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Abstract: In this work, the preparation and characterization of composites from cellulose acetate
(CA)–poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-
NPs) using solution blow spinning (SBS) is reported. CA–PEO nanofibers were produced by spinning
solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles
were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To
have better control of the SBS processing conditions, characterization of the spinning suspensions is
carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is
observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers,
but does affect the mode of the nanofibers’ size distribution, whereby lower viscosity provides
thinner fibers. FESEM–EDS confirms ZnO NP encapsulation into nanofibers, specifically into the
CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days
in deionized water, despite the significant swelling of the material and accompanied dissolution of
water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is
detected, both visually and by spectrometer. ATR–FTIR studies reveal interaction of ZnO with the
CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it
can be concluded that these CA–PEO–ZnO composites are good candidates to be used in filtration
membranes, with no loss of incorporated ZnO NPs or their release into an environment.

Keywords: solution blow spinning; cellulose acetate; zinc oxide; nanofibers; nanoparticles;
poly(ethylene oxide)

1. Introduction

Nanofibers (NF) and nanoparticles (NP) are two types of nanomaterials that have
attracted much attention in recent years due to their unique properties and potential
applications in various fields, including the biomedical, environmental, and energy sec-
tors [1]. When nanofibers and nanoparticles are combined, they can form a new class
of nanocomposites that exhibit enhanced properties compared to the individual compo-
nents. Nanofibers can provide a high surface area-to-volume ratio and porosity to the
final material, while nanoparticles can impart unique optical, magnetic, antimicrobial
or catalytic properties [1,2]. Embedding nanoparticles in nanofibers can be achieved by
various methods, the most popular being electrospinning. In the electrospinning method, a
liquid containing a polymer system and nanoparticles is spun, using a voltage differential,
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to obtain a fibrous material that is a nanofiber–nanoparticle (NF/NP) composite [2–4].
However, other NF–NP composites can be obtained using surface deposition/adsorption
by depositing nanoparticles on the previously spun fibers [2,5]. Nanofibers combined
with nanoparticles have shown promising applications in various fields. For instance,
they can be used as nanofiltration and pollutant degradation membranes [6–9], wound
dressings [10] or drug delivery systems [11], among many others. In these applications, the
combination of nanofibers and nanoparticles can provide improved mechanical strength,
biocompatibility, and enhanced functionality.

Apart from the above, special interest lies in using natural polymers in the form of
nanofibers, as they are biodegradable, biocompatible, and non-toxic [12–14]. Cellulose,
the most abundant natural polymer, and its derivatives have been the focus of research
due to their biocompatible nature. The conversion of cellulose and its derivatives into
nanofibers has been the subject of many studies in the last few decades [15–21]. Cellulose
acetate, a thermoplastic derivative of cellulose, is especially notable as a versatile deriva-
tive. It is soluble in many organic solvents, with the possibility to be processed in many
forms, including film, fibers, and nanofibers [18,22,23]. Doping of cellulose acetate with
nanoparticles can lead to the development of versatile antimicrobial material if the added
nanoparticles possess some antimicrobial or bioactive effect. Such nanoparticles are mostly
based on silver, copper, titanium dioxide or zinc oxide [24–27]. Zinc oxide NPs (ZnO NP)
have many potential applications: with their photocatalytic activity [28], they can be used
for water disinfection [29,30] and in biomedical applications as an antimicrobial additive to
obtain medical textile materials [31]. The most common techniques for incorporation of
nanoparticles into CA include solution casting [25,32,33] or electrospinning (ES) [26,34–36].

Here, we report a novel method, solution blow spinning, to incorporate zinc oxide
nanoparticles (ZnO NPs) into nanofibers prepared fromcellulose acetate–polyethylene ox-
ide (CA–PEO) mixture. Solution blow spinning (SBS) is a method for nanofiber preparation,
and to the best of our knowledge, this is the first report of nanoparticles incorporated into
cellulose acetate nanofibers using SBS. This technique has several advantages over other
nanofiber fabrication techniques [37,38]. It is a simple and versatile technique that does
not require a high-voltage power supply or complex equipment. Additionally, SBS can
produce high-quality nanofibers at a higher rate than electrospinning. Finally, SBS can be
used in situ directly onto the target, for example, onto some object that needs to be covered
with fibers/films, including human skin [37].

In this paper, we present incorporation of ZnO nanoparticles into cellulose acetate–
poly(ethylene oxide) CA–PEO nanofibers. The use of PEO during spinning plays a sup-
porting role in CA spinning [39], since CA is difficult to process using SBS, because of the
inability to obtain bead-free nanofibers [40]. Both polymers, CA and PEO, are biodegrad-
able and biocompatible, which makes them suitable for potential biomedical applications,
especially considering the bioactivity of ZnO [31]. Finally, with the objective of making
comparisons of morphology and molecular interactions, two nanocomposite systems that
contain an equal composition of CA (12%) were prepared by SBS and ES, with the difference
being that in SBS, the spinning aid PEO was used. The purpose of this is to look for more
information that allows for better decision-making when deciding the best processing
method to prepare nanofibers for a particular purpose.

In addition, we compare the morphology and molecular interactions between nanofibers
obtained by SBS of CA 12% with addition of PEO and ZnO NPs and by ES of pure CA 12%
with ZnO.

2. Materials and Methods
2.1. Materials

Poly(ethylene oxide) (PEO; Mv 100,000), cellulose acetate CA (Mn 30,000), acetone
(HPLC > 99.9%), and chloroform (anhydrous, ≥99%) were supplied by Sigma-Aldrich
Merck (St. Louis, MO, USA)and used as received without further purification. Commercial
zinc oxide (ZnO) nanopowder from Sigma-Aldrich Merck (St. Louis, MO, USA), with
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mean diameter of particles ≤100 nm, was used; according to the certificate of analysis
(COA) of this batch, the nanopowder had an average particle size of 67 nm. Complete
characterization of ZnO NPs can be found in the literature [41].

2.2. Preparation of Polymer Solution and Suspensions

Polymers were dissolved separately 24 h before spinning following a protocol that
can be found in a previous study [39]. CA was dissolved in acetone and PEO in a mixture
of acetone and chloroform. After that, an equal volume of each polymer solution was
mixed (1:1 ratio) to prepare the corresponding solutions of the two polymers, and after
1 h, the required amount of ZnO nanoparticles was added to the solution, followed by
10 min treatment in ultrasonic bath, to prepare the corresponding suspensions. After the
ultrasonic bath, samples were left to stir on a magnetic stirrer for 30 min prior to spinning.
LNF denotes the mixtures prepared by using a 10% w/v solution of CA and a 10% w/v
solution of PEO, and HNF denotes mixtures prepared by using a 12% w/v solution of CA
and a 10% w/v solution of PEO in equal ratio (Scheme in Figure 1). ZnO NPs were added
in concentrations of 2.5 wt% and 5 wt%, calculated on the total weight of polymer mixture
in the solution.
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Figure 1. Scheme of samples and their corresponding sample marks prepared in this work using
solution blow spinning.

2.3. Solution Blow Spinning (SBS) and Electrospinning (ES)

Solution blow spinning was performed using a homemade device at UC3M as reported
previously [39,40]. The distance from the tip of the needle to the collector (working distance)
was set to 15 cm, the rotational speed of the collector was 250 rpm, the pressure of the
propellent air was 1.5 bar for the LNF mixtures and 2 bar for the HNF mixtures, and the
injection rate (IR) was set at 0.25 mL/min. The materials were collected on the aluminum
foil used to cover the rotating cylindrical collector.

Electrospinning was performed on the commercial device Spinbox (Bioinicia, Paterna,
Spain), under the following spinning parameters: IR 30 µL/min, RPM 250, working
distance 10 cm, voltage 25 kV. In this case, a solution of pure CA 12% w/v in acetone was
used (without PEO), whereby the same concentrations of ZnO were considered (2.5 wt.%
and 5.0 wt.%), as in the case of SBS.

2.4. Characterization
2.4.1. Viscosity of Spinning Solutions

Haake Viscotester IQ: parallel round-plate configuration, gap between the plates 1 mm,
step increase of shear rate, 100 points measured per shear rate segment of 30 s duration.
Measurements were performed at 25 ◦C. Shear rates were used in a range of 100–900 s−1.

2.4.2. Morphology of Samples Using Field-Emission Scanning Electron Microscopy
Coupled with Energy Dispersive X-ray Spectroscopy (FESEM–EDS)

Morphology was studied using the field-emission scanning electron microscope (FE-
SEM) TENEO-FEI. An ETD detector was used to generate images of the samples from the
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signal arising from secondary electrons (SEs), which mainly yields morphological informa-
tion. On the other hand, a CBS (circular backscatter) detector was also used in this case to
generate images from the signal arising from backscattered electrons, which, apart from giv-
ing morphological information, shows contrast associated with compositional information
necessary to distinguish the polymers from the ZnO NPs. Energy-dispersive spectroscopy
(EDS) was used to carry out elemental microanalysis on the surface of the materials pre-
pared. In every case, an acceleration voltage of 10 kV was used. Prior to imaging, samples
were gold-coated for 25 s by sputtering using a Leica EM ACE200 low-vacuum coater.

Analysis of images was conducted using ImageJ 153 open access software. For deter-
mination of the average fiber diameter, between 80 and 150 measurements were taken into
analysis, while for nanoparticles, the longest axis length of irregularly shaped aggregates
was presented as the size of aggregates, and due to limited amounts, 15–30 measurements
per sample containing ZnO were performed.

2.4.3. Structure and Molecular Interactions Using Infrared Spectrometry: ATR–FTIR

An FTIR spectrometer (Thermo Fisher Nicolet iS5 with an ATR device (diamond
window, GladiATR PIKE Technologies, Thermo scientific, Thermofisher, Madison, WI, USA)
was used for structural characterization of the samples. Measurements were performed in
a range of 400–4000 cm−1 using 32 scans and 4 cm−1 resolution.

2.4.4. Release of ZnO Using UV-Vis Spectrometry

Release of nanoparticles was studied by absorption using UV-vis spectroscopy on a
Jasco V650 UV-vis spectrophotometer (Jasco, Madrid, Spain). Nanofibrous membranes
(approx. 45 mg) of CA–PEO (with and without ZnO) were put in a glass bottle with
deionized water (25 mL) and occasionally shaken. A small amount of liquid in which the
NPs from the materials are expected to be released was taken from a bottle at increasing
time intervals (5, 10, 30 min) up to 1 h, at 24 h and at 120 h (5 days), and its absorbance was
measured in a range of 250 to 650 nm to detect the signals potentially originating from the
released ZnO. Apart from the tests with the materials, using the same spectrometer, pure
ZnO suspensions in water were measured to determine the sensitivity of the device. The
lowest absorbance signal detected for ZnO nanoparticles corresponds to their concentration
in water of 0.003 mg/mL.

3. Results and Discussion
3.1. Morphological Analysis of Prepared Nanocomposites

Preparation of materials by solution blow spinning requires optimization of the process
from a careful analysis of morphology [42]. Many of the material properties depend on the
size of nanofibers, including their diameters and interconnections; therefore, good control
of the morphology should be ensured.

Figure 2 shows FESEM images obtained by different detectors of HNF samples with
2.5% and 5% ZnO NPs. Materials made by thin fibers of less than 700 nm of diameter were
obtained (Figure 2).

When studying the organic–inorganic composite, especially in this work, and using
organic polymers as matrix and inorganic nanoparticles as filler, special attention must be
given to the detector used during scanning electron microscopy. The materials prepared in
this work are obvious confirmation of this nuance, since by using a classical EDT detector,
it is almost impossible to differentiate the nanofibers and nanoparticles (Figure 2b,d).
Particularly, as in this study, where NPs are expected to be inside nanofibers, it becomes
obvious that CBS or backscattered electron collection is crucial for obtaining proper images
(Figure 2a,c) and consequently their analysis. Apart from the morphology, intensity of
backscattered electrons depends on the elements that form part of the material, giving
images with contrast on those regions with different elemental composition. Figure 2a,c
show bright spots that are quite uniformly dispersed along the fibers, which are indicative
of the presence of a Zn-heavier element. As highlighted earlier, currently there are no
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available reports regarding the solution blow spinning of CA–PEO with ZnO or the SBS of
pure CA with ZnO.
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Figure 2. FESEM images obtained by different detectors of HNF samples with 2.5% ZnO NP
(a) CBS detector and (b) ETD detector, and HNF samples with 5% ZnO NP (c) CBS detector and
(d) ETD detector.

In Figure 3, by using a CBS detector, it was possible to see NPs—or more precisely,
their aggregates inside nanofibers—at a higher magnification. Using EDX analysis on the
bright spots, it was possible to confirm the presence of Zn. However, the peak in the X-ray
spectrum associated with the Zn (Figure 3b) is not as intense or of higher intensity than
those corresponding to C and O (specifically, the C arises from polymer(s) themselves),
which may mean that the bulk electron beam–material interaction includes all materials of
the composites, ZnO, and polymers.

The size distribution of nanofibrous composites with ZnO is given in Figure 4. All
distributions can be fitted by Gaussian normal distribution function, and when lower
concentration of CA is used (equal ratio) in the CA–PEO composite (samples LNF), a wider
and lower peak of Gaussian distribution appears, compared to HNF (approx. for LNF
around 550 nm vs. HNF around 690 nm). Upon addition of 2.5% ZnO (sample LNF/2.5),
more thin fibers appear in the distribution (fibers below 250 nm, in a range 150–250) and
the Gaussian peak is slightly lower, but when 5% ZnO is added, the Gaussian peak is
shifted toward higher values. In samples prepared using higher CA-to-PEO ratio (HNF), it
is the opposite: the peak of Gaussian shifts, in both cases, to the left, i.e., lower values of
diameters, and again upon the addition of 2.5% is lower compared to samples with added
5% ZnO. This can be better visualized if we directly compare Gaussian curves obtained for
all samples before and after the addition of ZnO (Figure S1).
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Analysis of images obtained in FESEM revealed that the mean diameter of nanofibers
(Figure 5a), considering the deviation, does not differ depending on the composition of
materials. However, if we consider the mode (the most frequent value in the distribution),
we can see that it significantly differs in variously composed samples (Figure 5b). The
lowest mode appears in samples produced using higher amounts of CA compared with
PEO and with 2.5% added ZnO, while the highest mode appears in the sample HNF
without ZnO nanoparticles. If we look at the data on viscosity (Figure 5d), apart from
obvious shear-thinning behavior of polymer solutions, we can see that for the two samples
with the highest and the lowest apparent viscosity (Figure 5d), there is also the highest and
the lowest mode of nanofiber size (Figure 5b). Although this will be the object of further
studies, at this moment it can be concluded that the addition of ZnO with a strong decrease
in viscosity leads to the production of thinner nanofibers.
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Figure 5. Values of mean (a) and mode (b) of size distribution of produced nanofibers depending
on the composition and size of ZnO NP aggregates (c) on the formed nanofibers obtained from
FESEM images using ImageJ software; apparent viscosity (d) at different shear rates of polymer-NP
composite solutions used to produce nanofibers using SBS.

The complexity of size distribution analysis of nanofibers in this work comes as a
consequence of two effects: first, the nanofibers without ZnO are formed in such a way that
PEO envelopes the CA, which leads to the effect of several CA nanofibers being enveloped
by PEO [39], and the addition of ZnO in polymer solution disrupts the CA–PEO system,
which is reflected in the observed change in viscosity.

The decrease in viscosity is known to influence the nanofiber size, and the formation
and morphology of nanofibers highly depend on the viscosity and entanglement of polymer
chains. This is highlighted in the electrospinning process [43,44], which is explained by the
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fact that lower viscosity, achieved in a lower concentration of polymer solution, usually
contains less entanglement of macromolecular chains, and thus effectively produces thinner
fibers. Unlike in other works, we present that the change in viscosity is achieved through
simple addition of nanoparticles and obviously influenced the size distribution, as seen in
Figure 4, as well as the viscosity and mode of distribution given in Figure 5.

In Figure 6, we plotted mode of size distribution and viscosity (measured at a shear rate
of 100 s−1) in different samples, and we can observe that the trends are almost overlapping.
The only slight exception is the sample LNF/5 compared to the sample LNF/2.5, where
the viscosity increased by only a small value, but the mode changed significantly.
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The addition of nanoparticles to polymer solutions in some cases leads to a reduction in
the viscosity of the solution [45,46]. This effect is often referred to as “nanoparticle-induced
viscosity reduction” or “viscosity reduction by nanoparticles”. The exact mechanism by
which nanoparticles reduce the viscosity of polymer solutions is still a subject of research,
but several mechanisms have been proposed. One is that the nanoparticles disrupt the
entanglement of polymer chains, which leads to a decrease in the solution viscosity by
enhancing free volume in polymer solution, since it was also established that the Tg of the
polymer, after NP addition, decreases in a study by Tuteja et al. [47]. Another hypothesis
suggests that the nanoparticles are enveloped by shorter polymer macromolecules that do
not directly participate in entanglement necessary for nanofiber formation; this reduces
the friction between the polymer chains during the flow, which can explain the strong
reduction in viscosity with shear rate [45]. A similar study conducted by Rokbani and
Ajji [48] followed electrospinning of PLA with ZnO and found a decrease upon the addition
of more than 3 wt% of ZnO to PLA solution, but they attributed this to accelerated polymer
degradation since they measured the viscosity after 5 and 25 days. In the same study,
unfortunately authors did not mention the size of the produced nanofibers or the possible
effect of viscosity on the size of the nanofibers.

In another study by Chae and Kim [49] where influence of ZnO on viscosity of
polystyrene (PS) and polyacrylonitrile (PAN) was studied, authors proposed that the
formation of ZnO agglomerates is the reason behind decreased viscosity above critical NP
concentration. As authors pointed out, “some part of the adsorbed polymer on the nanopar-
ticles can be confined by excessive nanoparticles, leading to the reduction of the polymer
concentration in the liquid phase” [49]. Therefore, for a polymer to have a reduction in its
solution viscosity instead of an expected increase upon nanoparticle addition, it should
have affinity towards nanoparticles, but at the same time, those nanoparticles need to have
a tendency to aggregate, which is presented in our work as well.
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The results from viscosity undoubtedly indicate that a strong interaction exists between
CA and ZnO, more so than the interaction between PEO and ZnO.

The apparent viscosity of a pure CA solution (12% in acetone) at 100 s−1 shear rate is
835 mPa·s, and for 10% PEO (in acetone–chloroform mixture) is 48.5 mPa·s. The addition
of PEO strongly reduces the viscosity of CA solution, as reported in literature [34], but
the addition of ZnO reduces it even further. In our study, an indirect indicator of strong
interaction between CA and ZnO can be the observed phenomenon that a strong reduction
in viscosity occurs when ZnO is added to a solution that contains a higher amount of CA
(Figure 5d). The lower viscosity is found in HNF solutions with added ZnO compared
to the corresponding LNF with ZnO. Furthermore, due to a good dispersion of a small
amount of ZnO, there is a lower viscosity in samples that contain lower amounts of ZnO.
This is also confirmed by the smallest aggregate, (Figure 5c), even though these data should
be analyzed with caution due to the small number of measurements. Further increase in
the amount of ZnO leads to the formation of bigger aggregates.

The effect of nanoparticles on solution viscosity obviously depends on several factors,
such as the type and size of the nanoparticles, the concentration of the nanoparticles in
the solution, and the properties of the polymer itself. For example, the addition of TiO2
nanoparticles [50], silver nanoparticles, [51] or glass nanoparticles [52] in CA caused an
increase in viscosity of the polymer solution. Nanoparticle-induced viscosity reduction
will be the object of further study, since this effect has potential applications in a variety of
fields, such as in the production of coatings, adhesives, and composites. By reducing the
viscosity of polymer solutions, nanoparticles can make processing these materials more
feasible and can also improve the materials’ properties. However, it is important to note
that the addition of nanoparticles can also have other effects on the properties of polymer
materials, such as changes in their optical, thermal, and mechanical properties, which must
be carefully considered in the design of any nanoparticle–polymer composite.

This phenomenon of viscosity reduction due to the addition of nanoparticles can be
especially important in spinning technologies, since polymer solutions of high viscosity are
not suitable for nanofiber processing because of spinning interruption (e.g., blocking of the
nozzle), while too low viscosities can suggest that entanglement of polymer macromolecules
is too low and thus cause the production of fibers with beads or even beads only, without
nanofiber formation.

3.2. Release Studies of ZnO Using UV-Vis

We studied the release kinetics of ZnO from composites in water for up to 5 days,
knowing that PEO dissolves in water and that CA nanofibers have significant swelling
ability [39]. The pure ZnO suspension in water was also measured, and a peak at 374 nm
(Figure 7, red line) appeared, which corresponds to the values reported in the literature [53,54].

After 5 days of keeping the nanofibers in deionized water, the UV absorption peak
corresponding to ZnO at around 374 nm did not appear in spectra (Figure 7, sample
HNF/5 in water). Only after putting the HNF/5 material in acetone an absorption peak at
369 nm appears and the translucent system is obtained (consequence of ZnO nanoparticles
release). This blue shift from 374 to 369 nm (marked by arrow in Figure 7) can be a
consequence of the varying sizes of ZnO suspended in water, including the ones inside
CA nanofibers. It was reported how maximum absorbance shifts depend on the size of
nanoparticles [53], and aggregation of nanoparticles tends to be different when they are
processed with polymer solution and with pure solvent [55].

3.3. Structural Characterization Using ATR–FTIR Spectroscopy

For a deeper insight into the structure and interactions between polymeric nanofibers
and inorganic nanoparticles, a careful analysis of ATR–FTIR spectroscopy can be under-
taken. In Figure 8a,b, ATR–FTIR spectra of the different materials prepared by SBS are
shown, where the different concentrations of CA in CA–PEO composites are considered.
The overall appearance of the spectra is similar to that in our previous work [39], wherein
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combined peaks from cellulose acetate and PEO can be seen. The most prominent difference
upon the addition of ZnO to polymer mixture is found in the region between 1146 cm−1

and 1035 cm−1, in which the relative intensity of the peaks that can be observed changes
upon the addition of nanoparticles (Figure 8a,b). In particular, the doublet peaks appear at
approx. 1109 cm−1 and 1035 cm−1 and come from the combination of peaks originating
from PEO and CA (for pure PEO, it is found at 1095 cm−1, and in CA–PEO composite, this
peak is shifted to 1109 cm−1 [39]). On the other hand, the absorbance bands at 1051 cm−1

and 1037 cm−1 correspond to combined peaks of PEO (1060 cm−1 and 1035 cm−1 assigned
to stretching of ether group in PEO [56]) and 1035 cm−1 originating from C-O-C stretching
in CA [39,57]. The peak at 1342 cm−1 originates only from PEO, and it is not affected by
the addition of ZnO, rather being the broad band at 1366–1051 cm−1, which consists of
two peaks, both originating from CA and PEO [39], that is affected by the addition of ZnO.
Moreover, in the region between 1342 and 1368 cm−1 in samples with a higher ratio of
CA component (Figure 8b), 1342 cm−1 is assigned to PEO and 1368 cm−1 assigned to CA
(symmetric bending of CH3 [57]), and upon the addition of ZnO, the intensity of these
peaks changes. In samples with a higher ratio of CA component (HNF samples, Figure 8b),
the intensity of the peak around 1037 cm−1 decreases with the addition of ZnO, being the
lowest in the sample with 2.5%.
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Figure 7. UV-vis absorbance spectra for different nanofibrous materials, without (HNF) and with
5% ZnO (HNF/5) after 5 days in water and immediately after dissolving them in acetone (left);
photograph (right) of vials containing HNF/5 (translucent) and HNF (transparent) in acetone.

As control samples, we compared the electrospun CA with ZnO and pure ZnO spectra
(Figure 8c,d). As can be seen, the peaks corresponding to ZnO, at 873 cm−1 and 984 cm−1

(Figure 8d), are also found in the spectra of electrospun CA–ZnO (Figure 8c) as a small
peak at 874 cm−1 and a small shoulder at 985 cm−1. In addition, the peaks at 1432 cm−1

(bending of CH2) and at 1664 cm−1 (hydrogen bonds [57]) in CA with ZnO become more
prominent, confirming complex interactions and high affinity between CA and ZnO.

In the case of electrospinning, 12% CA solution was processed with ZnO (Figure 8c),
while for blow spinning 12% CA solution, it was processed with PEO and ZnO (Figure 8b).
According to the literature, preparation of pure 12% CA using SBS in our configuration of
the device does not lead to formation of defect-free fibers [40], but processing CA with PEO
leads to uninterrupted production of defect-free fibers [39].

These data lead to the conclusion that ZnO interacts with the CA component, con-
firmed by the fact that UV-vis spectroscopy did not detect significant release of ZnO into
water upon dissolution of the PEO component. If ZnO nanoparticles are primarily found in
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the non-water-soluble CA rich phase, they will remain in that phase without leading to their
release. Of course, it should not be overlooked that in the CA–PEO nanofiber composite,
there is also a small amount of PEO incorporated into CA nanofibers as well [39], so even
if some ZnO interacts with PEO through ether groups [58], the major portion of added
ZnO is trapped inside CA nanofibers and moreover chemically interacts with CA, as FTIR
analysis has shown.
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Figure 8. ATR-FTIR absorption spectra of samples of CA–PEO nanofibers spun with ZnO using
solution blow spinning of different concentrations of CA and ZnO: (a,b), samples of pure CA
nanofibers produced by electrospinning (c), and commercial ZnO nanopowder (d).

It should be noted as well that strong electrostatic interactions must be present between
CA and ZnO, since it is known that ZnO has a positive surface charge at neutral pH [59],
while powdered CA has negative zeta potential at neutral pH [39], so this prevailing
interaction between CA and ZnO is probably a consequence of strong electrostatic attraction
that can exist during preparation of CA polymer solutions with nanoparticles. For future
studies, the interactions between polymers that are used for nanofiber formations and
nanoparticles could be assessed from zeta potential measurements.

4. Conclusions

In this paper, we report preparation of CA–PEO composite nanofibers with encap-
sulated ZnO nanoparticles. Study of the complex interactions between two polymers
and nanoparticles during preparation of nanofibers revealed that the addition of ZnO did
not influence the mean value of nanofiber diameter, but it did influence the size distri-
bution and the mode (the most frequent value). Further, it was confirmed that addition
of ZnO NPs into CA–PEO solution causes a reduction in viscosity when concentration
of nanoparticles is low, i.e., when concentration is 2.5%, while with further increase in
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nanoparticle concentration, viscosity increases but remains lower than in the solutions
without nanoparticles.

Release studies of ZnO from the composite nanofibers into water revealed that despite
dissolving PEO in water, ZnO could not be detected with UV-vis spectroscopy, which con-
firmed that nanoparticle incorporation is induced by selectivity and ZnO mostly interacts
with CA in composite CA–PEO. The ATR–FTIR analysis confirmed molecular interactions
between the CA component in nanofibers and ZnO.

The results presented in this work elucidate a new path toward selective combination
of more active agents to be incorporated into composite materials, where one active com-
ponent could be attached to PEO and released immediately after contact with fluid, while
inside the CA nanofibers, the remaining ZnO could provide prolonged activity. This could
be especially useful for applications that require multifunctional materials.

The study in this article shows the possibility of processing a ternary composite, a
system of two polymers with inorganic nanoparticles, using solution blow spinning. Since
CA as polysaccharide cannot be processed with ZnO using SBS without the spinning aid
of PEO (opposite to the relative ease of processing of CA–ZnO system with ES), this also
presents a limitation in this study. Moreover, since PEO as spinning aid is soluble in water,
future studies will aim at exploring other polymers to support processing of cellulose
acetate with nanoparticles using solution blow spinning. In this way, multifunctional
cellulose-based composite materials can be developed with solution blow spinning.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym16030341/s1, Figure S1: Comparison of Gaussian curves of samples
produced using higher ratio of cellulose acetate in a mixture of CA/PEO (a) and lower ratio of cellulose
acetate in a mixture of CA/PEO (b).
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