanet system that can maximize the likelihood for observing tidally driven transit timing variations. We
consider several fiducial observational strategies and real exoplanet systems reported to exhibit decay. We show
that moderately frequent (a few transits per year) observations may suffice to detect tidal decay within just a few
years. Tidally driven timing variations take time to grow to detectable levels, so we estimate how long that growth
takes as a function of timing uncertainties and tidal decay rate and provide thresholds for deciding that tidal decay
has been detected.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Star-planet interactions (2177); Transit timing
variation method (1710)

1. Introduction

From the discovery of the first exoplanet orbiting a Sun-like
star (Mayor & Queloz 1995), orbital decay powered by tidal
interactions has been a point of concern (Rasio et al. 1996). So
close to their host stars, short-period gas giants raise substantial
tidal bulges on their host stars, large enough that in some cases,
the bulge has been detected (Barros et al. 2022). For host stars
rotating more slowly than their short-period planetary compa-
nions revolve, the interaction between this tidal bulge and the
planet transfers angular momentum from the orbit to the star,
reducing the orbital distance and period (Jackson et al. 2008).
The rate at which tidal energy is dissipated within the host star
determines the orbital decay rate but, for stars on the giant
branch, may be comparable to the stellar luminosity (MacLeod
et al. 2018). The stellar dissipation processes, usually
quantified via the tidal dissipation parameter Qå, are likely
complex and remain poorly understood (Ogilvie 2014),
translating into orders of magnitude of uncertainty in Qå.

Once a gas giant spirals into its Roche limit, a distance
determined in part by the stellar and planetary densities
(Rappaport et al. 2013), tidal disruption can occur. This
disruption may proceed on a timescale set by the tidal decay
rate (Valsecchi et al. 2015; Jackson et al. 2016), or the
disruption may become unstable and proceed rapidly (Gu et al.
2003; Jia & Spruit 2017). Or, in a more dramatic case, the
planet’s Roche limit may lie within the star, and the tidally
decaying planet can be directly accreted by the star (Metzger
et al. 2012).

A variety of indirect observational evidence supports these
theoretical expectations that short-period planets are disrupted
and/or accreted by their host stars. Some stars show signs of
tidal- or accretion-induced spin-up (Qureshi et al. 2018); main-
sequence stars that currently host hot Jupiters tend to be
younger, on average, than main-sequence stars that host planets
less susceptible to tidal decay (Hamer & Schlaufman 2019);
and some red giant stars exhibit anomalous chemical signatures
that may be caused by planetary engulfment (Aguilera-Gómez
et al. 2016), and such signatures may also be present but short-
lived for main-sequence stars (Behmard et al. 2023). De et al.
(2023) provided the first direct detection of ongoing planetary
engulfment. Based on a large-scale survey, that study reported
the detection of a low-luminosity optical transient lasting
several days, accompanied by a months-long infrared bright-
ening. These signatures are consistent with engulfment of a
planet between 0.1 and 10 MJup by a Sun-like star about 4 kpc
from Earth.
Based on their survey detection statistics and other

considerations, De et al. (2023) estimated that such events
occur at a rate of between 0.1 and 1 yr−1 within the Milky Way.
As discussed in Metzger et al. (2012), the engulfment rate
scales with Qå; a value of Qå∼ 106 translates into about one
tidally driven planetary accretion event per year within the
Milky Way. However, the large uncertainties on Qå mean the
actual event rate is likewise highly uncertain. Moreover, Qå

likely depends on stellar structure, with later-type stars
exhibiting more efficient dissipation (smaller Qå), and probably
also on tidal driving frequency.
One way to constrain Qå and the galactic engulfment rate for

exoplanet systems would be to observe tidally driven orbital
decay, which would manifest as variations in transit timing.
Unfortunately, tidal decay has only been definitively detected
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this way for one hot Jupiter, WASP-12 b (Patra et al. 2017; Yee
et al. 2020). The period decay rate reported in Yee et al. (2020),
dP/dt= −29± 2 ms yr−1, translates to Qå≈ 2× 105 and
amounts to a change in the period of just under half a second
since the planet was discovered in 2008. A recent analysis of
TESS data confirmed this decay rate, reducing the error bars
below 1 ms yr−1 (Wong et al. 2022). Possible tidal decay has
also been reported for several other systems, including XO-3 b
(Ivshina & Winn 2022; Yang & Wei 2022), WASP-19 b (Patra
et al. 2020; Ivshina & Winn 2022), TrES-1 b, TrES-2 b, HAT-
P-19 b (Hagey et al. 2022), Kepler-1658 b (Vissapragada et al.
2022), and KELT-9 b (Harre et al. 2023). However, definitive
confirmation will likely require additional years of observa-
tions, and knowing which planets to prioritize requires
understanding how decay is detected and what parameters best
suit a system to exhibit detectable decay.

Detecting tidal decay requires fitting an ephemeris to observed
transit times. In the absence of tidal decay, the transit times are
regularly spaced (by orbital period P) and increase linearly with
observational epoch E. When there is tidal decay, transits come
faster and faster over time as the orbital period declines, and an
additional quadratic term proportional to E2 and involving the
period change dP/dE appears in the ephemeris. Deciding
whether a series of transit times is better modeled with a linear
ephemeris with no decay or a quadratic ephemeris with decay
requires considering more than the standard reduced χ2 (Press
et al. 2002); the quadratic ephemeris can always, in principle,
result in a smaller reduced χ2 because it involves one more model
parameter than the linear ephemeris.

In recent years, astronomers have invoked the Bayesian
information criterion (BIC; Schwarz 1978) to judge whether a
data set supports tidal decay. This simple expression
incorporates both χ2, thereby favoring models that minimize
residuals, and a term that penalizes introducing additional
model parameters, thereby favoring lower-dimensional models.
In this context, the BIC can be written as

( )c= + k NBIC ln , 12

where N is the total number of data points, and k is the number
of fit parameters, 2 for a linear fit and 3 for a quadratic fit.
Generally, when comparing two models, the one with the
smaller BIC is favored. For a difference in BIC between two
models, ΔBIC, Yee et al. (2020) pointed out that the Bayes
factor, B, i.e., the ratio of posterior probabilities favoring the
linear (no tidal decay) to the quadratic (tidal decay) model, is
given by

( ) ( )= -DB exp BIC 2 . 2

As an example, the collection of transit timing observations for
WASP-12 b considered here give ΔBIC≈ 200, favoring a
model with tidal decay by a probability ∼1043 times larger than
a model without tidal decay. Given its utility, in this study, we
explore the various system parameters and observational
strategies that can promote detection of tidal decay, framing
our analysis around the BIC.

We focus on the effects of tidal decay on a transiting planet’s
ephemeris. However, other astrophysical processes can impact
it as well. Orbital precession, for example, can accelerate the
transit times, thereby mimicking the effects of tidal decay, at
least as far as the transit is concerned (Patra et al. 2020).
Observing a planet’s eclipse times can distinguish between

decay and precession, since the former will accelerate both
transit and eclipse times, but the latter will accelerate one and
decelerate the other. Both mechanisms, though, introduce
curvature into the ephemeris (whether the transit or eclipse
ephemeris), and the analysis presented here can be used to
explore the detection of ephemeris curvature, whatever the
cause (or sign). Future studies may better tailor this approach to
searches for precession, line-of-sight acceleration (e.g., Deeg
et al. 2008), or other ephemeris perturbations.
In what follows, we first explore what astrophysical

properties for a planetary system best lend themselves to
precise transit times (Section 2.1). Then, we consider the details
of fitting both linear and quadratic curves in the cases of tidal
decay and no tidal decay (Sections 2.2–2.4). Finally, we apply
our formulation to several hypothetical observing programs and
then to real observational data for a few systems with possible
tidal decay (Section 3). Throughout the analysis, we invoke the
WASP-12 system as a point of comparison. Since WASP-12 is
the only system with definitively detected tidal decay, the
evolution over time of the various detection statistics we
explore here for this system serves as a template for detecting
tidal decay in other systems.

2. Analysis

For our analysis, we considered data for hot Jupiter and
short-period brown dwarf systems from the NASA Exoplanet
Archive downloaded on 2023 April 5 and subject to the
following requirements.

1. The planet must have “Published Confirmed” listed in the
“Solution Type” column.

2. The planetary system must have listed the ratios of both
the stellar radius to the semimajor axis and the planetary
to stellar radius.

3. The orbital period P< 3 days.
4. The planet’s radius Rp lay between five times Earth’s

REarth and 10 times Jupiter’s RJupiter.
5. The planet has an estimated mass Mp.
6. The planet must have a published orbital period P and

transit midpoint T0 (called “time of conjunction” in the
Exoplanet Archive), along with the corresponding
uncertainties.

The disintegrating planet WD 1856+534 b also happens to
satisfy all of these criteria, but we dropped it as irrelevant. In
some cases, the most recent set of system parameters provided
in the Exoplanet Archive did not include required values. In
those cases, we used the most recent set of values that did
include everything needed. In a handful of cases, we had to
calculate the orbital semimajor axes from the provided period
and stellar mass. These criteria left us with 137 systems.

2.1. Simplified Central Time Uncertainties

To explore the astrophysical properties that support precise
transit time estimates, we start with a simplified model for the
central time tc of a transit or eclipse (Carter et al. 2008). This
model involves (among other simplifications) neglecting orbital
eccentricity and limb-darkening and assuming that the transit-
ing planet is small compared to the star and that the out-of-
transit baseline is very accurately estimated. (Numerical
experimentation using fully accurate transit light curves shows
that this simplified estimate is good to about 10%.) Carter et al.
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(2008) defined several useful parameters related to the transit:
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where Rå is the stellar radius, a is the orbital semimajor axis, P is
the orbital period, i is the orbital inclination, b is the impact
parameter, T is the total transit duration (defined as the time for
the planet’s center to cross from limb to limb), and τ is the
ingress/egress duration. We also need a transit or eclipse depth δ,
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where Ip/å is the planetary/stellar disk-integrated intensity
(Winn 2010).

We also need the following parameters as defined in Carter
et al. (2008):

( )d
s

= GQ T , 8

( )q
t

=
T

, 9

where Γ is the sampling rate for the transit observations
(assumed constant), and σ is the per-point photometric
uncertainty. Therefore, Q correlates with total signal-to-noise
ratio (S/N) for the transit, and θ is the ratio of the ingress/

egress duration to the total transit duration. Based on these
definitions, Carter et al. (2008) provided a simplified estimate
for the uncertainty on the central time tc:

( )s q= -TQ 2 . 10t
1

c

Plugging in all of the above defined parameters, we find that
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Not surprisingly, the uncertainty increases with the photometric
uncertainty and decreases as the transit depth and sampling rate
increase. Why, though, does the mid-transit uncertainty
increase with ingress/egress duration? Consider a case with a
very long ingress/egress (e.g., a near-grazing transit with
b→ 1), which corresponds to a very nearly V-shaped light
curve. In that case, determining the mid-transit time relies on
being able to determine when exactly the light curve goes from
decreasing with time to increasing with time, with very little
transition in between. Without sufficient sampling, for
example, the instant of transition would be missed, and the
mid-transit time would be highly uncertain.
Figure 1 compares estimates of transit stc for several systems

to an estimate for WASP-12 b based on Equation (11).
Although it is impossible to estimate the per-point photometric
uncertainty σ for any system in general, since the photometric
uncertainty depends on the complex details of a particular
observation, we can at least include the approximate depend-
ence on stellar magnitude. First, we can relate the photon count

Figure 1. Simplified mid-transit time uncertainties (Equation (11)) normalized to the estimate for WASP-12 b (orange marker) vs. the orbital decay (Equation (22) in
Section 2.3) for many confirmed systems.
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rate N to the stellar flux in the bandpass of observation F as
N∝ F. Then we can fold in the relationship between flux and
apparent magnitude µ -m F2.5 log10 . Assuming Poisson
statistics gives

( )s µ -10 . 12m 5

Although simplified, the calculations illustrated in Figure 1
show that there are many systems that we might expect to have
smaller timing uncertainties than WASP-12 b and many
systems with tidal decay that are expected to be larger. But
there are only three with both: WASP-103 b, KELT-16 b, and
KELT-1 b. Barros et al. (2022) analyzed combined ground- and
space-based transit observations of WASP-103 b, realizing
typical timing uncertainties about 50% smaller than those for
WASP-12 b reported in Yee et al. (2020). However, Barros
et al. (2022) reported no detection of tidal decay but did see
tidal deformation of the planet. Likewise, Harre et al. (2023)
combined ground- and space-based data for KELT-16 b and
found that the BIC favors no tidal decay, but only slightly:
BIC= 292.9 for a constant period and BIC= 297.6 for decay.
Finally, Baştürk et al. (2023) combined 19 transit observations
for the brown dwarf system KELT-1 b and also found no
evidence for tidal decay, but they did report possible signs of
tidal synchronization of the host star’s rotation.

Having developed a sense for the range of timing
uncertainties and tidal decay rates, we next turn to how transit
observations are transformed into ephemerides, both those that
include no decay (linear in the observational epoch E) and
those that do include it (quadratic in E).

2.2. Fitting a Linear Curve to a Linear Ephemeris

For a linear fit to a linear ephemeris based solely on transits,
we can calculate the uncertainties on T0 and P using the epoch
E for each observed transit and the associated mid-transit time

uncertainty σt(E). We use σt(E) to represent the actually
observed uncertainty (as opposed to the analytic uncertainty
for a single transit stc or the uncertainty for the predicted future
transit time sttra

pred). The predicted time and associated
uncertainty for the transit time are, respectively,

( )= +t T PE, 13tra
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Although the sT P,0 term contributes, in practice, it is usually
orders of magnitude smaller than the other terms, so we
neglect it.
We can estimate the uncertainties analytically using standard

linear regression (see Press et al. 2002). First, define
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Figure 2 illustrates how adding more and more observations
impacts sttra

pred by following the history of transit observations of
WASP-12 b.
Of course, if we wait for a while before observing another

transit, the uncertainty for the next expected transit time will

Figure 2. (Top) The blue dots show the evolution of sttra
pred for WASP-12 b during the last several years, as calculated using the data from Yee et al. (2020) and

Equation (14). The orange curve (which uses the right y-axis) illustrates the corresponding evolution of the difference in BIC comparing a linear ephemeris, BIC(lin),
to a quadratic ephemeris, BIC(quad). (Bottom) The blue dots show the difference between the observed transit time t(E) at epoch E and a linear ephemeris fit,
T0 + PE. The orange line shows the quadratic ephemeris term using the dP/dE (-86.7 μs orbit−1) from Yee et al. (2020).
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grow as in Equation (14). If we waited long enough, twait, that
sttra

pred grows beyond some value, then scheduling the next
transit observation could be challenging:

⎜ ⎟
⎛
⎝
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( )s s
s

= -t
P

. 18
t T

P
wait

2 2

tra
pred 0

Systems that have not been observed for twait are the ones for
which additional transit observations would be most fruitful for
improving the linear ephemeris. For the systems considered
here, Figure 3 shows the expected time we would have to wait
for sttra

pred to grow as large as the transit duration T since the T0
value reported in the Exoplanet Archive (as of 2023 April 5).
Most planets have sufficiently precise linear ephemerides that
we would have to wait many years before the uncertainties on
their expected ttra

pred grew as large as their transit durations, but
uncertainties for a handful are likely large enough to warrant
follow-up already, at least based on the Exoplanet Archive
data. For example, CoRoT-14 b has an orbital period
P= 1.51214± 0.00013 days and T0= 2,454,787.6702±
0.0053 JD (Bonomo et al. 2017), which corresponds to 2008
November. Over the last decade and a half, sttra

pred has grown as
large as its transit duration, T= 1.2 hr. Very near the one-to-
one line, WASP-103 b was recently observed by the CHEOPS
telescope, observations that actually suggest an orbital period
increase rather than a decrease (Barros et al. 2022). However,
the resulting ephemeris was too recent to have been included in
our data, so we do not consider it here. A similar case is
TrES-3 b; we did not use more recent observations (e.g.,
Mannaday et al. 2022) that would likely update its timing
uncertainty and increase twait. Determining whether individual
systems require follow-up or just updated ephemerides is left
for future work.

Finally, fitting a linear curve to a linear ephemeris would be
expected to result in a BIC given by

( ) ( ) ( )= - +N NBIC lin 2 2 ln . 19

2.3. Fitting a Quadratic Curve to a Quadratic Ephemeris

For a quadratic ephemeris, the predicted time and associated
uncertainty for the time of the Eth transit are, respectively,
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where we have again neglected covariance between fit
parameters.
For tidal decay involving a constant phase lag (i.e., a

constant value for the star’s modified tidal dissipation
parameter Qå), dP/dE is given by
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where Mp is the planetary mass in Jupiter masses (MJup=
1.89813× 1027 kg), Må is the stellar mass in solar masses
(Me= 1.989× 1030 kg), Rå is the stellar radius in solar radii
(Re= 6.957× 108 m), and P is the orbital period in days.
Figure 1 compares estimates of dP/dE for many

systems to dP/dE for WASP-12, assuming a WASP-12-like

Figure 3. Time twait expected before the uncertainty on the linear ephemeris sttra
pred (Equation (14)) grows as large as the transit duration T vs. the time (as of 2023 April

5) since the T0 value reported in the Exoplanet Archive. The orange line shows y = x, and the orange points are systems that lie near or below that line. For these
systems, additional transit observations would likely significantly improve the linear ephemeris.
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Qå= 2× 105. Interestingly, many systems might be expected
to exhibit faster tidal decay, and many more systems likely
have properties that give rise to more precise transit timing stc,
at least based on the simplified analytic treatment outlined in
Section 2.1.

By analogy with the linear case, we can analytically
calculate the uncertainties on the fit parameters. For this
calculation, we define

( )
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Fitting a quadratic curve to a quadratic ephemeris would be
expected to result in

( ) ( ) ( )= - +N NBIC quad 3 3 ln . 28

We can use these expressions to explore how evidence for
tidal decay in the WASP-12 system mounted over the years as

a template for finding other systems exhibiting tidal decay. The
blue dots in Figure 4 shows the evolution of the tidal decay
S/N for WASP-12 b alongside the comparison of the BIC for
linear and quadratic fits, ΔBIC≡ BIC(lin)− BIC(quad). The
ΔBIC will grow as the data favor tidal decay. Not surprisingly,
as the tidal decay S/N goes up, the BIC preference for the
quadratic fit increases, too.
Another requirement for the observational constraints on

dP/dE to be meaningful is that uncertainties on the linear
portion of the ephemeris need to be small compared to the
quadratic portion. Otherwise, apparent deviations from a
putative linear ephemeris due to tidal decay could be attributed
to the uncertainties on the linear ephemeris. This condition
translates to

( )s s sº + <E
dP

dE
E

1

2
. 29T Plin

2 2 2 2
0

Figure 4 shows how this condition played out for WASP-12 b.
The increase in ΔBIC clearly correlates with the growth of the
quadratic term in Equation (29).
Considering other systems, Figure 5 shows the cumulative

change in orbital period expected due to tidal decay for our
collection of systems as compared to the uncertainty on the
linear ephemeris. Systems satisfying Equation (29) appear above
the orange line. For example, WASP-12, the only system for
which tidal decay has been definitively observed, appears above
that line, along with several other systems. Several caveats
should be considered in evaluating these results, including the
fact that we have assumed Qå= 2× 105. This is the value
inferred for WASP-12, which may exhibit unusually efficient
tidal dissipation (Weinberg et al. 2017) and therefore may not be
a representative value. For some well-observed systems, such as

Figure 4. The blue dots show the evolution of the tidal decay S/N / /s= dP

dE dP dE for WASP-12. The green triangles show the corresponding evolution of the best-fit

quadratic term sEdP

dE

1

2
2

lin. Both of these data use the left y-axis. The orange curve shows the same difference in BIC values as shown in Figure 2 calculated

numerically. These results are based on the same data as in Figure 2 and reported in Yee et al. (2020). The dashed orange line shows the analytic approximation given
by Equation (35).
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WASP-18b and WASP-19b, the lack of observed orbital decay
to date has been used to constrain their values of Qå to >107 and
>106, respectively (Rosário et al. 2022). Even so, the results
point to several systems that merit follow-up transit observations.
Several of the systems above the line in Figure 5 have been
noted to exhibit period changes. For example, HAT-P-23 has

( ) = -E 0.003dP

dE

1

2
2 and σlin= 0.002 days, while Hagey et al.

(2022) reported dP/dt= −5.2± 5.8 ms yr−1 (which works out
to ΔP≈ −0.004 days since T0 for HAT-P-23 b).

2.4. Fitting a Linear Curve to a Quadratic Ephemeris

Finally, we consider the case of fitting a linear curve to a
quadratic ephemeris. Analyzing this case is useful because it
will allow us to explore how to estimate the BIC thresholds we
should look for if we suspect a planet shows signs of tidal
decay. (The other combination, fitting a quadratic to a linear
ephemeris, would, in principle, result in a quadratic coefficient
statistically consistent with zero and the same BIC expression
as in Section 2.3.)

To start, consider the linear curve that results from fitting the
quadratic ephemeris. Since |dP/dE|= T0 and = P (where T0
and P are the true values for the system), we might suspect that
the best-fit values, which we will call ¢T0 and ¢P , would closely
resemble the actual values, i.e., ¢ »T T0 0 and ¢ »P P. Indeed,
fitting a linear curve to the transit times for WASP-12 b from
Yee et al. (2020) returns ¢T0 and ¢P that match T0 and P to better
than a few parts in 10,000. But the large collection of high-
quality data for WASP-12 b means that even this small
disagreement is still statistically discrepant. This result
comports with the results from Section 2.3; those systems for
which we have sufficient data to detect a nonzero dP/dE are
also those for which we have very small error bars on T0 and P.
Therefore, in order to calculate the BIC for fitting a linear curve

to a quadratic ephemeris, we will need to also calculate ¢T0 and
¢P , which can be written as

⎛
⎝

⎞
⎠

( )¢ = + D ¢T T
dP

dE
T , 300 0 0

⎛
⎝

⎞
⎠

( )¢ = + D ¢P P
dP

dE
P , 31

where D ¢T0 and D ¢P are the corrections we need to work out.
As outlined in the Appendix, standard linear regression gives
the following formulae for D ¢T0 and D ¢P :

⎜ ⎟
⎛

⎝

⎞

⎠
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Now we can calculate the resulting χ2 for fitting a linear curve
to a quadratic ephemeris,

⎜ ⎟

⎜ ⎟
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⎠

⎛
⎝

⎞
⎠

⎛
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( )
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dE

E P E T
N

1

4
2 ,

34

E t E

E t E

2

transits

0
2

2

transits

2
0

2

and the difference in BIC values for a linear curve and a
quadratic curve, both fit to a quadratic ephemeris as determined

Figure 5. Cumulative change in orbital period due to tidal decay expected theoretically vs. uncertainties on the linear ephemeris (Equation (14)). WASP-12 b is shown
with an orange circle, and the orange line shows y = x. Systems above that line may have experienced sufficient tidal decay since T0 that it is distinguishable from the
uncertainties on the linear ephemeris. Individual planets near or above the line are labeled as follows: HAT-P-23 b = “H-23b,” HATS-18 b = “H-18b,” HATS-70
b = “H-70b,” KOI-13 b = “K-13b,” Kepler-17 b = “K-17b,” Kepler-76 b = “K-76b,” NGTS-10 b = “N-10b,” Qatar-2 b = “Q-2b,” TOI-2109 b = “T-2109b,”
WASP-12 b = “W-12b,” WASP-121 b = “W-121b,” WASP-18 b = “W-18b,” WASP-33 b = “W-33b,” and WASP-4 b = “W-4b.”
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analytically:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
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å s
D =

- D ¢ - D ¢

- +
Î
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dE

E P E T

N

BIC
1

4

ln 1. 35
E t E

2

transits

2
0

2

Of course, given a set of already observed transits, we could
easily calculate the ΔBIC. The benefit of Equation (35) is that
we can estimate the ΔBIC expected for a sequence of planned
transit observations that have yet to be conducted (given
reasonable estimates for the expected timing uncertainties). The
dashed orange line in Figure 4 shows how closely the analytic
approximation matches the numerical result obtained by
directly comparing a linear to a quadratic fit.

3. Applying the ΔBIC Expression

Applying Equation (35) to the ephemerides for transiting
planets can provide the likelihood of detecting tidal decay for a
given planned series of transit campaigns; for an expected tidal
decay rate (Equation (22)), when should observations be
collected, and how many? A comprehensive application of
Equation (35) to the suite of transiting hot Jupiters could be
fruitful in these ways, but for the present paper, we confine our
application to a few example cases.

3.1. Hypothetical Cases

First, we consider hypothetical cases to gauge how
effectively tidal decay could, in principle, be detected by
various observing strategies for planetary systems with definite
quadratic ephemerides. For many of the calculations in this
section, we assumed a tidal decay rate equal to WASP-12 b’s,

P/|dP/dt|= 2.3 Myr or dP/dE= 86.7 μs orbit−1 (Yee et al.
2020), and a constant transit timing uncertainty, ( )s = const.t E

Strictly, ΔBIC depends on the transit epoch E and not on
orbital period, but to give a sense of the timescales over which
observational campaigns might be conducted, we assumed
WASP-12 b’s orbital period P= 1.091419649 days to convert
from E to years.
To begin with, we consider some overly simple observa-

tional campaigns (left panel of Figure 6). (N.B.: Throughout
this section, the x- and y-axes of different panels often do not
match up.) For the blue and orange lines, that uncertainty was
taken as equal to the median for the WASP-12 b data set from
Yee et al. (2020), σt(E)= 〈σW12b〉= 0.00032 days, while the
green line shows the result for an uncertainty that is 10 times
larger (0.0032 days). The blue and green lines show howΔBIC
would grow if we could (unrealistically) observe every transit,
while the orange line shows what would happen if we observed
every 10th transit.
As previously stated, ΔBIC> 0 indicates a statistical

preference for a quadratic over a linear ephemeris, and all
curves in the left panel of Figure 6 show ΔBIC initially
dropping from zero into negative values. Intuitively, this
behavior reflects the need for curvature in the ephemeris to
build up over time so that the quadratic term ( ∣ ∣dP dE E1

2
2; see

Equation (20)) grows sufficiently large that a linear regression
is impacted. In other words, we have to wait for a while after a
transiting planet is discovered to spot tidal decay. Equation (35)
indicates that that crossover point depends on the total number
of observations N, the timing/frequency of those observations
(the summation term), the timing uncertainty, and the tidal
decay rate dP/dE.

Figure 6. Application of Equation (35) to planetary systems with WASP-12 b–like tidal decay and transit timing uncertainties. The left panel shows the evolution of
ΔBIC assuming that a transit is observed (1) every orbit (solid blue), (2) every 10th orbit (dashed orange), and (3) every orbit but with a timing uncertainty that is
10 times larger than the other two cases (dashed–dotted green). The right panel shows the epoch Ecrossover at which ΔBIC crosses over a given value as a function of
the tidal decay rate ( )dP dE and transit timing uncertainty σt(E). As a point of comparison, for WASP-12 b, |dP/dE|/σt(E) ≈ 3 × 10−6, as shown by the vertical gray
line. These curves optimistically assume that the transit for every epoch is observed up to Ecrossover.
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The right panel of Figure 6 shows the dependence of the
crossover epoch Ecrossover for a desired ΔBIC value on the ratio
|dP/dE|/σt(E), assuming that every transit since a planet’s
discovery is observed. If, for example, ΔBIC= 10 were the
goal of an observing program (dashed orange curve) for a system
with WASP-12 b–like properties (|dP/dE|/σt(E)≈ 3× 10−6),
then a minimum of about 1000 transits would need to be
observed. Approaching the situation from the opposite direction,
a survey including nearly every single transit up to E= 1500 and
with WASP-12 b–like timing uncertainties would be expected to
achieve ΔBIC≈ 100 if the system actually exhibited WASP-12
b’s tidal decay. In this way, we can apply Equation (35) to a
particular observing program to determine a reasonable threshold
for decay detection.

Next, we consider somewhat more realistic observing
campaigns (Figure 7). The top left panel compares ΔBIC growth
for one transit observation and two observations in 1 Earth yr. In
about 9 Earth yr, the curve corresponding to twice-annual
observations (dashed orange) has grown to nearly twice theΔBIC
for once-annual observations (solid blue). The top right panel
compares ΔBIC growth for one observation every 2 months all
Earth year-round and the other involving one observation every 2
months for 6 months (dashed orange). Here the two curves weave
over one another, suggesting little advantage of one program over
the other. This result is not surprising, since little curvature
develops in the ephemeris over 6 months.

Next, consider the bottom left panel of Figure 7. The solid
blue curve involves two consecutive transit observations each

Earth year, while the dashed orange curve involves 10
consecutive observations each Earth year. Not surprisingly,
ΔBIC increases much more rapidly for the latter program than
the former because, in each observing session, significantly
more transits are collected. The dashed–dotted green curve
involves the same total number of transits as the dashed orange
curve but randomly phased (i.e., not necessarily consecutive
transits), illustrating that the timing of observations over a short
(compared to the decay time) timescale has minimal impact on
the evolution. For this particular instantiation, the final ΔBIC
ends up slightly below the dashed orange curve, but other
examples (not shown) have ΔBIC equal to or even slightly
above the dashed orange curve, depending on exactly how the
observations are timed.
Finally, consider the bottom right panel of Figure 7. This

panel shows how ground-based observations can combine with
observations from a TESS-like mission to detect tidal decay.
For this calculation, we first assumed that every transit was
observed for a WASP-12–like system during a 27 day period in
each year, followed by no observations for 25 TESS sectors,
and then another sequence of transits were observed, etc. The
solid blue line shows this scenario. The dashed orange line
shows the same program except with a single ground-based
transit included every 6 months. The dashed–dotted green line
shows the same program except with six ground-based transit
observations randomly spread out during a 6 month observing
season. Not surprisingly, the ΔBIC for the TESS + ground
programs grows more quickly, demonstrating the power of

Figure 7. Application of Equation (35) to planetary systems with WASP-12 b–like tidal decay and transit timing uncertainties using more realistic observing
strategies. The top left panel shows how ΔBIC grows with one or two transit observations in an Earth year. The top right panel shows how ΔBIC grows with
bimonthly transit observations during a whole (Earth) year (solid blue curve) and during a hypothetical observing season of 6 months with no observations during the
other 6 months. The bottom left panel shows how ΔBIC grows assuming two consecutive transit observations each Earth year (solid blue curve) and 10 consecutive
observations each Earth year (dashed orange curve). The dashed–dotted green curve shows the same total number of transits (10 annually) as the dashed orange curve
but randomly timed. The bottom right panel shows how ΔBIC evolves for an observational program meant to mimic TESS observations (“TESS only”; solid blue).
That program involves about two dozen transits once every 25 TESS sectors, which span 27 days each. The dashed orange line (“TESS + ground”) shows the same
observing program but with the addition of one transit observation every 6 months, meant to represent a ground-based observation. Observations for both programs
assume the same transit timing uncertainties.
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combining the two approaches. The dashed–dotted green line
(six ground-based transits) significantly exceeds the solid blue
line once the signal of tidal decay starts to emerge and ΔBIC
grows large, while the dotted orange line (one ground-based
transit) only modestly exceeds it.

Although the approach here needs to be tailored to each
specific observing program for detailed predictions, these
results illustrate its general utility. They show that detecting
tidal decay requires collecting regular observations and
allowing sufficient time for decay to manifest. In general, a
significant increase in ΔBIC requires a significant fractional
increase in the number of observations. Adding just a few more
observations to an already full observing program does not
make much difference unless they are judiciously timed. Two
encouraging conclusions of these results: (1) an observing
program that can only observe a few times a year can still have
an impact, and (2) it may be more worthwhile to double the
number of candidates, focusing on the planets most likely to
exhibit decay, than to double the number of transits observed
for a given planet if a program already involves several
observations in a year.

3.2. Real Cases

Finally, we consider real systems (Figure 8). These examples
all involve systems for which possible tidal decay has been
reported. We take observations for TrES-1 b, TrES-2 b, and
HAT-P-19 b from Hagey et al. (2022) and KELT-9 b from
Harre et al. (2023). For the calculations in this section, we take
the correct (and variable) transit timing uncertainties and the

corresponding orbital periods to convert epoch E to (Earth)
years. To extrapolate the ΔBIC evolution forward in time, we
assume that observations continue with the same median
frequency as before. For example, TrES-2 b has been observed
every four orbits, so we assume that same observing cadence
going on past 2020.
Hagey et al. (2022) analyzed transit times reported in the

Exoplanet Transit Database,3 and, for TrES-1 b, a tidal decay
rate dP/dt= −10.9± 2.1 ms yr−1 was favored over a constant
period byΔBIC= 9.7. The left panel of Figure 8 shows a good
match between the numerical and analytic estimates for ΔBIC,
and, assuming the nominal tidal decay rate, the analytic
estimate suggests thatΔBIC ought to exceed 50 within the next
few years. However, it may take until about 2030 to reach the
same level as reported for WASP-12 b in Yee et al. (2020); not
surprising, given that WASP-12 b’s dP/dt is about twice as
large.
Moving next to TrES-2 b, Hagey et al. (2022) estimated

dP/dt= −12.6± 2.4 ms yr−1 with tidal decay favored at
ΔBIC= 8.3. Again, Figure 8 shows a good match between
the numerical and analytic estimates (albeit with considerable
scatter in the “Numerical” estimate). Again, the smaller dP/dt
than WASP-12 b’s means that ΔBIC grows more slowly and
may not exceed 50 until 2025. Like the TrES-1 data, the TrES-
2 observational data show significant statistical fluctuations in
ΔBIC; between - =E E 500min and 1000, ΔBIC climbed
rapidly before settling back toward zero. The dashed orange

Figure 8. Evolution of ΔBIC for several real planets. The solid blue “Numerical” lines show the evolution based on previously published observations, while the
dashed orange lines show the evolution based on Equation (35). For points in the latter calculation beyond the previously published observations, we assumed σt(E)
equal to the average uncertainty for the previously published observations. We also assumed the transits were observed at a cadence equal to the median cadence for
the previously published observations. For example, previous transit observations of TrES-2 b have typically been conducted once every four orbits. Observations for
TrES-1 b, TrES-2 b, and HAT-P-19 b come from Hagey et al. (2022), and observations for KELT-9 b come from Harre et al. (2023). For this plot, we have subtracted
the minimum reported epoch Emin from E.

3 http://var2.astro.cz/ETD/
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line shows that such a rapid increase would not have been
expected so soon after the planet’s discovery. It remains to be
seen whether the recent upward tick in ΔBIC seen in the most
recent data represents the beginning of a true increase or
whether it too is another statistical fluctuation, although the
upward tick is consistent with expectations.

For HAT-P-19 b, Hagey et al. (2022) reported dP/dt=
−55.2± 7.2 ms yr−1 and dP/dE= 606 μs orbit−1, with tidal
decay favored at ΔBIC= 8.3. This dP/dE value is almost
seven times that for WASP-12 b, and the analytic ΔBIC
reflects this, with a value predicted to exceed that for WASP-12
b by 2024. However, the “Numerical” estimate shows
considerable nonmonotonicity, reversing direction and sign
several times during the observational baseline. The “Numer-
ical” ΔBIC appears to significantly underperform the analytic
estimate. In this context, the right panel of Figure 6 is
particularly useful. The average timing uncertainty for the
HAT-P-19 b data is 0.0007296 days, about twice the average
for WASP-12 b (0.00032 days). If all orbits since discovery had
been observed, by - =E E 1000min , we would expect ΔBIC
to exceed 100 (dashed–dotted green line in the right panel of
Figure 6). Of course, not every orbit of HAT-P-19 b has been
observed, but the fact that the “Numerical” ΔBIC does not yet
exceed 10 suggests that perhaps the tidal decay reported for
HAT-P-19 b is spurious.

Finally, Harre et al. (2023) combined ground-based, Spitzer,
TESS, and CHEOPS transits and eclipses of the ultrahot Jupiter
KELT-9 b, which orbits a star at the A/B stellar type boundary,
and reported a possible decay rate of dP/dt=
−24.42± 10.66 ms yr−1 with ΔBIC= 8.4 (although the data
show a preference, ΔBIC= 13.2, for apsidal precession).
Figure 8 shows that the “Numerical” ΔBIC only became
positive with the most recent observations before nosing back
to zero with the very last observation. The analytic curve
suggests thatΔBIC would not have been expected to cross zero
until recently anyway and that it might surpass 20 in 2023.
Ivshina & Winn (2022) also considered TESS observations of
KELT-9 b and found no evidence for decay. Continued
monitoring, especially observations of planetary eclipses,
seems likely to resolve whether the system actually experiences
tidal decay, which would be especially surprising, since A/B
stars are not expected to exhibit significant tidal dissipation
(Ogilvie 2014).

What to make of all of these comparisons? One key
conclusion is that statistical fluctuations in ΔBIC often appear
and may falsely hint at tidal decay. Continued, sustained
growth in ΔBIC is probably required to confidently report
detection of tidal decay. A calculation like that depicted in the
right panel of Figure 6 tailored for a specific campaign provides
a way of assessing the threshold ΔBIC beyond which tidal
decay may be plausible.

4. Discussion and Conclusions

The approach presented here allows observers to plan
observational programs to maximize the possibility for
detecting tidal decay while minimizing the required resources.
This approach is framed in such a way that it does not, in
principle, even require observations to make useful predictions;
if observers have estimates for the expected transit
timing uncertainty (Equation (11)) and tidal decay rate
(Equation (22)), along with a planned observational sequence

(which orbital epochs will be observed), Equation (35)
provides a way of estimating the likelihood of detecting tidal
decay.
Naturally, this approach comes with important caveats and

limitations. For instance, we have assumed a linear regression
approach, but real transit data may have complex and
asymmetric uncertainties (Hagey et al. 2022) for which such
an approach is only an approximation. Our approach also
assumes that the BIC provides an accurate means for
comparing models with tidal decay and those without.
However, the BIC is only valid for sample sizes much larger
than the number of model parameters (Schwarz 1978).
Fortunately, seeking signs of tidal decay necessitates a large
number of observations, so this requirement is likely always
fulfilled in this context. Finally, we have limited our scope to
tidal decay and have not explicitly considered other astro-
physical processes that can affect the ephemeris. But our
approach should apply to any mechanism that introduces a
quadratic term into the ephemeris, so it should be able to
capture the impact of precession on both transit and eclipse
timings (Winn 2010). Our method can likely be extended to
consider other simple ephemeris effects, as long as they can be
readily captured by a linear regression approach.
Another potentially fruitful extension would be to incorpo-

rate a more sophisticated relationship between stellar properties
and tidal decay rate. Studies of stellar tides suggest that the
deeper convective zones in later-type (i.e., cooler) stars tend to
promote tidal dissipation, resulting in smaller tidal dissipation
parameters Qå (e.g., Barker 2022), which would tend to
recommend their planetary systems as good targets for
detecting tidal decay. Main-sequence, cooler stars tend to be
smaller, too, giving deeper transits and therefore smaller timing
uncertainties (Equation (11)). On the other hand, main-
sequence cooler stars are dimmer, which tends to inflate the
photometric uncertainty (Equation (12)). Figuring out how to
thread this needle and choose the best set of stars to optimize
decay detection should be the subject of future work.
As discussed in Section 1, detecting tidal decay is critical for

constraining Qå and planetary engulfment rates. As pointed out
in Metzger et al. (2012), the engulfment rate should scale
roughly as Qå, and if many stars had Qå values as small as
WASP-12ʼs, we might expect a galactic engulfment rate as
large as 18 yr−1. This value is likely overly large, since there is
reason to believe WASP-12 has unusually dissipative tides
(Bailey & Goodman 2019). Determining the actual rate is
important for future surveys for engulfment signatures because
the larger the rate, the fewer stars would need to be monitored
to catch engulfment. By efficiently directing searches for tidal
decay, the approach outlined here would feed forward to guide
surveys to search for engulfment as well.
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Appendix

We start with an ephemeris that resembles Equation (20),
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We can then incorporate these expressions into Equation (A2)
and separate out the terms involving dP/dE to arrive at
Equation (33).
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