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ABSTRACT

This paper compares the performance of the ternary adders and multipliers using balanced and unbalanced set
of values. We use the 1-trit adders to evaluate the two versions of a 4-trit propagate adder, which are compared
with a 6-bit corresponding propagate adder. Similarly, we compare the two types of 2*2 trit multipliers with a
3*3 bit multiplier. The simulations with a 32-nm Carbon Nanotuble Field-Effect Transistor (CNTFET) technology
show that the binary adders and multipliers are more efficient than the ternary ones that compute the same
amount of information.
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1 INTRODUCTION

Ternary circuits can use two different sets of values:

• Unbalanced circuits use 0, 1 and 2 ternary
values corresponding to 0, Vdd/2 and Vdd levels.

• Balanced circuits use -1, 0 and 1 ternary values
corresponding to −Vdd/2, 0 and Vdd/2 levels.
They are generally quoted as N (Negative), Z
(Zero) and P (Positive) to present the ternary
numbers.

Most of the proposed ternary full adders use the
unbalanced representation. Table 1. presents a
comparison of ternary unbalanced full adders presented
in the last decade [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Some balanced ternary adders and multipliers have
been presented. [12, 13, 14]. Unbalanced ternary
multipliers have been presented [15, 16, 17, 18, 19].

The paper is organized as follows:

• We present the methodology: (1) CNTFET
technology, evaluation of propagation delays,
power and power-delay product, chip area. (2)

Mux-based approch that is used to implement
ternary circuits is presented. (3) Binary adders
used for comparison are also presented.

• Balanced and unbalanced ternary adders are
presented: balanced ones have ternary carry
values, while unbalanced ones that are used
to implement carry-propagate adders (CPAs)
have binary carry values. Their performance
are presented and compared. 4-bit CPAs are
compared with the two types of 3-trit CPAs.

• Balanced and unbalanced 1-trit multipliers are
presented. The balanced one does not generate
a carry, while the unbalanced one generates
a carry. Their performance are presented and
compared. Then a 3*3 bit multiplier is compared
with the two types of 2*2 trit multipliers. Without
simulation, the performance of larger multipliers
are also evaluated.

• The conclusion summarizes the results and
explains why the binary adders and multipliers
are more efficient than the ternary ones that
compute the same amount of information.

Table 1. TFAs Comparison

CNTFETs Power Max. Max. PDP Max. EDP Technique
TFA / Year Count (µW) Delay (ps) (x10−18 J) (x10−27 J.s)
In [1] 2011 412 1.36 88 12 10.5 Decoder-Binary-Encoder
In [2] 2017 105 1.13 68 77 5.2 2 custom algorithms+TMuxes
In [3] 2017 74 0.82 146 120 17.5 TMUXes
In [4] 2018 98 0.16 192 31 5.9 TBDD algorithm
In [5] 2018 89 0.44 48 21 1 MUXes
In [6] 2019 142 4.62 94 434 40.8 Unary ops+MUXes+Encoder
In [7] 2020 106 0.13 269 35 9.4 Modified Quine-MCluskey algorithm
In [8] 2020 49 1.23 192 236 45.3 Majority-not based Full Adder
In [8] 2020 37 0.81 262 212 55.5 Majority-not based Full Adder
In [9] 2021 54 0.43 47 20 0.9 Unary ops + Decoders+Transmission gates

In [10] 2023 TFA1 59 0.46 27 12.5 0.3 Unary ops+MUXEs
In [10] 2023TFA2 55 0.22 34 7.5 0.25 Unary ops + Muxesˇ

In [11] 2023 48/50 Unary ops+MUXES
In [11] 2023 118/128 Decoder-Binary-Encoder

2 METHODOLOGY

2.1 CNTFET Technology
We use CNTFET technology as it is used in most papers presenting ternary or quaternary implementations of
adders, multipliers, counters [20], etc. One advantage of CNTFET technology is that the threshold levels of
gates only depend on the diameter of individual transistors, which facilitates the design of m-valued circuits. All
simulations are done with the 32nm CNTFET parameters of Stanford library [21] that are used by most m-valued
CNTFET designers.
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2.2 Propagation Delays
For all combinational circuits, the important information
is the propagation delay corresponding to the critical
paths. We will only present the propagation delays
corresponding to these critical paths.

2.3 Power Dissipation and Power-
Delay Product (PDP)

Both power dissipation and PDP directly depends on the
duration of the input signals. It is important to use the
same input signal for all designs. For all simulations, we

use the input waveforms shown in Fig. 1 and Fig. 2 for
ternary circuits. We have verified that the delays for 0-2
or 2-0 ternary transitions are always less than ternary
transitions 0-1, 1-2, 2-1 or 1-0. The binary waveforms
used for the binary adders are presented in Fig. 3.

2.4 Chip Area
We use a rough evaluation of the chip area by summing
the diameters of all the used transistors by each circuit.
This rough evaluation is a little bit better than the
transistor count. In this paper, we use the diameter
values presented in Table 2.

Fig. 1. Input waveforms for ternary circuits

Fig. 2. Carry input waveforms for ternary circuits
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Fig. 3. Input waveforms for binary circuits

Table 2. Transistor diameters

n Diameter(nm)
D1 10 0.783
D2 19 1.487
D3 29 2.270
D4 37 2.896

Table 3. Basic operations for implementing ternary circuits

A An Ap A1 A2 A001 A011 Etc
0 2 2 1 2 0 0
1 0 2 2 0 0 1
2 0 0 0 1 1 1

2.5 The Mux-based Implementation
Implementation of ternary circuits can used different
techniques: Paper [11] presents a detailed examination
of the two opposite techniques, which are ”Decoders-
Binary-Encoders” and ”MUX-based” implementations.
The most efficient one is the MUX-based one, as shown
by a detailed examination of Table 1.

The MUX approach uses the operations that are shown
in Table 3. Ternary multiplexers are used to switch the
correct values to the outputs.

Similar circuits are used by unbalanced and balanced
circuits.

An and Ap unary functions are implemented by the
threshold detectors shown in Fig. 4. The A1 and
A2 operators (Fig. 5) are derived from An and Ap

outputs of the threshold detectors. The 3-input MUX
circuit is shown in Fig. 6. Inverters delivering Bn and
Bp are the threshold detectors presented in Fig. 4.
Inverters delivering Bnb, Bnp, Bnpbb and Bpbb are

usual binary inverters. Bnbb and Bpbb have higher
driving capabilities than Bn and Bp.

2.6 Comparison with Binary Circuits
Any proposal of ternary circuits should be compared
with the binary circuits computing the same amount of
information, either to prove or disprove their interest:

• Ternary adders should be compared with binary
adders.

• Ternary multipliers use 1-trit multipliers and
ternary adders. 1-bit multiplier is implemented
with a AND gate.

We use two types of full adders

• The first one is the typical 28T full adder (Fig. 7).

• The second one is the 14T full adder presented
in Fig. 8.

• A detailed analysis of the performance of these
binary adders can be found in [11].
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Fig. 4. Threshold detectors

Fig. 5. A1 and A2 circuits

Fig. 6. 3-input MUX with ternary control

Fig. 7. 28T binary full adder
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Fig. 8. 14T binary full adder

3 1-TRIT ADDERS

3.1 Unbalanced 1-trit Adders (UTFA)
There are two types of unbalanced 1-trit adders:

• The 1-trit adder for building n-trit adders. a and b inputs and S output are ternary. Input and output carries
are binary.

• The ternary counter also called compressor for which all values (inputs, output and carries) are ternary.

Table 4 presents the combined truth table. The whole table corresponds to the ternary counter. Only the columns
Cin=0 and Cin=1 should be considered for the 1-trit adder.

The Mux approach is based on a different way to consider Table 4:

Table 4. Truth table of a ternary full adder with ternary carries

Cin=0 Cin=1 Cin=2
a b S0 Cout0 a b S1 Cout1 a b S2 Cout2

0 0 0 0 0 0 1 0 0 0 2 0
0 1 1 0 0 1 2 0 0 1 0 1
0 2 2 0 0 2 0 1 0 2 1 1
1 0 1 0 1 0 2 0 1 0 0 1
1 1 2 0 1 1 0 1 1 1 1 1
1 2 0 1 1 2 1 1 1 2 2 1
2 0 2 0 2 0 0 1 2 0 1 1
2 1 0 1 2 1 1 1 2 1 2 1
2 2 1 1 2 2 2 1 2 2 0 2

When Cin=0

• When B=0 then Sum=A

• When B=1 then Sum = (A+1) mod(3) quoted as A1

• When B=2 then Sum = (A+2) mod(3) quoted as A2

• When B=0 then Cout=0

• When B=1 then Cout=1 when A = 2 else 0

• When B=2 then Cout=1 when A > 0 else 0
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When Cin=1

• When B=0 then Sum=A1

• When B=1 then Sum=A2

• When B=2 then Sum= A

• When B=0 then Cout=1 when A = 2 else 0

• When B=1 then Cout=1 when A > 0 else 0

• When B=2 then Cout=1

When Cin=2 (Only for the ternary counter)

• When B=0 then Sum=A2

• When B=1 then Sum=A

• When B=2 then Sum=A2

• When B=0 then Cout=1 when A > 0 else 0

• When B=1 then Cout=1

• When B=2 then Cout=2 when A > 1 else 1

In the two left columns of Table 4, the binary input and output carry values are 0,1 while A and B inputs have 0,1,2
values. However, when implementing ternary adders, the carry levels can be 0 and Vdd/2 (corresponding to 0,1
values) or 0 and Vdd (corresponding to 0,2 values). The two different versions named TFA1 and TFA2 are shown
in Fig. 9.

Vdd carry swing can be used as Cin only controls the final MUXes and Cout can also have a Vdd swing . There
are few differences between Vdd/2 and Vdd carry versions that are outlined in Fig. 9. The Vdd/2 version uses the
inverter implementing An to get Cn and the final carry inverter has a 0.45V power supply. For the Vdd version, Cin

and Cout use inverters with Vdd power supply.

Fig. 9. Unbalanced 1-trit Full Adder (Mux approach)
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The 1-trit unbalanced adder is shown in Fig. 9. They
have a common part:

• Two 3-input MUXes controlled by B switch A,
A1, A2 to Sum0 and Sum1. Two other 3-input
MUXes controlled by B switch different binary
carry values to Cout0. and Cout1 . It should be
noticed that these binary values are 0,2.

• One final MUX controlled by Cin switches either
Sum0 or Sum1 to Sum while another one
switches either Cout0 or Cout1 to Cout .

For TFA1, the final Cout with 0,1 values is obtained
using an inverter with Vdd/2 power supply. The final
inverter for the carry output is introduced to avoid
a long chain of MUX3 in the carry propagation of
Carry Propagate Adders (CPA) that would degrade the
propagation times. The resulting 1-trit full adder is
shown in Fig. 9. The 2-input final MUXes are controlled
by a binary value (Cin). They use the typical 2-input

MUXes with binary control. TFA2 uses a final binary
inverter with Vdd power supply. The control of the
MUX2s are different for TFA1 and TFA2.

The (3,2) unbalanced ternary counter is shown in Fig.
10. It is not useful to implement n-trit adders. We
present it as it is similar to the balanced 1-trit adder.

For unbalanced ternary adders, Fig. 11. presents the
Input to Sum/Cout delays according to CL for the two
versions (0.45 and 0.9V carry swings). The log-log
scale shows that the delays roughly increase linearly
with CL. Sum delays are similar for the two versions.
The Cout delays are less sensitive to CL, and less for
0.45V than for 0.9V carry swing. Fig. 12. presents the
Cin to Sum/Cout delays. The Cout delays are slower
with 0.9 V swing, which is the reason to introduce it
for CPAs. Fig. 13. presents the power dissipation
according to CL. It increases more than linearly with CL.

Fig. 10. Unbalanced Ternary (3,2) counter
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Fig. 11. Input to Sum/Cout of unbalanced ternary adders according to CL

Fig. 12. Cin to Sum/Cout of unbalanced ternary adders according to CL

Fig. 13. Power dissipation of unbalanced ternary adders according to CL
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3.2 Balanced 1-trit Adders (BTFA)
Table 5. presents the truth table of a balanced ternary adder. Table 6. presents the same table by replacing N
by 0, Z by 1 and P by 2 to establish the correspondence between 0, Vdd/2 and Vdd and 0,1,2. This allow a direct
comparison between the unbalanced and balanced implementations.

Table 5. Truth table of a balanced ternary adder

Cin=N Cin=Z Cin=P
b a sN CtN a b sZ CZ a b sP CP
N N Z N N N P N N N N Z
N Z P N N Z N Z N Z Z Z
N P N Z N P Z Z N P P Z
Z N P N Z N N Z Z N Z Z
Z Z N Z Z Z Z Z Z Z P Z
Z P Z Z Z P P Z Z P N P
P N N Z P N Z Z P N P Z
P Z Z Z P Z P Z P Z N P
P P P Z P P N P P P Z P

Table 6. Truth table of a balanced ternary adder (N=0; Z=1; P=2)

Cin=0 Cin=1 Cin=2
b a S0 C0 a b S1 C1 a b S2 C2

0 0 1 0 0 0 2 0 0 0 0 1
0 1 2 0 0 1 0 1 0 1 1 1
0 2 0 1 0 2 1 1 0 2 2 1
1 0 2 0 1 0 0 1 1 0 1 1
1 1 0 1 1 1 1 1 1 1 2 1
1 2 1 1 1 2 2 1 1 2 0 2
2 0 1 1 2 0 1 1 2 0 2 1
2 1 1 1 2 1 2 1 2 1 0 2
2 2 2 1 2 2 0 2 2 2 1 2

The operation of BTFA is described below:
When Cin=0

• When B=0 then Sum=A

• When B=1 then Sum = (A+1) mod(3) quoted as A1

• When B=2 then Sum = (A+2) mod(3) quoted as A2

• When B=0 then Cout=0

• When B=1 then Cout=1 when A = 2 else 0

• When B=2 then Cout=1 when A > 0 else 0

When Cin=1

• When B=0 then Sum=A2

• When B=1 then Sum=A

• When B=2 then Sum=A1

• When B=0 then Cout=1 when A = 2 else 0
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• When B=1 then Cout=1 when A > 0 else 0

• When B=2 then Cout=1

When Cin=2 (Only for the ternary counter)

• When B=0 then Sum=A

• When B=1 then Sum=A1

• When B=2 then Sum=A2

• When B=0 then Cout=1

• When B=1 then Cout=2 when A > 1 else 1

• When B=2 then Cout=2 when A > 0 else 1

We define two versions of the balanced ternary adder.

Fig. 14. Balanced ternary adder - Version 1

• The first one is presented in Fig. 14. It corresponds to the truth table.

• The second one is presented in Fig. 15. As for the unbalanced version, it uses an inverter to avoid a
long chain of MUX3 in CPAs. However, as the balanced carries are ternary, this inverter is a ternary one.
The used ternary inverter is shown in Fig. 16. A lot of ternary inverters have been proposed, with 4,
5, 6, 8 transistors. However, most of them have conflicting behaviors of transistors for the intermediate
level, which increase power dissipation. Our implementation has a total of 12 transistors (including 4
inverters to generate an, anb, ap and apb) but has less power dissipation than most implementations with
less transistors.
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Fig. 15. Balanced ternary adder - Version 2

Fig. 16. Ternary inverter

Fig. 17, 18 and 19 respectively present the Input to Sum/Cout delays, Carry to Sum/Cout delays and power
dissipation according to CL. There are few differences between V1 and V2 versions.
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Fig. 17. Input to Sum/Cout of balanced ternary adders according to CL

Fig. 18. Cin to Sum/Cout of balanced ternary adders according to CL

Fig. 19. Power dissipations of balanced ternary adders according to CL
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3.3 Comparing the Balanced and
Unbalanced 1-trit Adders

Fig. 20. compares these two 1-trit adders:

• ΣDi for the balanced version is roughly x3 ΣDi
of the unbalanced version. It comes from using
ternary versus binary carries : 8 MUX3 versus
4 MUX3 and 2 MUX2, more circuits to generate
the carry values, etc.

• In Carry-Propagate Adders, the critical path is
Cin to Cout. The unbalanced version has smaller
Cin to Cout delays (x3 smaller delay when using
the 0.9V carry swing).

• Input to Sum/Output are smaller for the balanced
version. However, Input to Cout delay is
significant only for the first stage of a CPA.

Clearly, the unbalanced version is the best one for
implementing CPAs.

Fig. 20. Comparing 1-trit balanced and unbalanced adder (CL=2fF)

Fig. 21. Comparing 4-trit and 6-bit CPAs (CL=2fF)
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Fig. 21. compares balanced and unbalanced 4-trit
CPAs with 6-bit CPAs:

• The two versions of the balanced 4-trit
CPA have similar performance. The two
versions of unbalanced CPAs have also similar
performance. However, the unbalanced CPAs
has delays x2 smaller than the balanced ones.

• There are few differences between the binary
CPAs using 14T and 28T. The 28T version has
less chip area than 14T version because it only
uses transistor with Di=1.487 nm while the 14T
version uses transistors with 2,896 nm for XOR
gates and MUX2. When 0.45V Vdd is used,
power is roughly divided by 4.

• The delays of the 4-trit unbalanced CPAs are
smaller than the corresponding ones of the 6-bit
CPAs only for the 0.45V binary Vdd.

• The power of the same unbalanced CPAs are
smaller than the power of the 6-bit CPAs only for
the 0.9V binary Vdd.

• The ΣDi of the binary CPAs are more than

x2 smaller than the unbalanced CPAs and x4.5
smaller than the balanced CPAs.

Clearly, the 6-bit CPA are more efficient than the 4-trit
CPAs. The balanced 4-trit CPAs are outperformed by
the unbalanced ones.

4 1-TRIT MULTIPLIERS

4.1 Unbalanced 1-trit Multipliers
Table 6 presents the truth table of the unbalanced 1-trit
multiplier. This multiplier generates both a product term
and a carry term. For a mux-based implementation,
Table 6. can be rewritten as

• When Bi=0 then Pi=0 and Ci=0

• When Bi=1 then Pi=Bi and Ci=0

• When Bi=2 then Pi= {0,2,1} and Ci={0,0,1} for
Ai={0,1,2}

The X021 and X001 unary operators and a ternary
multiplexer are needed to implement the 1-trit multiplier.

Table 6. Truth Table of a 1-trit unbalanced multiplier

Bi Ai Pi Ci
0 0 0 0
0 1 0 0
0 2 0 0
1 0 0 0
1 1 1 0
1 2 2 0
2 0 0 0
2 1 2 0
2 2 1 1

Fig. 22. Unbalanced ternary multiplier performance according to CL

Fig. 22. presents the delay and power of the unbalanced multiplier according to CL.
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4.2 Balanced 1-trit Multipliers
Table 7 presents the truth table of a balanced 1-trit multiplier. The left part uses the N(-1), Z(0) and P (+1)
notations of the balanced ternary representation. The right part presents the correspondence with the ground
level (0), middle level (1) and Vdd (2) of the corresponding circuits. It should be noticed that the 1-trit balanced
multiplier does not generate a carry output.

Table 7. Truth Table of a 1-trit multiplier

Bi Ai Prod. Ai Bi Prod.
N N P 0 0 2
N Z Z 0 1 1
N P N 0 2 0
Z N Z 1 0 1
Z Z Z 1 1 1
Z P Z 1 2 1
P N N 2 0 0
P Z Z 2 1 1
P P P 2 2 2

For the mux based implementation, Table 7. can be rewritten as:
• When Bi=0 then Prod={2,1,0} when A={0,1,2}. It is implemented by a ternary inverter.
• When Bi=1 then Prod=1
• When Bi=2 then Prod=Ai

Fig. 23. Balanced ternary multiplier performance according to CL

Fig. 23. presents the delay and power of the unbalanced multiplier according to CL.

4.3 Comparing Balanced and Unbalanced 1-trit Multiplier
Fig. 24. summarizes the comparison between the two different versions

• There is no significant difference for worst-case propagation delays
• Power dissipation is roughly 3x lower for the balanced version, due to the absence of carry generation.
• For the same reason, ΣDi is about x2 smaller for the balanced version.

As the balanced version does not generate a carry: there are n lines in the reduction tree of a n*n trit multiplier,
when there are 2n lines in the unbalanced version.
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Fig. 24. Unbalanced and Balanced 1-trit multiplier with 2fF capacitive loads

4.4 Comparing 2*2 Trit Balanced and Unbalanced Multipliers with a 3*3 bit
Multiplier

While it makes sense to compare the two versions of 1-trit multiplier, it is not fair to compare them with the 1-
bit multiplier, which is only an AND gate. We compare now a 3*3 bit multiplier, with the two versions of 2*2 trit
multipliers (Fig. 25). In this figure, 3 corresponds to a ternary value and 2 to a binary one. The 3*3 bit multiplier
computes 6 bits of information versus 6.34 bit for the 2*2 trit multipliers. These multipliers are quite simple. The
ternary balanced multipliers only use two balanced ternary half adders.

Fig. 25. 3*3 bit and 2*2 trit multipliers

The 3*3 bit multiplier use 9 and gates (NAND+Inverter), 3 binary half adders and 3 binary full adders. For our
simulations, we used 6 binary full adders.

The worst-case delay (WC) of the 3*3 bit multiplier is obtained by multiplying x11*111 with x={0,1,0}. The
corresponding outputs are then {010101, 110001, 010101}. m5 outputs are {0,1,0} and m2 outputs are {1,0,1}.
For the ternary multipliers, x2*22 delivers the WC delay with x={0,1,2,1,0}. The corresponding outputs are then
{0121, 1111, 2101, 1111, 0121}. m3 outputs are then {0,1,2,1,0} and m1 outputs are {2,1,0,1,2}. Fig. 26.
summarizes the comparison:
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• The two binary multipliers have similar performance.

• The delay of the ternary multipliers are close. However, the unbalanced chip area is close to x2 the balanced
one, while the power dissipation of the balanced one is close to x3 the power of the unbalanced one.

• The two ternary multipliers are outperformed by the two binary ones. Delays are x1.5 to x2 greater. Power
is x8 to x25 greater. Chip area is equivalent for the balanced version. However, it is x2 for the unbalanced
one.

Fig. 26. Comparing 2*2 trit and 3*3 bit multipliers

4.5 Comparing Larger Multipliers without Simulations
Simulating larger ternary and binary multipliers would be more significant, but would need huge simulation times.
However, without simulation, it is possible to evaluate the chip area of different multipliers computing the same
amount of information. It is also possible to evaluate the worst case propagation delay.

Fig. 27. Σ(Di) of 4*4 trit and 6*6 bit multipliers and Σ(Di) of 8*8 trit and 12*12 bit multipliers

Higher part of Fig. 27. compares 4*4 trit and 6*6 bit multipliers. Lower part of this figure compares 8*8 trit and
12*12 bit multipliers. The different multipliers use (3,2) adders in the Wallace reduction trees and carry-propagate
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adders for the final sum (this is the only difference with actual combinational multipliers that would use fast adders
for the final sum). The unbalanced ternary versions use more chip area than the balanced one: this is due to the
carries generated by the multipliers that double the number of lines to reduce. In both case, the ternary versions
use more than x1.8 chip area than the binary one for the unbalanced version and x1.3 and x1.7 for the balanced
version.

For a 6*6 bit multiplier, Fig. 28 shows how the worst case propagation delay can be evaluated. There is the
propagation delay of the 1-digit multiplier. Then the worst case delay corresponds to the vertical longest path in
the reduction tree followed by the horizontal left propagation delay for the remaining bits of the carry propagate
adder. These delays have a green color on the two parts of Fig. 28. We use the following notation:

• TpMul is the delay of the 1-digit multiplier.

• TpFAI2Sum is the input to Sum delay of the 1-digit Full Adder.

• TpFAI2Cout is the input to Cout delay of the 1-digit Full Adder.

• TpFACin2Cout is the Cin to Cout delay of the 1-digit Full Adder.

The evaluation of WC delays of binary multipliers have been done with 28T binary full adders.

Fig. 28. Worst case delay through multipliers and Wallace reduction tree

For the 6*6 bit multiplier, the WC delay is: TpMul + 3TpFAI2Sum+ TpFAI2Cout + 5TpFACin2Cout

Higher part of Fig. 29. compares the evaluated WC delays of the two types of 4*4 ternary multipliers and a 6*6 bit
multiplier. Lower part of the Fig. 29. compares 8*8 trit multipliers with a 12*12 bit multiplier. WC delays of the two
types of ternary multipliers are close. However, they are x1.7 to 2.1 the propagation delays of the binary multipliers
computing the same amount of information. These results are not surprising:

• There are x2.25 more binary multipliers than ternary ones. However, the ternary multipliers are x2.7 and
x4.6 slower than the binary ones.
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• There are less half adders and full adders for the ternary versions, but the ternary half adders and full
adders are slower than the corresponding binary ones.

The evalution of WC delays that has been done is not as precise as simulations. However, it provides a significant
information.

The delays and chip area ratio between ternary and binary adders and multipliers should not be considered as
absolute values. For the different components, delays and chip area depend on the chosen diameter values of the
transistors. However, as the ratios are between x1.7 and x2.3, different design diameter sizes would not change
the results of the comparisons.

Fig. 29. WC delays of 4*4 trit and 6*6 bit multipliers and WCDelay of 8*8 trit and 12*12 bit multipliers

5 CONCLUDING REMARKS

Two versions of balanced ternary adders have been
compared with two versions of unbalanced ones. The
balanced version does not provide advantage as it
uses far more chip area. The results are similar when
implementing 4-trit CPAs. The two versions are less
efficient than the binary ones when comparing 4-trit
CPAs and 6-bit CPAs.

1-trit balanced and unbalanced multipliers have been
compared. The balanced version has two advantages:

• As it does not generate a carry, it has smaller
delays, smaller power dissipation and smaller
chip area.

• The balanced version directly operates positive
and negative numbers, while the unbalanced one
only operate on positive numbers.

However, when comparing 2*2 trit multipliers, the

balanced version uses x2 less chip area, but has a small
disadvantage in delay and x3 more power dissipation.

While 2*2 trit multipliers and 3*3 bit multipliers have
similar chip areas, the ternary multipliers have larger
delays and power dissipation from x7 to x25 the power
of the binary ones. It comes from the larger complexity
of the 1-trit adders compared to a AND gate and the
larger complexity of the 1-trit adders compared to the
binary ones.

This study shows that the ternary approach does
not improve the performance of the binary approach
for typical combinational circuits such as adders and
multipliers.
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