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Abstract: To improve the accuracy of infrared radiation characteristics measurement in the aviation
field, an infrared Fourier transform imaging spectrometer based on a double-swing solid angle
reflector was designed. This imaging spectrometer operates in the 3–5 µm wavelength range and has
a field of view of 1.7◦ × 1.7◦. This article presents a comprehensive analysis of the system’s stray light
and also studies the impact of external stray light on the imaging quality, along with the influence of
internal stray light on the interference effects and the spectral resolution. It also present the design
of a hood that suppresses the point source transmittance of the external stray light down to the
order of 10−4. Based on this, we propose a method that incorporates the introduction of wedge and
inclination angles. Additionally, a numerical range is provided for the addition of these angles on the
beam splitter mirror and compensation plate. This ensures the effective suppression of any internal
stray light. This study fills the gap in the knowledge about Fourier transform imaging spectrometers
operating in the mid-infrared band for aviation applications, and proposes a suppression method
suitable for interference systems, which is also suitable for Fourier transform imaging spectrometers
based on other types of interferometers. This study broadens the application field of Fourier transform
imaging spectrometers in stray light, and has great significance to promote the development of Fourier
transform imaging spectrometer.

Keywords: Fourier transform imaging spectrometer; mid-infrared band; stray light analysis;
interference fringe contrast; point source transmittance

1. Introduction

At present, in modern aviation-based high-tech warfare, methods to enable the rapid
identification of camouflage and false targets have become an important research field
and a major application direction for military reconnaissance [1,2]. With the increasing
demand for the application of imaging spectrometers in a variety of fields, the development
of the Fourier transform imaging spectrometer [3–6] has also become a research hot spot.
The fundamental task of the Fourier transform imaging spectrometer is to detect and
acquire the image signal and the spectral function of a specific target [7,8]. During the
target detection process, stray light, as a non-imaging beam that can be received by the
detector [9], will cause degradation of the imaging quality of the optical system and
will reduce the signal-to-noise ratio of the imaging spectrometer. To meet the technical
requirements of the Fourier imaging spectrometer [10–13] and provide high performance,
researchers are now paying increasing attention to the study of stray radiation.

As part of the complex development process for Fourier transform imaging spectrom-
eters, the influence of stray light on these spectrometers and methods to suppress it have
become an important research issue in several countries. Du et al. analyzed and calculated
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the stray light characteristics [14] of a spaceborne Fabry-Pérot interference imaging spec-
trometer operating in the visible band, and then suppressed the stray light in this system
by adding a blocking stop to the system structure, thus reducing the stray radiation ratio
effectively. Chen et al. from the Beijing Space Electromechanical Research Institute ana-
lyzed the effects of multiple reflections of stray light on the modulation regime [15,16] in a
near-infrared band hyperspectral resolution Fourier transform spectrometer, and proposed
the introduction of wedge angle and tilt angle suppression methods to separate the stray
light spots from the normal light spots. Dussarrat et al. from the European Meteorological
Satellite Organization analyzed the stray light present in the background of a Michelson
interferometer in a far-infrared Fourier transform spectrometer [17] and proposed relevant
correction methods for image processing. The research described above indicates that at
this stage, there have been certain studies of stray light analysis for spaceborne visible,
near infrared, and far infrared interference imaging spectrometers; various stray light
suppression schemes have also been proposed for spectrometers with different structures,
thus effectively reducing the effects of stray light on these optical systems. There have
been few reports, however, on the analysis and suppression of the stray light in Fourier
transform imaging spectrometers for use in the aviation field.

The purpose of this paper is to improve the imaging quality and spectral resolution
of mid-infrared Fourier transform imaging spectrometers in the airborne aviation field,
and analyze the influence of stray light on spectral resolution according to the potential
situation in actual processing. In this paper, a new mid-infrared Fourier transform imaging
spectrometer based on a double-oscillating solid angle reflector is proposed. To provide a
comprehensive analysis of the impact of stray light on these systems, theoretical research is
performed on both the stray light that occurs outside the field of view and the stray light
within the system. By designing the internal and external hood and blocking rings for
the Cassegrain telescope system, the external stray light is effectively suppressed. On this
basis, the non-ideal transmission phenomenon inside the interference system is analyzed.
The decrease in the contrast of interference fringes and spectral resolution caused by the
reflected stray light produced by this phenomenon is studied. Finally, the scheme of
introducing wedge angle and inclination angle is proposed. The theoretical research and
analysis of this phenomenon is carried out, which can effectively suppress the influence of
this phenomenon.

At present, the Beijing Space Electromechanical Research Institute has conducted stray
light analysis and suppression on the visible to near-infrared band of the Fourier transform
interferometer with high spectral resolution on Gaofen-5 [18], and finally obtained the
impact of stray light on the contrast of interference fringes. In this paper, the stray light
analysis and suppression of a Fourier imaging spectrometer in the mid-infrared band
are carried out, and finally the influence of stray light on the contrast of interference
fringes is further translated into the spectral resolution. Therefore, this study has a more
direct application value for the spectral resolution index parameters of Fourier imaging
spectrometer.

In this paper, the TracePro 7.4 software was used to trace the stray light path to study
and analyze the stray light phenomenon. The designed model and the results will offer
reference values for the development of spectrometers for military and civil applications.
Moreover, the innovative design of the optical system and the analysis of stray light in
this paper play a driving role in improving the imaging quality and spectral resolution of
imaging spectrometers in military and civilian fields. The measurement accuracy of the
radiation characteristics of the imaging spectrometer in the middle infrared band can be
effectively improved.

2. Optical System
2.1. Solid Angle Mirror

The system proposed in this work uses a solid angle mirror rather than a plane mirror and
omits the system for compensation of the plane mirror moving tilt [19] caused by vibrations.
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A solid angle mirror is an optical instrument consisting of three plane mirrors. The solid angle
mirror is based on the law of light reflection and the structure of the angle reflector, when the
light is incident on the angle mirror’s three mutually perpendicular reflecting surfaces, it will be
reflected by the three plane mirrors and emitted in the opposite direction of the incident light.
The structure diagram of the solid angle mirror is shown in Figure 1.
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2.2. The Front Telescope System

The front telescope system uses a Cassegrain coaxial folding transmission structure [20]
to achieve high imaging quality and a compact structure; this structure also avoids the
difficulties involved in the fabrication and processing of large-aperture transmissive optical
infrared materials required by the conventional transmission system. The Cassegrain
telescopic system structure is generally a reflective system composed of a primary mirror
and a secondary mirror. The structure diagram of the Cassegrain telescopic system is
shown in Figure 2.
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As shown in the Figure 2, first, the primary reflector reflects and focuses light onto a
single point, creating a sharp image. The secondary mirror then reflects this image onto
the focal point of the telescope. By precisely designing and manufacturing the shape and
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position of the two mirrors, it is possible to ensure that the light remains focused after
passing through the mirrors and a high-quality image is formed. To achieve compact size,
Cassegrain telescope structures are typically designed with folded optical paths. This
design reduces the length and diameter of the telescope, making it easier to transport and
install.

Compared with the traditional transmission system, the Cassegrain system has the ad-
vantages of having a large aperture, long focal length, and small size, and being multi-band,
colorless and so on. Therefore, it is widely used in aerial optical systems. The characteristics
of common telescopic systems are compared as shown in Table 1.

Table 1. Comparison of characteristics of common telescopic systems.

Type Characteristic

Traditional transmission structure Low installation difficulty, low cost
Off axis three reverse The center is open, high installation difficulty, high cost

Cassegrain system Large aperture, long focal length, small size, colorless

2.3. Overall Optical System

The interference system uses a swinging scanning structure [21] in place of the tradi-
tional translation and push sweep structure, which increases the optical path length and
improves the spectral resolution; finally, the most commonly used silicon and germanium
materials, which offer good stability and mature processing technology, are selected as the
lens materials [22]. The proposed optical system consists of three parts: the front telescope
system, the interference system, and the rear imaging system. A diagram of the optical
system is shown in Figure 3.

Photonics 2024, 11, x FOR PEER REVIEW 4 of 19 
 

 

Figure 2. Structure diagram of Cassegrain telescopic system. 

As shown in the Figure 2, first, the primary reflector reflects and focuses light onto a 
single point, creating a sharp image. The secondary mirror then reflects this image onto 
the focal point of the telescope. By precisely designing and manufacturing the shape and 
position of the two mirrors, it is possible to ensure that the light remains focused after 
passing through the mirrors and a high-quality image is formed. To achieve compact size, 
Cassegrain telescope structures are typically designed with folded optical paths. This de-
sign reduces the length and diameter of the telescope, making it easier to transport and 
install. 

Compared with the traditional transmission system, the Cassegrain system has the 
advantages of having a large aperture, long focal length, and small size, and being multi-
band, colorless and so on. Therefore, it is widely used in aerial optical systems. The char-
acteristics of common telescopic systems are compared as shown in Table 1. 

Table 1. Comparison of characteristics of common telescopic systems. 

Type Characteristic 
Traditional transmission structure Low installation difficulty, low cost 

Off axis three reverse The center is open, high installation difficulty, high cost 
Cassegrain system Large aperture, long focal length, small size, colorless 

2.3. Overall Optical System 
The interference system uses a swinging scanning structure [21] in place of the tradi-

tional translation and push sweep structure, which increases the optical path length and 
improves the spectral resolution; finally, the most commonly used silicon and germanium 
materials, which offer good stability and mature processing technology, are selected as 
the lens materials [22]. The proposed optical system consists of three parts: the front tele-
scope system, the interference system, and the rear imaging system. A diagram of the op-
tical system is shown in Figure 3. 

 
Figure 3. Optical structure of the mid-wave infrared Fourier imaging spectrometer. 

The front telescope system can achieve five times the beam contraction performance, 
and can collimate the beam into the interference system to match with the pupil plane of 
the interferometer. Then, by swinging the solid angle reflectors SAM1 and SAM2, the op-
tical path is changed such that the beam interferes at the beam splitting system. The rear 

Figure 3. Optical structure of the mid-wave infrared Fourier imaging spectrometer.

The front telescope system can achieve five times the beam contraction performance,
and can collimate the beam into the interference system to match with the pupil plane
of the interferometer. Then, by swinging the solid angle reflectors SAM1 and SAM2, the
optical path is changed such that the beam interferes at the beam splitting system. The rear
imaging system is a secondary imaging system that realizes 100% matching between the
exit pupil and the cold stop of the detector [23]; the interference beam is then focused on
the detector through the rear imaging system and forms continuously varying interference
fringes. The parameters of the proposed optical system are listed in Table 2.
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Table 2. Parameters of the optical system for the medium-wave infrared Fourier imaging spectrometer.

Parameter Value

Spectral range (µm) 3~5
Diameter (mm) 105

FOV (◦) 1.7
F number 4

MTF@35 lp/mm >0.5
Relative distortion <1%

Energy concentration >70%
Infrared detector pixel size (µm) 30

Number of infrared detector pixels 320 × 256

The mechanical assembly diagram for this system is shown in Figure 4. Germanium was
selected as the material for the beam splitter mirror and the compensation plate, and the surfaces
of the primary and secondary mirrors and the solid angle mirrors of the Cassegrain telescope
system are plated with gold films to achieve high reflection effects.
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3. Stray Light Sources and Evaluation Criteria
3.1. Sources of Stray Light

Based on the characteristics of infrared imaging spectrometers and the analysis method
used for stray light in traditional optical systems, the following potential sources of stray
light were determined [24]: (1) Stray light can be caused by light originating outside
the system’s field of view entering the optical system, which mainly comes from direct
irradiation by sunlight, surface radiation, and atmospheric scattering. The stray light
is formed after it reaches the image plane through the optical system, and this light is
generally present in various imaging systems. (2) Imaging target stray light can originate
within the field of view, i.e., imaging target light that reaches the image plane by passing
through the system along an abnormal imaging path; this light is mainly generated from
the imaging target light through residual reflection, scattering, and diffraction processes on
the surfaces of the optical and structural elements.

3.2. Harm Caused by Stray Light

In the imaging optical system of an infrared Fourier imaging spectrometer, stray light
will increase the noise that occurs on the image plane, and the stray light convergence
point near the image plane will have a particularly serious impact on the imaging perfor-
mance [25]. For the Michelson interferometer system, because the beam interference occurs
inside the system, the quality of the interference effect becomes the main factor that affects
the ability to recover the spectrum, and the interference fringe contrast [26] is one of the
criteria used to evaluate the quality of the interference effect. When stray light is generated
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in the interference system through reflection processes, the interference phenomenon that
occurs will be aliasing; the interference fringe contrast will then be reduced, and this will
have a serious impact on the spectrum recovery capability.

3.3. Design of the Anti-Stray Light Structure

As part of the design of the anti-stray light structure, the external hood design must
usually meet the following principles [27]: (1) non-imaging light should be prevented
from reaching the image surface directly; (2) normal light from the edge field of view
must not be blocked by the system hood; (3) strong stray light sources such as sunlight at
angles greater than the avoidance angle may only enter the optical system after at least
two or more scattering processes; (4) black coatings with high absorption rates should be
used. The external hood design was thus completed according to the principles above. For
a general Earth observation system, a first-level hood [28] can meet these requirements.
The external hood used by the system proposed in this paper is shown in Figure 5.
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The Sun’s avoidance angle α is known to be 30◦, θ is the system’s field of view angle
and has a value of 0.8◦, L is the hood length, D1 is the diameter of the inner aperture of
the hood, i.e., the diameter of the system’s entrance pupil, and D2 is the diameter of the
outer aperture of the hood. The following relationships can be obtained from the geometric
relationship shown in Figure 3:

D2 = D1 + 2Ltan θ (1)

D1 + Ltan θ = Ltan α (2)

When the system’s field of view angle θ = 0.8◦, the entrance pupil diameter D1 = 105
mm, and the avoidance angle α = 30◦ are known, then values of
D2 = 110.20 mm and L = 186.37 mm can be obtained using Equations (1) and (2).

Aviation imaging systems require a high stray light suppression effect and it is nec-
essary to add a blocking ring inside the hood for these systems. The blocking ring can
prevent stray light from being caused by multiple reflections inside the hood. The blocking
ring usually takes the form of a black coating with a high absorption rate. The hood
structure [29], when combined with a cylindrical outer wall and a conical inner wall, can
effectively reduce the number of blocking rings required and increase the depth of these
blocking rings, and it is thus highly conducive to the elimination of stray light; therefore,
the structure shown in Figure 6 was used for the design of the blocking rings.
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Connecting the upper vertex B1 of the external hood and the upper inner wall B′
1 of

the cone gives the first stop ring position; A1 at the main mirror of the lower inner wall of
the cone is then connected with B1 at the edge of the external hood, and the intersection of
this line with the upper inner wall of the cone at point B′

2 is the second stop ring position.
Then, by connecting A2, B′

2, and the upper wall of the external hood, which intersects at B2,
and continuing in a similar manner, the positions of all of the blocking rings in the hood
can be determined.

According to the design principle for the inner hood [30], the inner hood sizes for the primary
mirror and the secondary mirror in this system will be determined using the focal length of the
Cassegrain system, the focal length of the primary mirror, the positions of the stop and the back
intercept, and other parameters. The design process is illustrated in Figure 7.
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Figure 7. Schematic of the design of the internal hood.

As shown in Figure 7, ray 1 and ray 2 are the two edge rays, φ is the half-field angle, d
is the distance between the primary mirror and the secondary mirror, f is the focal length,
and l is the back intercept. The apex of the hood in the secondary mirror is the point of
intersection of light rays 2 and 1 when reflected by the primary mirror, and the apex of the
hood in the primary mirror is the point of the intersection of light ray 2, when reflected by
the primary mirror, and light ray 1, when reflected by the primary mirror and the secondary
mirror in turn.

The front aperture and the rear aperture of the hood in the primary mirror are 29.4 mm
and 52.85 mm in diameter, respectively. The front aperture diameter of the secondary lens
hood is 47.98 mm and the rear aperture diameter is 57.03 mm. ProE 5.0 software was used
to model the hood. The stereogram designed for the external hood is shown in Figure 8a,
and the stereogram for the inner hood is shown in Figure 8b.
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3.4. Evaluation Criteria for Stray Light

The point source transmittance (PST) is a transfer function that is commonly used
to describe the effects of stray light on optical systems [31]. The PST is equal to the total
amount of stray light incident on the focal plane of an optical system divided by the total
amount of light incident on the optical system that enters the pupil, and it can be calculated
as follows:

PST =
ESL

EINC
(3)

In Equation (3), ESL is the irradiance of the stray light on the focal plane and EINC is
the irradiance when the light emitted by a point light source located at infinity (through
collimation) is incident on the plane perpendicular to the source. If the irradiance of the
light source is normalized to 1, then the irradiance on the image surface is the PST.

4. Stray Light Analysis
4.1. Stray Light Model Establishment

At present, the software packages with stray radiation analysis functionality generally
include LightTools 8.6, TracePro 7.4 and ASAP 2019, and among these packages, TracePro
7.4 software is compatible with ProE 5.0, SolidWorks 2023, and other mechanical design
software. At the same time, TracePro 7.4 is also compatible with ZEMAX OpticStudio 2023
and CODE V 11.5 optical design software, and has a user-friendly operation interface [32].
TracePro 7.4 is a powerful lighting and optical design simulation software that simulates
and analyzes the propagation and behavior of all kinds of light, including stray light.
In TracePro 7.4, users can evaluate and analyze the effects of stray light by simulating the
propagation and interaction of light in an optical system. This includes the simulation and
analysis of light sources at different angles, reflections, and refractions of optical surfaces,
internal and external scattering, etc. The comparison table of the functions of different stray
light analysis software is shown in Table 3.

Table 3. Comparison of functions of different stray light analysis software.

Function TracePro Light Tools ASAP

Interface operation Easy Difficult Difficult
Simulation accuracy High Higher Higher
Operational speed High High Higher
Modeling function Comprehensive Partial Comprehensive

In this paper, TracePro software was used to simulate the optical surface and analyze
the stray light, so that the source, degree and influence of stray light in the infrared Fourier
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imaging spectrometer designed in this paper can be understood, and different measures
can be taken to reduce stray light according to different sources of stray light, and finally
achieve the purpose of optimizing optical design.

4.2. Analysis of the System Stray Light

Reasonable settings and distributions of the surface properties of the different optical
elements can provide better simulations of the actual situation. The specific parameters
that were set in this process are listed in Table 4.

Table 4. Optical surface parameter settings.

Element Transmittance Absorptivity Reflectance

Lens surface 0.99 0.01 0
Solid angle mirror surface 0 0.01 0.99

Mirror surfaces 0 0.01 0.99
Detector surface 0 0.99 0.01

Because the optical system is located far away from the Sun, the Sun can be regarded
as a point light source, and reverse light tracing is required to locate the important surfaces.
The specific light source setting parameters are listed in Table 5. The positioning of the
mirror is based on the origin of the axes.

Table 5. Light source model settings.

Light Source Solar Radiation

Light source type Circular source
Light source size Diameter 110 mm

Light source position −200 mm
Number of rays 10 million

Ray accuracy 10−7

As a result of the symmetry of the Cassegrain system, only the off-axis angle from 0◦

to 90◦ must be taken into account when analyzing the orientation of the sunlight. In this
paper, the stray light analysis was performed on optical systems without optimization or
with an added hood. The PST was analyzed for systems with off-axis angles ranging from
0◦ to 80◦, and the PST of the solar radiation was calculated at various off-axis angles via
ray tracing. The analysis results are shown in Figure 9.
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Through a simulation analysis, it was found that in the system without the hood, the
PST is mainly distributed with values of the order of 10−4, which will have a considerable
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impact on the imaging quality of the system. After the hood is set, the PST can be controlled
to be within the order ranging from 10−4 ∼ 10−7 at angles between 25◦ and 70◦, whereas at
angles above 70◦, the PST is basically controlled to be below the order of 10−8. The imaging
effect of the system will be unaffected. The feasibility of the suppression scheme design
proposed in this paper was verified by a data comparison process. The designs of the
internal and external hoods and the blocking ring can suppress the influence of stray light
on the system effectively to a certain extent.

5. Stray Light Interfering with the System
5.1. Establishment of an Interference Model

Because the core aspect of interference spectroscopy technology is the extraction of
an interferogram, the interference effect becomes the key factor affecting the system’s
spectral recovery capability. When incident light with the wave number γ interferes, the
interference signal light intensity [33] satisfies the following equation:

I(x) =
∫ Ω

0
IR(γ) + IT(γ) + 2

√
IR(γ)IT(γ)cos (2πγxcos ω)dΩ (4)

In Equation (4), γ is the wave number of the light source, IR(γ) is the light intensity on
the interference system’s reflected light path, IT(γ) is the light intensity on the interference
system’s transmitted light path, x is the optical path difference, ω is the half angle of the
light source’s field of view, Ω is the solid angle of the light source’s field of view, and
Ω = 2π(1 − cos ω).

The contrast of the interference fringes has become the standard used to evaluate the
quality of the interference effect, and the contrast M of the interference fringes is determined
using the following equation:

M =
Imax − Imin
Imax + Imin

(5)

In Equation (5), Imax and Imin are the maximum and minimum values of the light
intensity I(x), respectively.

In the Fourier transform imaging spectrometer [34], when incident light with the wave
number γ interferes, Equation (4) can be substituted into Equation (5), and the equation for
the interference fringe contrast is as follows:

M =
2
√

IR(γ)IT(γ)

IR(γ) + IT(γ)
(6)

In an ideal Fourier transform imaging spectrometer, where it is assumed that the ideal
device does not absorb light, if IR(γ) + IT(γ) = 1, then if and only if IR(γ) = IT(γ), the
interference fringe contrast is at a maximum. However, if IR(γ) ̸= IT(γ), the interference
fringe contrast will be affected, and then M < 1.

5.2. Simulation of an Ideal Interferogram

In this work, a monochromatic light source was used to verify the interference phe-
nomenon in the optical system. A rectangular light source was selected in this case and the
incident wave was a plane wave. The reflectance of the solid angle mirror was set to have
the ideal value of 100%, and the transmittance and reflectance of the back surface of the
beam splitter were both set at 50%. Finally, the interference phenomenon of the 4.44 µm
wavelength beam in the optical system was simulated using simulation analysis software,
and the ideal interferogram obtained is as shown in Figure 10, where the contrast of the
interference fringe M = 1.
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Figure 10. Ideal interferogram.

5.3. Michelson Interferometer Stray Light Analysis

Because the Fourier transform imaging spectrometer is based on the working principle
of the Michelson interferometer [35], the corresponding spectral diagram is obtained by
performing a Fourier transform on the interferogram obtained from the interference, and
this means that the interference effect will affect the spectral recovery accuracy of the
imaging spectrometer directly. However, the transmittance values of the beam splitter and
the compensator in the interference system cannot reach their ideal 100% values during
actual processing. Therefore, multiple reflections will occur between the beam splitter
and the compensator, and the stray light formed by these reflections will enter the design
field of view parallel to the normal light; this stray light cannot be filtered out by the cold
stop, and will then affect the interference modulation system, leading to reduced spectral
resolution. The stray light path obtained by this reflection process is as shown in Figure 11.
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Figure 11. Schematic diagram of the stray light path.

As shown in Figure 11, when the transmittance values of the beam splitter and the
compensator cannot reach their ideal values of 100%, the light that enters the interference
system will be reflected at points A1, A3, and A4 at surfaces 1, 3, and 4, respectively, thus
forming new stray light beams that enter the detector, in which these beams cross with
the light from different fields of view; this affects both the imaging quality of the system
and the interference effect of the system. Assuming again that the ideal optical device does
not absorb light, the reflectivity values of surface 1, surface 3, and surface 4 are given by
100% minus their transmittance. We therefore simulated the actual processing conditions.
As shown in Table 6, the different transmittance values of beam splitter surface 1 and
compensator surfaces 3 and 4 were set within the range from 95% to 100%. The other lenses
in the system were set at the ideal transmittance of 100%.
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Table 6. Transmittance setting table for different anti-reflection coatings on opposing sides 1, 3, and 4.

Transmittance Reflectance

0.99 0.01
0.98 0.02
0.97 0.03
0.96 0.04
0.95 0.05

The optical path shown in Figure 11 was simulated and the corresponding interference
graphs generated under the different transmittance conditions are shown in Figure 12.
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Figure 12. Interferograms generated by the optical system at different transmittance values.
(a) T = 99%; (b) T = 98%; (c) T = 97%; and (d) T = 96%.

The maximum value of the light intensity Imax and the minimum value of the light
intensity Imin corresponding to the interference fringes were obtained via a simulation anal-
ysis, and were then substituted into Equation (6) to perform the calculations. The calculated
data were then sorted and used to draw a dot plot, as shown in Figure 13.
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Figure 13. Curve of fringe contrast versus transmittance.

The analysis results show that when the transmittance decreases, the contrast of the
interference fringes also decreases. This occurs because the stray light caused by the
reflection from the beam splitter mirror and compensating mirror surfaces causes the inter-
ference beams to begin aliasing, and the contrast of the interference fringes then decreases.
Spectral restoration was performed on the interferogram with the appropriate transmittance
to obtain the corresponding spectrum at the central wavelength of 4.44 µm, as shown in
Figure 14c. Other parameters remain unchanged. Under different transmittance conditions,
the interferograms with wavelengths of 3.64 µm, 4.00 µm, and 5.00 µm are transformed by
Fourier transform, and the restored spectral diagrams are shown in Figure 14a,b,d.
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As shown in Figure 14a–d, the half-peak width of the reconstructed spectral line
gradually increases with decreasing T, and the spectral resolution then gradually decreases.
The analysis results show that as the transmittance decreases, the fringe contrast also
decreases, and the spectral resolution decreases in turn.

In order to eliminate the influence of reflected stray light on the contrast of interference
fringes and spectral resolution, it can be designed to separate the reflected stray light from
the spot of the normal optical path. In this paper, wedge angle and inclination angle are
introduced into the beam splitter and compensator to eliminate the influence of reflected
stray light on the contrast and spectral resolution of interference fringes. The wedge angle
and inclination angle of the beam splitter and compensator can make the reflected stray
light path no longer parallel to the normal light path. When the angle between the reflected
stray light path and the normal light path is greater than the field of view angle of the
interferometer, the stray light can be separated from the normal light.

5.4. Increase the Wedge Angle and Inclination Angle to Eliminate Multiple Reflections of Stray
Light Design

In order to eliminate the reflected stray light, the beam splitter and compensator increase
the wedge angle, and the compensator increases the inclination angle. According to the
requirements of the optical path equivalent post-parallel plate for transmitted and reflected light
paths, the placement mode of the beam splitter and compensator after increasing the wedge
angle and inclination angle is shown in Figure 15. The wedge angle θ1 of the beam splitter is
equal to the wedge Angle θ2 of the compensator, and the inclination angle of the compensator is
θ3, α is the angle of the incident light, and nGe is the refractive index of germanium metal (in the
infrared range, germanium has a refractive index of about 4.0).
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Figure 15. Diagram of placement of beam splitter and compensator.

In order to eliminate the influence of stray light reflected by surfaces 1, 3, and 4 on
the interference system, the spot of this stray light should be deviated from the spot of the
normal optical path.

The stray light path is shown by the green line in Figure 11. The relation between the
angle δ1, δ2, and wedge angle of the stray light reflected by surface 1 and the normal optical
path is shown in Equations (7) and (8):

δ1 = arcsin
{

nGesin
[

arcsin
(

sin α

nGe

)
+ 3θ1

]}
− arcsin

{
nGesin

[
arcsin

(
sin α

nGe

)
+ θ1

]}
(7)

δ2 = arcsin
{

nGesin
[

arcsin
(

sin α

nGe

)
− θ1

]}
− arcsin

{
nGesin

[
arcsin

(
sin α

nGe

)
+ θ1

]}
(8)

The stray light path is shown by the yellow line in Figure 11. The relation between
the angle δ3, δ4, and wedge angle of the stray light reflected by surface 3 and the normal
optical path is shown in Equations (9) and (10):
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δ3 = arcsin
{

nGesin
[

arcsin
(

sin(α + θ3)

nGe

)
+ θ3

]}
− arcsin

{
nGesin

[
arcsin

(
sin(α − θ3)

nGe

)
+ θ3

]}
(9)

δ4 = arcsin
{

nGesin
[

arcsin
(

sin(α − 3θ3)

nGe

)
+ θ3

]}
− arcsin

{
nGesin

[
arcsin

(
sin(α − θ3)

nGe

)
+ θ3

]}
(10)

The stray light path is shown by the red line in Figure 11. The relation between the
angle δ3, δ4, and wedge angle of the stray light reflected by surface 4 and the normal optical
path is shown in Equations (11) and (12):

δ5 = arcsin
{

nGesin
[

arcsin
(

sin α

nGe

)
+ 3θ2

]}
− arcsin

{
nGesin

[
arcsin

(
sin α

nGe

)
+ θ2

]}
(11)

δ6 = arcsin
{

nGesin
[

arcsin
(

sin α

nGe

)
− θ2

]}
− arcsin

{
nGesin

[
arcsin

(
sin α

nGe

)
+ θ2

]}
(12)

In the reflected stray light, with the increase in the number of reflections, the angle
between the stray light and the normal light path will increase, so as long as the angle
between the reflected stray light and the normal light path is greater than the angle of the
field of view, the higher order reflected stray light can also be separated from the normal
light path. In order to separate the spot that reflects stray light from the spot of the normal
light path, the following conditions must be met: δ1 = δ5 > 2ω, δ2 = δ6 > 2ω, δ3 > 2ω, and δ4
> 2ω, ω is the field angle of the interferometer. When α = 45 ◦,ω = 0.8◦ is taken, and the
value range of wedge angle and inclination angle can be calculated according to Formulas
(7)–(12): θ1 = θ2 > 0.2 ◦, θ3 > 0.8 ◦.

5.5. A Flow Chart of the Whole Simulation Work

In the whole simulation process, the optical and mechanical structure of the system is
first designed, and then the physical model is established in TracePro 7.4 software, and the
relevant parameters and conditions are set. Finally, the external stray light and the internal
stray light of the interference system are analyzed by simulation, and the corresponding
stray light suppression scheme is proposed. The simulation flow chart of the overall work
is shown in Figure 16.
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6. Conclusions

In this paper, the stray radiation sources of a Fourier transform imaging spectrometer
for use in the airborne mid-infrared band are discussed, and the external stray radiation
and the internal stray light characteristics of the interference system are studied in depth.
In this paper, the PST is used as an index to evaluate the suppression level of the stray solar
radiation. An optical-mechanical simulation model and a light source simulation model
were established using TracePro software, and ray tracing was performed. The image
plane irradiance and the system of the stray solar radiation were calculated, the system
hood was designed, and its shading effect was analyzed. In addition, the influence of stray
light from internal reflections on the contrast of the interference fringes was simulated and
analyzed, and corresponding improvement measures were proposed. The results showed
that when the off-axis angle was greater than or equal to 25◦, the stray solar radiation on
the phase surface was very small, and the order of magnitude of the system transmittance
was less than or equal to 10−4. When the off-axis angle was greater than or equal to 70◦,
the solar stray radiation could be suppressed completely. For stray light caused by internal
reflections from the interference system, the spectral resolution decreases as the magnitude
of this stray light increases; a scheme for the addition of a wedge angle and an inclination
angle to the beam splitter mirror and the compensating mirror is proposed in this work.
It is deduced theoretically that when the wedge angle θ1 = θ2 > 0.2◦ and when the inclination
angle θ3 > 0.8◦, stray light spots inside the interference system can be separated from the
light spots obtained from the normal light path, thus reducing the influence of internally
reflected stray light on the interference fringe contrast.

7. Discussion

In this study, we have undertaken a comprehensive examination of the stray light
associated with a custom-designed mid-infrared Fourier transform imaging spectrometer.
By implementing internal and external hoods in combination with a blocking ring for the
Cassegrain telescope system, we mitigated stray light outside the field of view effectively,
thus leading to enhanced imaging quality. Our analysis of the stray light within the
interference system showed that as the transmittance of the beam splitting system decreases,
the contrast of the interference fringes also diminishes, and this ultimately results in a
reduction in the spectral resolution of the corresponding spectra. The root cause of this
phenomenon lies in the fact that, during practical processing, the ideal transmittance of
100% for the optical lenses cannot be achieved. Consequently, reflected stray light appears
on the non-ideal transmission surfaces; this stray light persists within the field of view
and cannot be filtered out using the detector’s cold diaphragm. This stray light introduces
aliasing into the interference light, which then leads to the observed non-ideal transmission
phenomenon. To address this issue, we used a method that involved the introduction
of wedge and inclination angles to the beam splitter mirror and the compensation plate.
This approach was successful in deflecting stray light out of the field of view of the cold
diaphragm, thus effectively separating the stray light spot from the interference spot.

In terms of the limitations of the proposed methodology, the analysis of the stray light
inside the interference system for the mid-infrared Fourier transform imaging spectrometer
under study in this paper was limited to an analysis of the Michelson interferometer
structure. Although beam splitting systems exist in most interferometers, based on the
results of this research, the stray light analysis of infrared Fourier transform imaging
spectrometers based on other interferometer structure types has not yet been verified, which
will become the main direction of our future work, which has great significance for the
comprehensiveness of the stray light analysis of Fourier transform imaging spectrometers.

In terms of the application field, the aim of this research is to solve the problems of
performing quantitative measurements of mid-wave infrared radiation characteristics in
the aviation field; therefore, the measurement range is limited to the mid-infrared spectral
band from 3 to 5 µm, and the measurements of the visible light to near infrared band and
the far infrared band are limited. We intend to continue to meet the challenges in the
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research into multispectral Fourier transform imaging spectrometers in our future work.
The aim of this work is to improve the measurement accuracy, expand the application
range, and reduce the limitations of the equipment.
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