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ABSTRACT 
 

Mapping of soil properties is an important operation as it plays an important role in the knowledge 
about soil properties and how it can be used sustainably. Knowledge of soil variability of any region 
is crucial for development of site-specific management practices for that region as this will enhance 
the crop productivity and maintain the good soil health. With this background, present study was 
conducted to quantify the spatial variability of different soil physical properties and soil available 
micronutrients in Ujjain tehsil (Ujjain) district of Madhya Pradesh state, India. A total one hundred 
fifty geo-coded surface (0-15 cm depth) soil samples, were collected across the study area. These 
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samples were analyzed using standard method for different some soil properties viz: soil texture 
(sand, silt and clay) and soil available micronutrients, viz. extractable zinc (Zn), copper (Cu), 
manganese (Mn) and iron (Fe) in laboratory. The range of sand, silt, clay, Zn, Cu, Fe and Mn in the 
study region were varied from 9.15 to 24.06 %, 24.00 to 41.55 %, 40.20 to 58.60 %, 0.12 to 1.66 mg 
kg

-1
, 2.06 to 6.22 mg kg

-1
, 3.70 to 10.40 mg kg

-1
, and 2.41 to 14.64 mg kg

-1
, respectively. The data 

were analyzed using standard statistical methods and geostatistics, which included creating semi-
variograms and mapping by standard kriging procedures. Semi-variograms were produced for soil 
properties and their regional distributions were plotted. The observed soil parameters were best 
represented by four models: Exponential, Circular, Gaussian, and Hole effect. The modelled 
variables showed strong and moderate spatial dependencies, as demonstrated by the Nugget/Sill 
(Co/Co+C) ratio. The distribution maps of soil features may serve as a reference for implementing 
site-specific crop management in soils with comparable characteristics. Further, this research 
indicates the relevance of GIS- application in soil variability investigations. 
 

 
Keywords: Soil separates; soil variability; geo coded; geo-statistics; spatial dependence; semi-

variogram, ordinary kriging. 
 

1. INTRODUCTION 
 
Soil is an essential and limited natural resource 
for agriculture [1,2]. Soil fertility is crucial for 
enhancing agricultural yield. It encompasses not 
only the provision of nutrients but also their 
effective management. The soil's fertility 
condition denotes its capacity to deliver nutrients 
[2]. Assessing soil fertility is a fundamental tool 
for making informed decisions about 
implementing effective nutrient management 
techniques [3]. Soil fertility assessment 
encompasses many methodologies, with soil 
testing being the predominant method used 
worldwide [4]. Soil testing evaluates the present 
fertility level and gives data on nutrient 
accessibility in soils, which serves as the 
foundation for fertilizer recommendations to 
optimize crop yields and sustain soil fertility over 
an extended time [5].  
 
Geostatistical methods have successfully 
evaluated the spatial variability of soil properties 
in different geographical and ecological contexts. 
This assessment has contributed to improving 
soil health, managing plant nutrients in a site-
specific manner, understanding soil erosion, and 
determining the impact of different land uses on 
soil variability [6]. The approach of geo-statistics 
is widely recognized as the most reliable and 
comprehensive method for interpolation. It takes 
into account the geographical variance, position, 
and distribution of samples [2]. 
  
Accurate knowledge of the geographical 
variability and distribution of soil qualities is 
crucial for farmers aiming to enhance the 
effectiveness of fertilizers and improve crop 
output [7]. Geostatistics is a potent method that 

is valuable for estimating the spatial variability of 
soil characteristics and soil nutrients at many 
scales, including field, catchment, and regional 
levels. In addition to the variety in soil properties 
caused by farmers, it is also recognized that soil 
variability may arise from edaphic variables, 
including the parent material (rock types that 
produce the soil) and the location of the soil on 
the catena, among other causes [2,8].  
 

Several research use geo-statistics to ascertain 
spatial variability and create maps of soil 
attributes in a spatial context [1,9-11]. 
Understanding the variability of soil is essential 
for both practical management and the creation 
of models [12,5]. Hence, this research aims to 
measure the spatial variability of soils in Ujjain 
tehsil of Madhya Pradesh. 
 

2. MATERIALS AND METHODS 
 

2.1 Site Details 
 
The Ujjain tehsil is located to the north of 
Ghatiya, with Indore to the south, Dewas to the 
east, and Badnagar to the west. This tehsil is 
located inside the Ujjain district of the state of 
Madhya Pradesh. Ujjain is positioned on the 
bank of the Kshipra river and is situated at the 
coordinates of 23°10'45.4800"N latitude and 
75°47'5.6832"E longitude. Ujjain tehsil is located 
at a height of 494 meters above the mean sea 
level. The total land area of Ujjain tehsil is 
60987.4 hectares. Ujjain tehsil is located in the 
northwestern region of Madhya Pradesh. The 
area typically has a hot, sub-tropical climate with 
an average rainfall of 914.5 mm. The rainfall is 
unevenly distributed, with the majority occurring 
between June and September. The warmest 
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month is May, while December is the coldest. 
The Ujjain district has a temperate environment, 
with an average maximum temperature of 
40.73°C. The mean lowest temperature 
throughout the winter season is 8.23°C.  
 

2.2 Agricultural Scenario 
 
Soybean is the predominant crop cultivated in 
70% of the Ujjain tehsil during the rainy season 
(kharif). Additional kharif crops include red gram, 
maize, and sorghum, which is used as feed. The 
crops cultivated during the rabi season include 
wheat, chickpea, potato, onion, and garlic. 
During the summer season, farmers cultivate 
field crops such as blackgram and greengram, as 
well as vegetable crops like coriander, chilli, and 
brinjal. Groundwater and surface water are used 
for irrigation. The predominant portion of the 
region consists of rainfed land, with other areas 
being slightly irrigated. 
 

2.3 Soil Survey and Sampling Techniques 
 

The sample sites were randomly selected over 
the agricultural land in the research                           

region, taking into account land use and soil 
association maps, terrain, and the variability of 
soil types. The gathering of field data and soil 
samples was conducted by using GPS 
technology to navigate to certain spots. A total of 
150 surface soil samples (0-15 cm) were 
gathered from a farmer's field during the non-
growing season to prevent the influence of 
fertilization during crop cultivation. At each 
primary sampling location, a 1.0 kilogram 
composite soil sample, which accurately 
represents the area, was collected and recorded 
in a correctly labeled sample bag. Soil  samples 
were excluded from atypical sites such as 
locations with animal excrement buildup,      
areas with inadequate drainage, and                             
any other locations that cannot provide 
representative soil samples. During the process 
of soil sampling, many data points were                    
gathered from each site, including geographic 
information such as latitude and longitude, 
topography, slope, elevation, land use                         
type, crop type, local soil name, sample depth, 
soil color, crop residue management, rate of 
previous year's fertilizer application, and            
fertilizer type.  

 

 
 

Fig. 1. Location of study area 
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2.4 Analysis of Soil Separates and DTPA 
Extractable Micronutrients 

  

The soil available Fe, available Mn, available Cu, 
and available Zn were extracted with 
diethylenetriaminepentaacetic acid (DTPA), and 
the extracted Fe, Mn, Cu, and Zn were 
determined with flame atomic absorption 
spectrometry by Lindsay and Norvell [13].  
 

2.5 Descriptive Statistics 
   
Descriptive statistics of the soil data were 
calculated to present the soil                             
parameters. The minimum, maximum, mean, 
standard deviation, coefficient of variation, and 
skewness values of each soil parameters were 
determined using SPSS 21.0 software. Webster 
[14] indicated that the most serious departure 
from normality encountered with                                       
soil data is positive or negative skewness. Thus, 
the shapes of parameter distributions that are 
described by skewness are also accepted                        
as an indication of normality. For variables 
without normal distributions, those with positive 
or negative skewness values of greater                           
than 0.5 were subjected to square root 
transformation whereas those with values greater 
than 1.0 were subjected to log transformation. 
Data showed non-normal distribution were 
subjected to the log normal distribution before 
the geostatistical analysis, data of all the soil 
variables were tested for normality using 
Kolmogorov-Smirnov (K-S) and skewness. the 
calculation of semi-variance of the particular soil 

variable according to Goovaerts et al. [15]. A 
Pearson correlation matrix among all the soil 
variables was also generated to investigate the 
association between the variables and Microsoft 
Excel. 

 
2.6 Geostatistical Analysis 
  
The Geostatistical Analyst tool in ArcGIS 10.5 
was used to model the semivariogram and 
choose the most suitable semivariogram model. 
Prior to fitting the semivariogram models, the 
skewed soil parameters were normalized by 
using the natural logarithm to get a nearly normal 
distribution. The data underwent back 
transformation via the process of back 
transformation. 

 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖 ) − 𝑍(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1   

  
Where: N (h) is the number of pairs of points 
distant from each other by h. We assessed many 
semivariogram models in ArcGIS v 10.3.1 to 
determine the best match for the experimental 
data. An evaluation was conducted on several 
soil properties using the circular, spherical, tetra 
spherical, exponential, Gaussian, K-Bessel, J-
Bessel, and stable models. The semivariogram 
model with the lowest nugget/sill ratio was 
chosen as the most suitable model for the 
specified soil attributes [16]. The exponential, 
Gaussian, spherical, and circular models 
provided the most accurate match for the soil 
parameters that were evaluated.  

 
Exponential model: 
 

γ(h) =  C0 + C [1 − exp {−
h

r
}]  𝑓𝑜𝑟 ℎ > 0  

  
Gaussian Model: 
 

γ(h) =  C0 + C [1 − exp {−
h2

r2}]  𝑓𝑜𝑟 ℎ > 0  

 
Spherical Model: 
 

γ(h) =  C0 + C [
3ℎ

2𝑟
−

1

2
 (

ℎ3

𝑟3)]  𝑓𝑜𝑟 0 < ℎ ≤ 𝑟 𝑎𝑛𝑑 𝐶0 + 𝐶 𝑓𝑜𝑟 ℎ > 𝑟  

 
Circular Model: 
 

𝛾(ℎ) = 𝐶0 + [
2𝑐

𝜋
 
ℎ

𝑟
 √1 − (

ℎ2

𝑟2 ) + arcsin (
ℎ

𝑟
)]  𝑓𝑜𝑟 0 < ℎ ≤ 𝑟 𝑎𝑛𝑑 𝐶0 + 𝐶 𝑓𝑜𝑟 ℎ > 𝑟  
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Where 
 
 h = lag distance, 
 C0 = nugget variance,  
 C = structural variance (partial sill) and 
 r = range  
 
The semivariogram parameters, including the 
nugget (C0), partial sill (C), sill (C + C0), and 
range (r), were computed to analyze the spatial 
structure of the soil variables and to be used as 
input for kriging interpolation.  
  
The characteristics that define the spatial 
organization of a soil attribute are the range and 
the nugget/sill ratio, or (C0) /(C+C0). The range 
indicates the length of time that the correlation 
between the values of the soil properties is 
present. In general, a low ratio of (C0) /(C+C0) 
and a large range suggest that kriging may 
provide high accuracy of the attribute [17]. The 
criteria for categorizing the spatial dependency of 
variables was the nugget/sill ratio. Strong 
geographic reliance was defined as ratio values 
less than or equal to 0.25, moderate spatial 
dependence as values between 0.25 and 0.75, 
and weak spatial dependence as values more 
than 0.75 [17]. 
 
The un-sampled areas' various soil properties 
were estimated using the ordinary kriging (OK) 
approach. For randomly dispersed soil samples, 
OK is the most effective unbiased prediction 
approach, as recommended by Schepers et al. 
[18]. OK is best suited for estimating soil 
parameters for un-sampled places because it 
lessens the influence of outliers on prediction 
[19]. The cross-validation method was used to 
assess the soil maps' accuracy [20].  
 

2.7 Principal Component Analysis 
 
Principal component analysis (PCA) is a 
dimension reduction technique in multivariate 
analysis that identifies orthogonal linear 
recombination of correlated attributes or 
variables in order to characterize the primary 
sources of variability in the data. In lieu of a 
covariance matrix, a correlation matrix 
comprising specific soil properties was utilized as 
the input for the analysis, leading to the 
attainment of normalized PCA. Numerous 
principal component (PC) variables are 
incorporated throughout the analysis. It was 
postulated that principal components (PCs) that 
acquire high Eigen values provide the most 
accurate representation of the properties of the 

field [18]. The current investigation utilized PCs 
that possessed Eigen values equal to or greater 
than 1.0 in order to construct the management 
zone classes. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Descriptive Statistics of Selected Soil 
Properties 

 
The descriptive statistics pertaining to specific 
soil properties (namely sand, silt, clay, Zn, Fe, 
Cu, and Mn) are displayed in Table 1. The mean 
values for the available micronutrients Zn, Fe, 
Cu, and Mn were 0.63, 3.65, 6.68, and 8.72, 
respectively, and ranged from 0.12 to 1.66 mg 
kg

-1
, 2.06 to 6.22 mg kg

-1
, 3.70 to 10.40 mg kg

-1
, 

and 2.41 to 14.64 mg kg
-1

. The variability 
pertaining to the physical properties of the soil, 
specifically sand, silt, and clay, spans from 9.15 
to 24.06%, 24.00 to 41.55%, and 40.20 to 
58.60%, respectively. The mean values for these 
range from 16.34, 34.00, and 49.78. 
 
As a percentage, the coefficient of variation, 
which is calculated as the ratio of the standard 
deviation to the mean, is a valuable indicator of 
overall variability. Varied variability is categorized 
as low (10% CV), moderate (10-100%) CV, and 
high (100% CV). The CV data, which were 
displayed in Table 1, indicated that Zn exhibited 
the highest degree of variability (CV = 39.65%), 
followed by Mn (CV = 30.95), Cu (CV = 25.19), 
Fe (CV = 23.61), sand (CV = 21.86), SOC (CV = 
14.00), silt (CV = 9.55%), and clay (CV = 6.78 
percent).  
  
The area's range of CV indicated varying levels 
of variability among the properties under 
investigation. While all other soil parameters 
shown considerable variability, the silt and clay 
exhibited minimal variability. Micronutrients, on 
the other hand, were shown to be quite varied, 
ranging from 23.61 to 39.65 percent. 
  
Table 1 displays the results of soil parameters 
after the Kolmogorov-Smirnov (K-S) technique 
was used to evaluate the data's normality (P-
value > 0.05). The degrees of skewness for 
these metrics were typical when given 
appropriate consideration. For a randomly 
distributed variable that is normally distributed, 
the skewness and kurtosis coefficients are 0. 
Data transformations are often carried out in 
order to lessen the impact of extreme values on 
spatial analysis if the data distributions are 
significantly different from a normal distribution 
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[14]. Table 1 revealed, however, that the data 
set's skewness coefficients varied from -0.38 to 
0.25 when the observed skewness coefficient 
values were taken into account without any data 
transformation. Because of their greater values 
of skewness and kurtosis, the soil fertility metrics 
available Zn, Cu, and Fe were determined to be 
nonnormally distributed. 
 

3.2 Soil Fertility Index and Soil Fertility 
Classes 

 
The nutrient index values for soil fertility classes 
are categorized as follows: values below 1.67 
indicate low fertility, values between 1.67 and 
2.33 indicate medium fertility, and values above 
2.33 indicate high fertility [2,5,21]. The mean 
nutritional index values for Zn, Cu, Fe, and Mn 
were determined to be 1.56, 1.97, 1.98, and 
2.97, respectively (Table 2). These values 
indicate that Zn falls into the low fertility category, 
whereas Cu and Fe fall into the medium fertility 

category, and Mn falls into the high fertility 
category. Gehlot et al. [1] reported a comparable 
outcome in relation to the matter. 
 

3.3 Pearson’s’ Correlation  
 
A strong negative association was seen between 
sand and silt, sand and clay, silt and clay, silt and 
Cu, and Zn and Fe. Additionally, a positive 
correlation was detected between clay and Fe 
(0.204) only in the soils of the region. The 
correlation investigations revealed that                      
there was no significant association between 
sand and Fe, silt and Fe, silt and Mn, clay and 
Zn, clay and Mn, Cu and Fe, and Cu and Mn. 
The pH of the soil was slightly alkaline in reaction 
and Fe, Mn, Zn and Cu are available in acidic 
range thus, it showed no significant correlation. 
However, all the other parameters exhibited a 
non-significant positive correlation (Table 3). The 
results were consistent with the previous findings 
of [1,2,5].  

 
Table 1. Statistical summary of selected soil properties 

 

Soil 
properties 

Unit Minimum Maximum Mean Std. 
Deviation 

CV Skewness Kurtosis 

Sand % 9.15 24.06 16.34 3.57 21.86 0.03 -0.55 
Silt 24.00 41.55 34.00 3.25 9.55 -0.16 0.05 
Clay 40.20 58.60 49.78 3.38 6.78 -0.38 0.23 
Zn mg 

kg
-1

 
0.12 1.66 0.63 0.25 39.65 0.19 0.42 

Cu 2.06 6.22 3.65 0.92 25.19 0.25 -0.33 
Fe 3.70 10.40 6.68 1.58 23.61 0.23 -0.76 
Mn 2.41 14.64 8.72 2.70 30.95 -0.16 -0.48 

Note: Zn, Fe, Cu, and Mn represent available zinc, iron, copper, and manganese in soil, respectively; SD = 
standard deviation; CV = coefficient of variation 

 
Table 2. Mean value of soil fertility index and percent distribution of soil fertility classes in 

soils of Ujjain tehsil 
 

Available 
Nutrients 

Number of 
samples 

Mean value of 
soil index fertility 

Percent distribution of soil fertility class 

Low Medium High 

Zn 150 1.56 44.6% (67) 54.7% (82) 0.7% (1) 
Cu 150 1.97 0% (0) 0% (0) 100% (150) 
Fe 150 1.98 10.6% (16) 80.7% (121) 8.7% (13) 
Mn 150 2.97 0% (0) 2.7% (4) 97.3% (146) 

 
Table 3. Pearson’s correlation coefficients for selected soil properties 

 

Corr. Sand Silt Clay Zn Cu Fe Mn 
Sand 1.00       

Silt -0.520** 1.00      
Clay -0.535** -0.407** 1.00     
Zn 0.06 0.03 -0.13 1.00    
Cu 0.03 -0.163* 0.13 0.06 1.00   
Fe -0.16 -0.03 0.204* -0.195* -0.02 1.00  
Mn 0.09 -0.06 -0.02 0.11 -0.05 0.09 1.00 
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3.4 Spatial Variability Analysis 
 
Semivariograms were computed and optimal 
models were found to characterize the spatial 
patterns of various soil characteristics. The 
semivariogram analysis findings are shown in 
Table 4 and Fig. 3. The majority of soil 
characteristics were best represented by 
exponential models, with the exception of AP, 
SOC, EC, Zn, and Mn. Gaussian, circular, and 
Hole Effect models were used to suit these 
specific values, respectively. Multiple authors 
have documented comparable findings, with the 
majority of soil parameters exhibiting the greatest 
match with spherical models [9,22]. The findings 
revealed that soil properties exhibited spatial 
autocorrelation, which was influenced by various 
structural factors including proximity to water 
bodies, parent material, mangrove ecosystem 
characteristics, and water table depth. 
Additionally, human-induced factors such as soil 
crop management practices, fertilizer           
application, and prevalent farming systems in the 
study area also played a role in determining the 
spatial correlation of soil properties [23]. The 
nugget/sill ratio was examined for several soil 
characteristics (Table 4). The relationship 
between the amount of nugget and sill provides 
insight into the regional correlation of soil 
parameters [17,24]. The research used                
criteria that closely resembled those documented 
by Gehlot et al. [17]. A low ratio (25%)                
indicates that a significant portion of variation is 
attributed to geographical factors, suggesting a 
strong spatial correlation of the variable. If the 
ratio falls between the range of 25 to 75%, the 
variable exhibits a moderate level of 
dependency. Otherwise, the variable has a weak 
spatial dependence. The current research 
observed a significant geographical                   
correlation between soil Zn and Fe, which may 
be ascribed to the combined                                 
influence of closeness to the sea shore and the 
presence of a mangrove environment. Other soil 
parameters investigated exhibited a moderate 
level of spatial dependency, perhaps attributed to 
variations in soil fertilization and cultivation 
techniques, as well as the influence of robust 
hydrological processes in the area, characterized 
by the presence of several rivers and creeks. 
Jiang et al. [9] and Ausari et al. [2] found 
comparable findings. Furthermore, the presence 
of a substantial Mn nugget in the studied region 
may be explained by ecological processes, 

including natural disturbances within the 
mangrove ecosystem, variations in                      
hydrology, nutrient cycling, and interactions 
between living and non-living components at a 
local level. Fig. 2 displays spatial                       
distribution maps for all soil parameters. The 
majority of soil nutrients exhibited elevated levels 
inside the mangrove forest and its surrounding 
area, whereas lower levels of soil nutrients and 
SOC were seen in other regions of the research 
area, which are mostly rice farmed                            
fields (Fig. 2). The nitrogen content in                 
mangrove forests was boosted by the addition of 
leaf litter and the promotion of biological 
processes. Conversely, agricultural soils in 
cultivated rice fields had low nutrient                  
levels due to the use of very little or no inorganic 
fertilizer and the inconsistent management 
practices. The maps offer precise data on 
nutrient content, enabling the implementation of 
site-specific nutrient management and variable-
rate fertilizer application technology. This, in turn, 
maximizes rice yield and increases farmers' 
income by reducing input costs, while also 
promoting the use of best management 
practices. 
 

3.5 Principal Component Analysis 
 
The seven soil factors examined in this research 
shown a strong correlation. Principal component 
analysis (PCA) was used to consolidate and 
summarize the variation in the 07 variables. Only 
principal components with eigenvalues above 1 
and a cumulative contribution rate over 60% 
were retained. Based on this criteria, only the 
first three main components were included in the 
final analysis, explaining 60.27% of the overall 
variability (Table 5). Fig. 3 displays the maps for 
the three personal computers (PCs). The 
eigenvalues corresponding to these three 
principal components were denoted as N1, 
indicating that a principal component accounts 
for a greater amount of variance than an 
individual characteristic [25]. The second main 
component (PC 2) accounted for an extra 
13.33% of the overall variation and was mostly 
influenced by the presence of sand. PC 3 
accounted for an extra 12.33% of the overall 
variation and was mostly influenced by Cu. To 
summarize, the principal component analysis 
combined the 07 variables into three main 
components, which explained most of the total 
geographic variability in these qualities.  
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Table 4. Theoretical model parameters fitted to experimental semi-variograms for soil 
properties 

 

Para- 
meters 

Trans 
formation 

Model C0 C + C0 Range(km) C0/C+C0*100 Spatial 
dependence 

Sand None Exponential 4.94 13.19 5952.06 0.37 Moderate 
Silt None Exponential 4.59 13.30 7052.04 0.35 Moderate 
Clay None Exponential 3.89 12.80 9567.10 0.30 Moderate 
Zn None Hole Effect 0.01 0.06 353.52 0.23 Strong 
Cu None Exponential 0.65 0.89 21535.77 0.73 Moderate 
Mn None Hole Effect 5.55 7.08 370.78 0.78 Weak 
Fe Log Exponential 0.02 0.07 7452.06 0.25 Strong 

Abbreviations – C0= Nugget, C= Partial sill, C+C0, = Sill 

 

 
  

 
a) Sand b) Silt c) Clay 

 

   
 

d) Av-Zn 
 

e) Av-Cu 
 

f) Av-Mn 

 
 g) Av-Fe  

 
Fig. 2. Distribution maps soil physical properties and available micronutrients in the soil 

generated by ordinary kriging 
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a) Sand 

 
 

b) Silt 

 
 

c) Clay 

 
 

d) Zn 

 
 

e) Cu 

 
 

f) Fe 

   
 

 
g) Mn 

 

 
Fig. 3. Experimental semi-variograms and their fitted models for a) sand, b) silt, c) clay, d) Zn, 

e) Cu, f) Fe and g) Mn 
 

Table 5. Principal component analysis of soil separates and micronutrients 
 

Principal 
Components 

PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 

Total 2.295 1.667 1.576 1.420 1.229 1.141 1.112 
% of Variance 16.392 11.909 11.257 10.143 8.776 8.147 7.941 
Sand -0.439 0.558 0.626 -0.124 0.023 -0.189 0.016 
Silt 0.159 -0.853 0.119 0.266 0.172 -0.062 0.080 
Clay 0.359 0.268 -0.770 -0.111 -0.149 0.281 -0.108 
Zn -0.190 -0.213 0.288 -0.265 -0.370 0.537 0.256 
Cu 0.206 0.280 0.036 -0.368 -0.292 0.179 -0.299 
Fe 0.346 0.237 -0.357 0.246 0.085 -0.210 0.313 
Mn 0.010 0.255 0.160 0.334 -0.005 0.416 0.613 

 

4. CONCLUSION 
 
This study found significant variations in soil 
properties and micronutrient levels across the 
region. Various models, including exponential, 
spherical, gaussian, and circular, were deemed 
suitable for characterizing the soil attributes. 
Micronutrient semivariogram models showed 
moderate spatial dependence, with nugget/sill 
ratios between 43% and 53%. Strong positive 
relationships were observed among 
micronutrients. Analysis of 150 soil samples 
revealed medium levels of DTPA-extractable zinc 
and iron, high levels of copper and manganese, 

and a moderate to low status of organic carbon, 
which exhibited a positive association with 
accessible nitrogen. About 44.6% of samples 
were deficient in zinc, and 10.6% in iron. 
Distribution maps indicated deficiencies in zinc, 
iron, and boron, essential micronutrients. These 
maps can guide sustainable soil management 
strategies, including tailored micronutrient-based 
fertilizer recommendations for optimal production 
in the area. 
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