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Abstract: In this work, our primary focus is on the numerical computation of highly oscillatory inte-
grals involving the Airy function. Specifically, we address integrals of the form

∫ b
0 xα f (x)Ai(−ωx) dx

over a finite or semi-infinite interval, where the integrand exhibits rapid oscillations when ω ≫ 1. The
inherent high oscillation and algebraic singularity of the integrand make traditional quadrature rules
impractical. In view of this, we strategically partition the interval into two segments: [0, 1] and [1, b].
For integrals over the interval [0, 1], we introduce a Filon-type method based on a two-point Taylor
expansion. In contrast, for integrals over [1, b], we transform the Airy function into the first kind of
Bessel function. By applying Cauchy’s integration theorem, the integral is then reformulated into
several non-oscillatory and exponentially decaying integrals over [0,+∞), which can be accurately
approximated by the generalized Gaussian quadrature rule. The proposed methods are accompanied
by rigorous error analyses to establish their reliability. Finally, we present a series of numerical
examples that not only validate the theoretical results but also showcase the accuracy and efficacy of
the proposed method.

Keywords: Airy function; highly oscillatory integrals; complex integration method; Filon-type method

MSC: 65D30; 65D32; 65R10

1. Introduction

The numerical computation of highly oscillatory integrals arises in various scientific
disciplines, ranging from physics to engineering and beyond [1–6]. Oscillatory integrals
are characterized by rapidly oscillating integrands, and their accurate computation poses a
formidable challenge due to the potential for high-frequency oscillations and significant
cancellations. This challenge is particularly pronounced in integrals involving Airy func-
tions, which are essential mathematical functions frequently encountered in the study of
wave phenomena, quantum mechanics, and the analysis of asymptotic behavior [1,7–10].

The Airy function Ai(−ωx), one of the solutions to the differential equation y′′ +
ω3xy = 0, plays a significant role in applied mathematics and has been extensively studied
for its oscillatory behavior when ω ≫ 1 and x ≥ 0 (see, for instance, [11–14]). Figure 1 illus-
trates the rapid oscillation of Ai(−ωx), with the oscillations becoming more pronounced as
ω increases. As x → +∞, the following asymptotic formula is valid [13] [Equation (9.7.9)]:

Ai(−x) ∼ x−1/4
√

π

(
cos(ζ − π/4)

∞

∑
k=0

(−1)k u2k

ζ2k + sin(ζ − π/4)
∞

∑
k=0

(−1)k u2k+1

ζ2k+1

)
, (1)
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where ζ = 2
3 x3/2, u0 = 1 and

uk =
(2k + 1)(2k + 3) · · · (6k − 1)

(216)kk!
, k = 1, 2, . . . .

The numerical computation of integrals involving Airy functions is a difficult task,
primarily due to their potential rapid oscillations over the interval. Standard numerical
methods, such as Newton–Cotes and Gaussian quadrature rules, often struggle to han-
dle the rapid oscillations in such integrals, necessitating the development of advanced
techniques to ensure computational reliability.

Figure 1. Plot of the Airy function Ai(−ωx) for ω = 20 (left) and ω = 50 (right).

This study aims to investigate numerical techniques for efficiently and accurately
computing highly oscillatory integrals of the form

I[ f ] =
∫ b

0
xα f (x)Ai(−ωx) dx, 0 < b ≤ +∞, (2)

where α > −1, and f is assumed to be smooth on [0, b] and analytic in the complex plane
{z | 1 ≤ ℜ(z) ≤ b}. In particular, for the case b = +∞, it is established from (1) that
ensuring the existence of (2) requires the presence of constants σ < −α − 3/4 and C such
that f (x) ≤ Cxσ as x → +∞. In the past few years, many works have been devoted to the
numerical treatment of the integrals in (2). The Levin-type method, developed by Levin [15]
and later improved by Olver [12], transforms the solving of highly oscillatory integrals
into an ordinary differential equation. Xiang and Wang (2010) introduced the Filon-type
method for a more generalized integral

∫ 1
0 f (x)Ai(−ωg(x)) dx with g(x) > 0, employing

a diffeomorphism transformation on the phase function g(x) [16]. Xu and Xiang (2014)
developed the Clenshaw-Curtis-Filon method specifically for the computation of (2) with
b = 1. Asymptotic expansions of

∫ b
0 f (x)Ai(−ωx) dx with b < +∞ have been explored

by Olver (2007) and Kang (2018, 2020) [11,17,18]. All these methods share a remarkable
advantage in that their accuracy improves rapidly as the frequency ω increases. However,
each approach has limitations with effectiveness depending on the specific characteristics
of the integral under consideration.

However, these existing numerical methods face limitations when directly applied
to the integral (2), primarily due to the singularity at x = 0 and the unbounded nature of
the interval when b = +∞. In order to avoid this defect, we divide the interval into two
distinct segments and rewrite (2) as

I[ f ] =
∫ a

0
xα f (x)Ai(−ωx) dx +

∫ b

a
xα f (x)Ai(−ωx) dx =: I1[ f ] + I2[ f ]. (3)
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Without loss of generality, we assume b > 1 and set a = 1 in this paper. For b ≤ 1,
the interval [0, b] of (2) can be transformed to [0, 1] under a linear transformation. Then,
the Filon-type method introduced in Section 2 will be applied to approximate (2). The
algebraic singularity at x = 0 is exclusively present in I1[ f ] and will be treated by the
Filon-type method. For the evaluation of I2[ f ], a complex integration method is introduced
by applying Cauchy’s integration theorem.

This work is organized as follows: In Section 2, we introduce the Filon-type method
for computing I1[ f ] based on a two-point Taylor formula. Section 3 presents the complex
integration method for approximating I2[ f ], where the highly oscillatory integrals are
transformed into several non-oscillatory and exponentially decaying integrands on [0, ∞).
The application of a Gauss-Laguerre quadrature rule and its error estimates are discussed.
Section 4 provides numerical examples to demonstrate the effectiveness of the proposed
methods. Finally, we conclude this paper in Section 5.

2. The Filon-Type Method for I1[ f ]

The Filon method [19], named after the French mathematician L.N.G. Filon, stands
out as an effective numerical technique designed specifically for a distinct class of highly
oscillatory integrals

∫ b
a f (x)eiωx dx. In this method, the non-oscillatory component f (x) is

approximated by a piecewise polynomial. This fundamental concept underwent further
refinement by Iserles and Nørsett [5], who made a significant advancement by recogniz-
ing that the asymptotic expansion of

∫ b
a f (x)eiωx dx solely depends on the values and

derivatives of f (x) evaluated at the endpoints. Recently, this strategic approach has been
extended to a broader spectrum of highly oscillatory integrals, including those with Bessel-
type kernels [16,20].

In this section, the Filon-type method will be extended to the highly oscillatory in-
tegrals I1[ f ] with the Airy kernel. Let m ≥ 1 be a positive integer. In order to obtain a
higher asymptotic order, we seek a Hermite’s interpolation polynomial P2m−1(x) of f (x)
that satisfies

P2m−1(0) = f (0), P′
2m−1(0) = f ′(0), · · · , P(m−1)

2m−1 (0) = f (m−1)(0);

P2m−1(1) = f (1), P′
2m−1(1) = f ′(1), · · · , P(m−1)

2m−1 (1) = f (m−1)(1).
(4)

Suppose that f (x) is (m − 1)-times differentiable on [0, 1], the unique polynomial of degree
2m − 1 that satisfies the condition (4) is the two-point Taylor formula, represented as

P2m−1(x) =
m−1

∑
k=0

ckxk+1(x − 1)k +
m−1

∑
k=0

dk(x − 1)k+1xk, (5)

where the coefficients are given by [21]

ck =


f (1), k = 0,

k

∑
j=0

(k + j − 1)!
j!(k − j)!

(−1)jk f (k−j)(1)− (−1)k j f (k−j)(0)
k!

, k ≥ 1,
(6)

and

dk =


− f (0), k = 0,

k

∑
j=0

(k + j − 1)!
j!(k − j)!

(−1)j j f (k−j)(1)− (−1)kk f (k−j)(0)
k!

, k ≥ 1.
(7)

As an approximation to f (x), the two-point Taylor polynomial converges to f (x) at the rate
o(xm) as x → 0, and at the rate o((x − 1)m) as x → 1. Here, o(xm) is defined in the sense
that limx→0

f (x)−P2m−1(x)
xm = 0.
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By substituting P2m−1(x) into I1[ f ], we obtain an approximation of I1[ f ] given by

I1[ f ] ≈ Qm[I1] :=
m−1

∑
k=0

ck Mk(k + 1 + α, ω) +
m−1

∑
k=0

dk Mk+1(k + α, ω), (8)

where Mk(ρ, ω) are the moments defined by

Mk(ρ, ω) =
∫ 1

0
xρ(x − 1)kAi(−ωx) dx. (9)

An explicit formula for the moments is given by Xu [14] using the Meijer G-function.

Lemma 1 ([14]). When ρ > −1, the moments defined in (9) satisfy

Mk(ρ, ω) =
(−1)kπk!

3k+2

[
3
√

3G1,3
4,6

(
−ρ
3 , 1−ρ

3 , 2−ρ
3 , 1

2
0, 1

3 , 1
2 , −ρ−k−1

3 , −ρ−k
3 , −ρ−k+1

3

∣∣∣∣ −ω3

9

)

+
ω
3
√

3
G1,3

4,6

(
−ρ−1

3 , −ρ
3 , 1−ρ

3 , 1
2

0,− 1
3 , 1

2 , −ρ−k−2
3 , −ρ−k−1

3 , −ρ−k
3

∣∣∣∣ −ω3

9

) ]
,

(10)

where the Meijer G-function involved is defined as (cf. [13])

Gm,n
p,q

( a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

∣∣∣z)
=

1
2πi

∫
L

∏m
k=1 Γ(bk − s)∏n

j=1 Γ(1 − aj + s)

∏
q
k=m+1 Γ(1 − bk + s)∏

p
j=n+1 Γ(aj − s)

zs ds.
(11)

Remark 1. The contour integration technique employed in (11) also offers an efficient and accurate
implementation option for Meijer G-functions in software applications, including popular platforms
like MATLAB [22] and MATHEMATICA.

Now, we turn our attention to the asymptotic properties of the errors in the Filon-type
method. For simplicity, let Em(x) := f (x)− P2m−1(x). It is evident that E(k)

m (0) = 0 and
E(k)

m (1) = 0 for any 0 ≤ k ≤ m − 1, defining

σ0(x) = xαEm(x), σk+1 =
(σk(x)

x

)′′
, k ≥ 0, (12)

the asymptotic property of I1[ f ]− Qm[I1] is provided as follows.

Theorem 1. Let α > −1 be real but not an integer. As ω → ∞, the Filon-type quadrature defined
in (8) satisfies

I1[ f ]− Qm[I1] = O(ω−m−α−1). (13)

Proof. Recalling Airy’s equation,

d2

dx2 Ai(x)− xAi(x) = 0, (14)
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we have

I1[ f ]− Qm[I1] =
∫ 1

0
σ0(x)Ai(−ωx) dx

=
1

ω3

∫ 1

0

σ0(x)
x

(Ai(−ωx))′′ dx

=
1

ω3

[σ0(x)
x

(Ai(−ωx))′
∣∣∣1
x=0

−
∫ 1

0

(σ0(x)
x

)′
(Ai(−ωx))′ dx

]
=

1
ω3

[σ0(x)
x

(Ai(−ωx))′ −
(σ0(x)

x

)′
Ai(−ωx)

]1

x=0

+
1

ω3

∫ 1

0
σ1(x)Ai(−ωx) dx.

(15)

Let κ be the largest integer such that κ < min{m+α
3 , m

2 }. After an implementation of κ-times
of integration (by parts), we obtain

I1[ f ]− Qm[I1] =
κ−1

∑
j=0

1
ω3(j+1)

[σj

x
(Ai(−ωx))′ −

(σj

x

)′
Ai(−ωx)

]1

x=0

+
1

ω3κ

∫ 1

0
σκ(x)Ai(−ωx) dx.

(16)

From E(j)
m (0) = E(j)

m (1) = 0 for j = 0, 1, . . . , m − 1, we know that there exist functions hj(x)
such that

σj = xm+α−3j(x − 1)m−2jhj(x), j = 0, 1, · · · , κ (17)

where hj(x) is smooth with hj(0) ̸= 0 and hj(1) ̸= 0. Thus, the summation in the right-hand
side of (16) vanishes. By substituting (17) into (16), we get

I1[ f ]− Qm[I1] =
1

ω3κ

∫ 1

0
xm+α−3κ(x − 1)m−2κhκ(x)Ai(−ωx) dx. (18)

In the following, we consider the asymptotic property of the integral in (18). By
denoting

Ψω(x) =
∫ x

0
tm+α−3κAi(−ωt) dt, (19)

we know from [14] (Theorem 3.1) that Ψω(x) = O(ω3κ−m−α−1) holds uniformly for all
x ∈ [0, 1]. As a result, it follows that

I1[ f ]− Qm[I1]

=
1

ω3κ

∫ 1

0
(x − 1)m−2κhκ(x) dΨω(x)

=
1

ω3κ
(x − 1)m−2κhκ(x)Ψω(x)

∣∣1
x=0 −

1
ω3κ

∫ 1

0
Ψω(x) d{(x − 1)m−2κhκ(x)}

= O(ω−m−α−1).

(20)

This completes the proof.

In Figure 2, we demonstrate the asymptotic order of the error of the Filon-type method
for I1[ f ], where f (x) = e−1/x2 ∈ C∞[0, 1] is an infinitely differentiable function on [0, 1].
The absolute errors of Qm[I1] for various values of ω are displayed. It is evident that the
accuracy of Qm[I1] improves as ω increases and the decay rate is O(ω−m−α−1), which
confirms the conclusion in Theorem 1.
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Figure 2. The absolute errors of Qm[I1] with f (x) = e−1/x2
and varying ω = 102 : 20 : 103. The

dashed lines depict the decay rates according to O(ω−m−α−1).

3. Complex Integration Method for I2[ f ]

This section is dedicated to the numerical computation of I2[ f ] defined in (3), where
the function f is assumed to be analytic in the complex plane {z | 1 ≤ ℜ(z) ≤ b}. The
complex integration method will be applied to transform I2[ f ] into some non-oscillatory
and exponentially decaying integrals.

By utilizing the identity derived from [13] [Equation (9.6.6)],

Ai(−x) =
√

x
3

[
J1/3

(2
3

x3/2
)
+ J−1/3

(2
3

x3/2
)]

, (21)

where Jν(x) denotes the first kind of Bessel function of order ν; we substitute (21) into I2[ f ],
denoting r = 2

3 ω3/2 to obtain

I2[ f ] =
1
3

(3
2

r
)1/3 ∫ b

1
xα+1/2 f (x)

[
J1/3(rx3/2) + J−1/3(rx3/2)

]
dx

=
2
9

(3
2

r
)1/3 ∫ b3/2

1
x2α/3 f (x2/3)

[
J1/3(rx) + J−1/3(rx)

]
dx.

(22)

By recalling the integral representation of Bessel function, as given in [23] [Equation (8.411.10)],
namely

Jν(x) =
xν

2ν
√

πΓ(1/2 + ν)

∫ 1

−1
(1 − u2)ν−1/2eixu du, ℜ(ν) > −1/2, (23)

where i =
√
−1 is the imaginary unit, we apply Cauchy’s integral theorem [24] along with

contributions from Chen [25] and Zaman et al. [26]. This allows us to express I2[ f ] as

I2[ f ] =
3
√

6i
9
√

πΓ(5/6)

[ ∫ b3/2

1
Φ+

1/3(x)e−irx dx −
∫ b3/2

1
Φ−

1/3(x)eirx dx
]

+
2 3
√

3i
9
√

πΓ(1/6)
r2/3

[ ∫ b3/2

1
Φ+

−1/3(x)e−irx dx −
∫ b3/2

1
Φ−

−1/3(x)eirx dx
]
,

(24)

where Φ±
ν (x) is defined as

Φ±
ν (x) = x2α/3−ν f (x2/3)

∫ +∞

0
yν−1/2(y ± 2irx)ν−1/2e−y dy. (25)

3.1. Complex Integration Formulas

It is noteworthy that the integrands Φ±
ν (x) defined in (25) are non-oscillatory and

analytic in the complex plane {z | ℜ(z) ≥ 1}. This characteristic makes the evaluation of
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the highly oscillatory integrals in (24) a typical problem and can be efficiently solved by the
complex integration method [27,28].

Theorem 2. Let f (z) be an analytic function in the complex plane ℜ(z) ≥ 1, and assume there
exist some constants C and ω0 ∈ (0, ω) such that | f (z)| ≤ Ceω0ℑ(z). Then, we establish

I2[ f ] =
3
√

6
9
√

πΓ(5/6)

[ e−ir

r

∫ +∞

0
Φ+

1/3

(
1 − iu

r

)
e−u du +

eir

r

∫ +∞

0
Φ−

1/3

(
1 +

iu
r

)
e−u du

− e−irb3/2

r

∫ +∞

0
Φ+

1/3

(
b3/2 − iu

r

)
e−u du − eirb3/2

r

∫ +∞

0
Φ−

1/3

(
b3/2 +

iu
r

)
e−u du

]
+

2 3
√

3r2/3

9
√

πΓ(1/6)

[ e−ir

r

∫ +∞

0
Φ+
−1/3

(
1 − iu

r

)
e−u du +

eir

r

∫ +∞

0
Φ−
−1/3

(
1 +

iu
r

)
e−u du

− e−irb3/2

r

∫ +∞

0
Φ+
−1/3

(
b3/2 − iu

r

)
e−u du − eirb3/2

r

∫ +∞

0
Φ−
−1/3

(
b3/2 +

iu
r

)
e−u du

]
,

(26)

where r = 2
3 ω3/2 and Φ±

ν (·) are defined in (25).

Proof. According to the assumption based on f , it is evident that Φ+
ν (z) is analytic in the

complex region ℜ(z) ≥ 1. By using Cauchy’s integration theorem [24], we express the
integral as ∫ b3/2

1
Φ+

ν (x)e−irx dx =
∫

Γ1+Γ2+Γ3

Φ+
ν (z)e

−irz dz, (27)

where the integration paths Γ1, Γ2, and Γ3 are shown in the left of Figure 3. In the following,
we parameterize the integrals over these paths respectively.

For the path Γ1, setting z = 1 − iu with u ∈ [0, R] yields∫
Γ1

Φ+
ν (z)e

−irz dz = −ie−ir
∫ R

0
Φ+

ν (1 − iu)e−ru du. (28)

In the same way, for Γ3, setting z = b3/2 − iu yields∫
Γ3

Φ+
ν (z)e

−irz dz = ie−irb3/2
∫ R

0
Φ+

ν (b
3/2 − iu)e−ru du. (29)

For Γ2, a change in the variable z = u − iR with u ∈ [1, b3/2] results in

∫
Γ2

Φ+
ν (z)e

−irz dz = e−rR
∫ b3/2

1
Φ+

ν (u − iR)e−iru du. (30)

Letting R → +∞, it is obvious that∣∣∣∣∫Γ2

Φ+
ν (z)e

−irz dz
∣∣∣∣ ≤ e−rR

∫ b3/2

1
|Φ+

ν (u − iru)| du → 0. (31)

Combined with (27), (28), (31), and (29), we derive

∫ b3/2

1
Φ+

ν (x)e−irx dx =− ie−ir

r

∫ +∞

0
Φ+

ν

(
1 − iu

r

)
e−u du

+
ie−irb3/2

r

∫ +∞

0
Φ+

ν

(
b3/2 − iu

r

)
e−u du.

(32)

After a similar argument and employing the integration paths depicted in the right of
Figure 3, this leads to
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∫ b3/2

1
Φ−

ν (x)eirx dx =
ieir

r

∫ +∞

0
Φ−

ν

(
1 +

iu
r

)
e−u du

+
ieirb3/2

r

∫ +∞

0
Φ−

ν

(
b3/2 +

iu
r

)
e−u du.

(33)

This completes the proof by setting ν = 1/3 and ν = −1/3, respectively.

Figure 3. The complex integration paths for the integrals in (24). The left one is for integrals with
Φ+

ν (x), while the right one is for integrals with Φ−
ν (x).

In particular, when b = +∞, the complex integration method becomes particularly
efficient by altering the integration paths of (24), as illustrated in Figure 4.

Figure 4. The complex integration paths for the integrals in (24) when b = +∞. The left one is for
integrals with Φ+

ν (x), while the right one is for integrals with Φ−
ν (x).

Theorem 3. Let f (z) be an analytic function in the complex plane ℜ(z) ≥ 1, and assume that
there exist some constants C and δ > 0 such that | f (z)| ≤ C|z|−δ for all |z| ≥ 1. For b = +∞,
we establish that

I2[ f ] =
3
√

6
9
√

πΓ(5/6)

[ e−ir

r

∫ +∞

0
Φ+

1/3

(
1 − iu

r

)
e−u du +

eir

r

∫ +∞

0
Φ−

1/3

(
1 +

iu
r

)
e−u du

]
+

2 3
√

3r2/3

9
√

πΓ(1/6)

[ e−ir

r

∫ +∞

0
Φ+
−1/3

(
1 − iu

r

)
e−u du +

eir

r

∫ +∞

0
Φ−
−1/3

(
1 +

iu
r

)
e−u du

]
,

(34)

where r = 2
3 ω3/2.
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Proof. Applying Cauchy’s integral theorem [24], we have∫ +∞

1
Φ+

ν (x)e−irx dx =
∫

Γ1+Γ2

Φ+
ν (z)e

−irz dz, as R → +∞, (35)

where Γ1 and Γ2 are complex paths shown in the left of Figure 4. We parameterize Γ1 as
z = 1 − iu, u ∈ [0, R], then∫

Γ1

Φ+
ν (z)e

−irz dz = e−ir
∫ R

0
Φ+

ν (1 − iu)e−ru du. (36)

For Γ2, setting z = 1 + Re−iθ with θ ∈ [0, π/2], we obatin

∫
Γ2

Φ+
ν (z)e

−irz dz = ie−irR
∫ π/2

0
e−i(rR cos θ+θ)e−rR sin θΦ+

ν (1 + Re−iθ) dθ. (37)

As R → +∞, it follows that∣∣∣∣∫Γ2

Φ+
ν (z)e

−irz dz
∣∣∣∣ ≤R

∫ π/2

0
e−rR sin θ

∣∣∣Φ+
ν (1 + Re−iθ)

∣∣∣ dθ

≤CR1−δ
∫ π/2

0
e−2rRθ/π dθ

≤CπR1−δ 1 − e−rR

2rR
→ 0,

(38)

where we used sin θ > 2θ/π. As a result, we obtain that∫ +∞

1
Φ+

ν e−irx dx = e−ir
∫ +∞

0
Φ+

ν (1 − iu)e−ru du. (39)

Similarly, by using the complex paths in the right of Figure 4, we get∫ +∞

0
Φ−

ν (x)eirx dx = eir
∫ +∞

0
Φ−

ν (1 + iu)e−ru du. (40)

Substituting these into (24) leads to the desired result (34).

3.2. Numerical Algorithms and Error Estimates

Apparently, the integrands in (26) are smooth and accompanied by the Laguerre
weight function. This characteristic makes them amenable to be accurately approximated
through the Gaussian quadrature rule. Consequently, employing the n-point Gauss-
Laguerre quadrature rule provides a robust numerical method for evaluating I2[ f ]:

Qn[I2] :=
3
√

6
9
√

πΓ(5/6)

n

∑
k=1

w(0)
k

[e−ir

r
Φ̂+

1/3

(
1 − i

r
u(0)

k

)
+

eir

r
Φ̂−

1/3

(
1 +

i
r

u(0)
k

)
− e−irb3/2

r
Φ̂+

1/3

(
b3/2 − i

r
u(0)

k

)
− eirb3/2

r
Φ̂−

1/3

(
b3/2 +

i
r

u(0)
k

)]
+

2 3
√

3r2/3

9
√

πΓ(1/6)

n

∑
k=1

w(0)
k

[e−ir

r
Φ̂+

−1/3

(
1 − i

r
u(0)

k

)
+

eir

r
Φ̂−

−1/3

(
1 +

i
r

u(0)
k

)
− e−irb3/2

r
Φ̂+

−1/3

(
b3/2 − i

r
u(0)

k

)
− eirb3/2

r
Φ̂−

−1/3

(
b3/2 +

i
r

u(0)
k

)]
,

(41)

where Φ̂±
ν (x) is defined as a numerical approximation of Φ±

ν (x) by the Gaussian quadra-
ture rule such that
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Φ±
ν (x) ≈ Φ̂±

ν (x) := x2α/3−ν f (x2/3)
n

∑
k=1

w(ν−1/2)
k

(
u(ν−1/2)

k ± 2irx
)ν−1/2. (42)

Here, by using {u(γ)
k , w(γ)

k }, we denote the quadrature nodes and weights of the generalized
Laguerre quadrature rule corresponding to the weight function uγe−u with γ > −1.

Remark 2. Algorithms for computing Gaussian quadrature nodes and weights have been exten-
sively studied over the past several decades. The classic approach is the Golub-Welsch algorithm,
which solves an eigenvalue problem and requires O(n2) operations. However, when n is large,
several fast algorithms have been presented by Glaser, Liu, and Rokhlin [29], as well as Hale and Tre-
fethen [30]. These algorithms require only O(n) operations by leveraging the asymptotic properties
of orthogonal polynomials.

Theorem 4. Suppose that f (x) satisfies the condition in Theorem 2. Then, as ω → +∞, the
absolute errors of (41) satisfy that∣∣∣I2[ f ]− Qn[I2]

∣∣∣ = O(ω−3n−7/4). (43)

Proof. As is known, the error of the n-point generalized Gaussian Laguerre quadrature
rule to the integral [31]

∫ +∞
0 xγe−x φ(x) dx is

En[φ] =
n!Γ(n + γ + 1)

(2n)!
φ(2n)(ξ), ξ ∈ (0,+∞). (44)

By substituting this into (26) and (41), it is not difficult to derive that∣∣∣I2[ f ]− Qn[I2]
∣∣∣ = O(r−2n−1−1/6) = O(ω−3n−7/4), (45)

where we used r = 2
3 ω3/2.

For the case b = +∞, after applying the Gaussian quadrature rule to (34), we get the
numerical algorithm for I2[ f ] such that

Qn[I2] :=
3
√

6
9
√

πΓ(5/6)

n

∑
k=1

w(0)
k

[e−ir

r
Φ̂+

1/3

(
1 − i

r
u(0)

k

)
+

eir

r
Φ̂−

1/3

(
1 +

i
r

u(0)
k

)]
+

2 3
√

3r2/3

9
√

πΓ(1/6)

n

∑
k=1

w(0)
k

[e−ir

r
Φ̂+

−1/3

(
1 − i

r
u(0)

k

)
+

eir

r
Φ̂−

−1/3

(
1 +

i
r

u(0)
k

)]
,

(46)

where Φ±
ν (x) is defined in (42). As ω → +∞, the error of the quadrature rule Qn[I2]

satisfies the estimate ∣∣∣I2[ f ]− Qn[I2]
∣∣∣ = O(ω−3n−7/4). (47)

In the following, we provide a numerical test of the error estimates of the complex
integration method for I2[ f ] =

∫ b
1 xα f (x)Ai(−ωx) dx. We select f (x) = 1/(1 + x2) as the

Runge function, which is analytic in the complex plane ℜ(z) ≥ 1 but has two poles at
z = ±i. In Figures 5 and 6, the absolute errors of Qn[I2] for various values of ω are depicted
in the left panel, while the absolute errors scaled by the factor ω3n+7/4 are presented in
the right panel. It is evident that the accuracy of Qn[I2] improves as ω increases, and the
convergence rate is observed to be ω−3n−7/4. This observation aligns with the theoretical
results stated in Theorem 4.
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Figure 5. The absolute errors of Qn[I2] (left) and the absolute errors scaled by ω3n+7/4 (right) for
the integral I2[ f ] =

∫ 2
1 xα f (x)Ai(−ωx) dx with f (x) = 1/(1 + x2), where ω runs over [10, 100].

The exact value of I2[ f ] is approximated by the software MATHEMATICA 12.1 with high-precision
arithmetic.

Figure 6. The absolute errors of Qn[I2] (left) and the absolute errors scaled by ω3n+7/4 (right) for
the integral I2[ f ] =

∫ +∞
1 xα f (x)Ai(−ωx) dx with f (x) = 1/(1 + x2), where ω runs over [10, 100].

The exact value of I2[ f ] is approximated by the software MATHEMATICA 12.1 with high-precision
arithmetic.

4. Numerical Examples

This section is dedicated to presenting the efficiency and accuracy of the proposed
method by several typical numerical examples. The exact values used were obtained from
MATHEMATICA 12.1 with high-precision arithmetic, whereas MATLAB 2016 was used to
compute the numerical results of the proposed method.

Example 1. We consider the highly oscillatory integral over a finite interval given by

I[ f ] =
∫ 5

0
x−1/2 sin xAi(−ωx) dx. (48)

After dividing the interval, we compute the integral over [0, 1] using the Filon-type method Qm[I1]
described in Section 2, and the integral over [1, 5] using the complex integration method Qn[I2]
described in Section 3. The exact values of I[ f ] in the bottom row of Table 1 are computed by
MATHEMATICA 12.1 with 16-digit precision. The absolute errors are displayed in Table 1, which
shows the efficiency of the proposed method.
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Table 1. Errors of the proposed numerical method for (48).

n (= m) ω = 1 ω = 10 ω = 20 ω = 40 ω = 80 ω = 160

1 3.2 × 10−2 2.3 × 10−3 8.2 × 10−4 2.9 × 10−4 1.0 × 10−4 3.6 × 10−5

2 5.9 × 10−3 5.7 × 10−6 5.4 × 10−7 4.9 × 10−8 4.3 × 10−9 3.8 × 10−10

3 1.5 × 10−3 6.4 × 10−8 9.3 × 10−9 9.8 × 10−10 9.4 × 10−11 8.6 × 10−12

4 3.1 × 10−4 3.9 × 10−10 2.3 × 10−11 1.1 × 10−12 4.9 × 10−14 2.2 × 10−15

5 1.3 × 10−5 2.9 × 10−18 1.1 × 10−12 1.8 × 10−14 2.6 × 10−16 1.2 × 10−18

Exact values 0.5786450 0.0137262 0.0051914 0.0018297 0.0006740 0.0002367
(Mathematica) 00855307 61972158 39052109 30968546 91854124 76298767

Example 2. Now, let us consider the highly oscillatory integral over the semi-infinity interval

I[ f ] =
∫ +∞

0
x−1/2 1

100 + x2 Ai(−ωx) dx. (49)

Similarly, we compute the integral over [0, 1] by using the Filon-type method described in Section 2
and the integral over [1,+∞) by using the complex integration method described in Section 3. The
absolute errors are displayed in Table 2. The bottom line of Table 2 gives the exact values of I[ f ]
obtained from the software MATHEMATICA 12.1 with 16-digit precision.

Table 2. Errors of the proposed numerical method for (49).

n (= m) ω = 1 ω = 10 ω = 20 ω = 40 ω = 80 ω = 160

1 4.3 × 10−4 1.6 × 10−6 5.2 × 10−7 1.8 × 10−7 6.4 × 10−8 2.2 × 10−8

2 4.0 × 10−4 5.5 × 10−10 3.6 × 10−11 3.9 × 10−12 2.5 × 10−13 2.8 × 10−13

3 1.9 × 10−4 6.1 × 10−12 1.2 × 10−13 1.4 × 10−14 1.7 × 10−13 5.9 × 10−14

4 6.0 × 10−5 2.2 × 10−13 1.9 × 10−14 2.1 × 10−15 2.7 × 10−14 5.8 × 10−14

5 4.3 × 10−6 2.8 × 10−14 1.9 × 10−14 2.1 × 10−15 2.7 × 10−14 5.8 × 10−14

Exact values 0.0108855 0.0034428 0.0024344 0.0017214 0.0012172 0.0008607
(Mathematica) 10568092 84873791 87277255 42464043 43639445 21232015

From Tables 1 and 2, it can be readily concluded that, for any fixed ω, the accuracy of
the proposed method improves significantly with an increase in n. The method requires
only a small number of function evaluations to yield highly accurate approximations of I[ f ].
Furthermore, for a fixed value of n, the accuracy of the method improves with increasing
values of ω. The numerical examples presented in each section underscore the efficiency of
our approach. For comparison, we provide the absolute errors of the proposed method for
the non-oscillatory integrals

∫ b
0 xα f (x)Ai(−x) dx (see the second column of Tables 1 and 2).

The results illustrate the efficiency and accuracy of the proposed method.

5. Conclusions

In conclusion, this study addresses the numerical computation of highly oscillatory
integrals involving the Airy function over both finite and semi-infinite intervals. The pro-
posed method, which employs a partitioning strategy and complex integration techniques,
demonstrates efficiency and accuracy in handling the challenges posed by the oscillatory
nature of the integrands. This approach is easy to implement, and rigorous error analyses
support its reliability. Numerical examples are provided to validate the theoretical results
and highlight the accuracy of the methods. Furthermore, it is worth noting that the pro-
posed method in this work achieves higher asymptotic rates concerning the frequency ω
compared to those discussed in the previously mentioned references.

In the implementation of our methods, the function f is required to be analytic in the
complex plane {z | 1 ≤ ℜ(z) ≤ b}. However, this requirement may be overly restrictive.
In situations where f (x) is only differentiable but not analytic, it could be worthwhile to
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explore alternative approaches, such as employing suitably designed asymptotic methods
or Filon-type methods. These considerations will be the focus of our future work.
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