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Abstract

The walking human body is mechanically unstable. Loss of stability and falling is more likely

in certain groups of people, such as older adults or people with neuromotor impairments, as

well as in certain situations, such as when experiencing conflicting or distracting sensory

inputs. Stability during walking is often characterized biomechanically, by measures based

on body dynamics and the base of support. Neural control of upright stability, on the other

hand, does not factor into commonly used stability measures. Here we analyze stability of

human walking accounting for both biomechanics and neural control, using a modeling

approach. We define a walking system as a combination of biomechanics, using the well

known inverted pendulum model, and neural control, using a proportional-derivative control-

ler for foot placement based on the state of the center of mass at midstance. We analyze

this system formally and show that for any choice of system parameters there is always one

periodic orbit. We then determine when this periodic orbit is stable, i.e. how the neural con-

trol gain values have to be chosen for stable walking. Following the formal analysis, we use

this model to make predictions about neural control gains and compare these predictions

with the literature and existing experimental data. The model predicts that control gains

should increase with decreasing cadence. This finding appears in agreement with literature

showing stronger effects of visual or vestibular manipulations at different walking speeds.

Author summary

The walking human body is mechanically unstable and humans frequently lose upright

stability and fall while walking. Stability of human walking is usually analyzed from a bio-

mechanical perspective. We argue that sensorimotor control is an essential aspect of walk-

ing stability. We model a walking system as a combination of inverted pendulum

biomechanics and a neural feedback controller for foot placement and analyze the proper-

ties of this hybrid dynamical system. We find that there is always a periodic orbit and

derive a criterion for the asymptotic stability of this periodic orbit. This analytic criterion

allows us to characterize the region in the parameter space where the walking system is

stable. We use these theoretical results to analyze stability of human walking depending
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on different sensorimotor control gains. The model predicts that control gains should be

larger for slower-paced walking, which is partially consistent with the available experi-

mental data.

1 Introduction

The upright human body is unstable, and humans sometimes fall. People tend to fall more

often as they get older [1, 2], and those with certain neuromotor impairments, such as cerebral

palsy or Parkinson’s disease, tend to fall more often [3–6]. Staying upright seems harder in

some situations, such as when the eyes are closed, when standing on foam or when adopting a

tandem stance [7]. To quantify these effects, we need a measure for stability.

The most widely used measure of stability is the Margin of Stability (MoS), introduced by

[8]. This measure combines the position and velocity of the body center of mass (CoM) to a

measure called the extrapolated center of mass (XCoM) and analyzes it with respect to the base

of support. If the XCoM is within the base of support, it is possible to maintain upright stability

by moving the center of pressure (CoP) within the base of support. If the XCoM is outside the

base of support, the accelerations generated by CoP movements are too restricted and will not

be sufficient to maintain upright stability without adjusting the base of support by taking a

step, or generating angular momentum around the CoM. The MoS is the signed distance from

the XCoM to the limit of the base of support. It is defined as positive when the XCoM is within

the base of support and negative when it is outside. The MoS is proportional to the impulse

required to destabilize the upright body and force it to take a step or fall. If that impulse is

higher rather than lower, then the body requires a larger perturbation to make it fall, and we

call it “more stable”. In that sense, the MoS measures the degree of mechanical stability for the

standing human body.

Maintaining upright stability requires continuous control by the nervous system. A positive

MoS indicates that it is possible to remain upright in the near future without having to take a

step, by modulating the CoP within the base of support. The MoS measure is agnostic to the

specific details of how the nervous system might achieve that. The control problem for the ner-

vous system is to estimate the current state of the body relative to the base of support, based on

sensory data, and transform that into descending motor commands that activate muscles to

generate forces against the ground and shift the CoP in a way to prevent falling. As stated

above, the MoS is a purely biomechanical measure. It ignores the control problem of how the

CoP is modulated and only states that it is biomechanically possible to remain upright without

taking a step by moving the CoP within the base of support.

In standing, ignoring the control aspect is reasonable, because the biomechanical stability

condition of “can be stabilized without taking a step” is a meaningful criterion that is relevant

to the studied behavior, without having to specify explicitly how this control system that

achieves stabilization in the given situation is structured. But in walking, taking steps is a regu-

lar and essential part of the movement. Still, the MoS has been widely applied to quantify sta-

bility in walking [9]. Using the MoS in walking has had some results that are incongruent with

its definition. E.g. people tend to walk with larger MoS in the presence of perturbations, and

populations with stability problems such as Parkinson’s Disease or cerebral palsy also tend to

walk with larger average MoS [10]. These effects are at odds with the concept of the MoS as a

measure of stability, because we would expect any such measure to show a decrease, rather

than increase in stability, when adding perturbations or looking at populations with increased

fall risk.
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We postulate that the main reason that the MoS does not work well as a stability measure in

walking is that it neglects the control aspect. This is reasonable in standing, because “can the

body be stabilized without taking a step?” is a meaningful question to ask. In walking, the qual-

ifier without taking a step is not useful, because the answer is “no” most of the time, and even

when it is “yes”, we would take a step anyways, because the goal is locomotion. When the sys-

tem is free to take a step to any location at any point in time, on the other hand, the body can

always be stabilized, e.g. by taking a step instantaneously and placing the CoP exactly on the

XCoM [11, 12]. For the stability question to be meaningful, we need to consider limitations

about when and where a step can be taken. In other words, we need to account for how foot

placement is controlled.

In this paper, we attempt to take a first step towards answering the question “how can the

body be stabilized” for walking. Our approach to this question is novel in two critical aspects.

First, we account for neural control by postulating a control law for foot placement that deter-

mines when and where to a step is taken. For the choice of control law, we will follow experi-

mental results showing that foot placement location is largely determined by the state of the

center of mass at midstance [13], and model this behavior with a proportional-derivative con-

troller. Second, instead of focusing on a body state at a given instance in time, we will analyze

the walking system as a whole. We do this because loss of stability in walking is sometimes not

instantaneous, but happens gradually across multiple steps. Thus, the research question we ask

here is “How does the neural controller of a walking system need to be structured for the gait

to be stable”.

In the following sections, we will first define the walking system we are analyzing. Biome-

chanically, we use the same approach as the MoS and approximate the body as a single point

mass with linearized equations of motion. The control is represented by a proportional-deriva-

tive feedback law for foot placement location based on the position and velocity of the center

of mass at midstance. Next, we will define what we mean for such a walking system to be “sta-

ble” in the context of this article. This formal definition will allow us to provide conditions that

the system parameters have to meet for the system to be stable. We present the results as formal

statements and provide the derivations in S1 Text.

Along the formal results, we provide examples with the goal of making the technical results

accessible to a broader audience. Finally, we show how the theoretical model relates to actual

walking by making predictions for how control parameters for stability in humans should

change at different cadences and comparing them to experimental data.

2 Methods

2.1 The walking system

In bipedal locomotion, during the time intervals when a single leg is in contact with the

ground, the movement of the body is largely ballistic, with gravity being the only major force

acting. Here, we model this movement using several common simplifications. We assume that

the body is a point mass that is supported by rigid legs, commonly called a single-link inverted
pendulum. At any time, exactly one leg has contact with the ground, and the location of that

contact point is changed when taking a step. The legs are massless and moving the contact

point to a new location is instantaneous. Steps are taken after a constant time interval and the

location of the new contact point at each step is determined by a control law. In humans, this

control law would be implemented at different levels of the nervous system, and could even

arise in part from passive dynamics [14]. Fig 1 shows a schematic overview of the model.

We will formalize both the biomechanics and the control below. Locomotion is mainly a

two-dimensional motion, and we will deal with the vertical dimension only implicitly here. In
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typical walking, movement in the horizontal plane can be separated into a main direction of

forward progression and a second direction in which the body oscillates sideways with little

net movement over time. We will refer to these directions as the anterior-posterior and the

medial-lateral directions, although these terms refer to properties of the body that the point-

mass model does not have. The dynamics of the single-link inverted pendulum are identical in

these two directions, and not coupled, but differences in control can lead to the different large-

scale movement patterns of forward progression and sideways oscillation described above. In

the anterior-posterior direction, the body progresses consistently forward, with the body mass

reaching and moving over the foot contact point at each step. In the medial-lateral direction,

the body alternates between two directions of movement, with the body mass approaching the

foot contact point, then coming to a halt and changing movement direction before each new

step. We refer to these two movement patterns as progressive and alternating stepping.

Biomechanics. The dynamics of the single-link inverted pendulum have been analyzed in

detail elsewhere [8, 15, 16], and here we use the equations derived in this analysis. Briefly, the

body is approximated by a single point-mass on a rigid, mass-less leg. The state of this system

is described by the position, x, and velocity, v, of the body center of mass, as well as the location

of the contact point between the leg and the ground, p. The location of the contact point

changes instantaneously when taking a step but is constant between steps. The state of the

point-mass changes continuously over time. We linearize the equations of motion [15], which

effectively movement in the vertical direction and constrains the CoM to move in a horizontal

plane parallel to the ground. This linearized system, which we will simply refer to as inverted
pendulum from now on, is determined by the equations of motion

_x ¼ v; _v ¼ o2ðx � pÞ ð1Þ

Fig 1. Schematic overview of the model. The biomechanical state of the system during the n-th step is modeled by

position, xn, and velocity, vn of a point mass connected to the ground via a rigid, massless leg of length l at point pn.

The controller selects a foot placement location based on a proportional-derivative controller with the difference of the

point mass from the contact point, xn − pn and its rate of change, vn, with gain factors bp and bd, as well as a constant

offset, bo.

https://doi.org/10.1371/journal.pcbi.1011861.g001

PLOS COMPUTATIONAL BIOLOGY The condition for dynamic stability in humans walking with feedback control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011861 March 18, 2024 4 / 25

https://doi.org/10.1371/journal.pcbi.1011861.g001
https://doi.org/10.1371/journal.pcbi.1011861


where o ¼
ffiffig
l

p
is the eigenfrequency of the inverted pendulum, l is the length of the rigid leg

and g = 9.81 m s−2 the acceleration from gravity.

For any initial conditions x0, v0 and contact point location p, solutions to this system are

given by the hyperbolic functions

xðtÞ ¼ pþ ðx0 � pÞ coshðotÞ þ
v0

o
sinhðotÞ

vðtÞ ¼ ðx0 � pÞ sinhðotÞoþ v0 coshðotÞ
ð2Þ

(see [8, 17] and Section 1) in the S1 Text.

Control. The inverted pendulum is controlled by taking steps. Steps are instantaneous

shifts of the contact point, p, to a new location. We note here that steps in our model do not

cause a collision, and hence no loss in energy, following similar models [8, 15, 16]. Here, we

assume that the duration of each step, Tstep, is constant and the only degree of freedom for the

controller is choosing the location of the step. Foot placement is critical for control of stability

[18]. Based on [13], we postulate that a new foot placement location is chosen using a propor-

tional-derivative control law, which uses as input the CoM position and velocity relative to the

CoP at midstance of the current step. To formalize this, we introduce new variables for the

position, xn, and velocity, vn, of the CoM at half-time of the n-th step, as well as for the position

of the contact point, pn, during the n-th step. By “half-time” we refer to the point in time in the

middle between two steps, i.e. at time t ¼ 1

2
Tstep after a step. We will also refer to this point as

midstance, but note that it is defined differently in the model from how midstance is usually

determined in experimental data [13].

Based on the considerations above, we define the neural control law for foot placement

based on the state of the CoM at midstance in progressive walking in the anterior-posterior

direction as

papnþ1 ¼ pn þ bo þ bpðxn � pnÞ þ bdvn; ð3Þ

where bp is the proportional and bd the derivative control gain. The additional parameter bo is

a constant offset to foot placement location. It can be used to modulate average step length or

width, but, as we will show later, has no bearing on the stability of the system.

For alternating walking in the medial-lateral direction, we add a factor that alternates the

direction of the offset, changing the equation to

pml
nþ1
¼ pn þ ð� 1Þ

nbo þ bpðxn � pnÞ þ bdvn: ð4Þ

The only difference between the two versions of the system describing progressive walking

in the anterior-posterior direction and alternating walking in the medial-lateral direction is

the addition of the alternating sign of the offset. As we will see later, this has no effect on many

system properties, including stability. In the interest of keeping notation simple and to avoid

excessive subscripts in the analysis, we will generally only specify the direction of movement in

cases where it is relevant. We also note that analyzing movement in the anterior-posterior and

medial-lateral directions as separate, one-dimensional dynamical systems is possible due to the

simplifying assumptions made here, specifically the linearization, lack of swing leg dynamics

and constant step time. The actual human walking through physical space is, of course, three

dimensional, and our dynamical system define by Eq 1 describes one of the three dimensions

of physical space.

Walking solutions. The system described by Eqs 1–4 is a single-link inverted pendulum

controlled by a linear proportional-derivative controller which selects foot placements after a
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constant step time. This is a hybrid dynamical system with two continuous state variables, x
and v, and one discrete state variable, p, that is piecewise constant in the time intervals of

length Tstep between two steps. In the following, we will refer to this as a walking system. A

walking system is parameterized by a single biomechanical parameter, the eigenfrequency,

o ¼
ffiffiffiffiffiffiffiffi
gl� 1

p
, of the inverted pendulum, where g is gravitational acceleration and l the effective

leg length, i.e. the vertical distance from the CoM to the contact point, as well as four control

parameters, bo, bp, bd and Tstep. Such a walking system models walking in a single direction
only, but two systems can be combined to describe walking across a plane spanned by the

usual anterior-posterior and medial-lateral directions.

Fig 2 shows example solutions of such a walking system, for the parameters ω = 3.13 s−1, bo
= −0.05 m (progressive), bo = 0.02 m (alternating), bp = 2.5, bd = 0.6 m and Tstep = 0.5 s. The

initial time is set to the midstance of a step, so that the first step occurs at t ¼ 1

2
Tstep ¼ 0:25 s.

All solutions use the same values for biomechanical and control parameters, but different ini-

tial conditions. The left column shows solutions for a system using progressive stepping in the

anterior-posterior direction, the center column shows solutions for a system using alternating

stepping in the medial-lateral direction. In both cases, the top graph shows position, the mid-

dle graph shows velocity and the bottom graph shows the position of the body mass relative to

the contact point, x − pn. The right panel combines both directions to show a top-down view

of the horizontal plane. Steps are taken after Tstep = 0.5 s, indicated by the instantaneous

changes of the CoP location. In the top-down view on the right panel, the discrete CoP loca-

tions are shown as solid squares, with the dotted lines indicating the instantaneous switches

between subsequent foot placements.

Fig 2. Example solutions for the walking system with three different initial conditions. The left column shows progressive walking in the anterior-

posterior direction, the center column alternating walking in the medial-lateral direction, and the right panel combines both directions to show a top-

down view of the path. Panels A and B show the absolute position of the CoM, x(t), (solid) and CoP, p(t), (dotted) vs. time, Panels C and D show the

CoM velocity, v, and Panels E and F show the position of the CoM relative to the CoP, q(t) = x(t) − p(t). The initial conditions were chosen slightly

different, but the system parameters were the same in all three cases.

https://doi.org/10.1371/journal.pcbi.1011861.g002
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These examples illustrate that a periodic solution (i.e. periodic orbit) exists for the chosen

parameter values. This periodic orbit is the blue curve at the center of each graph. In the

medial-lateral direction, both position and velocity of this solution are periodic with a period

of 2Tstep = 1 s. In the anterior-posterior direction, the position, x(t) is not periodic, but consis-

tently increases, as expected from a system walking forward. However, the position relative to

the contact point, x(t) − pn(t), is periodic, as well as the velocity, with a period of Tstep = 0.5 s.

We will analyze periodic orbits more formally below.

For the example shown in blue in Fig 2, we chose the initial conditions exactly right so that

the solution would be periodic (see Result 1 below for how to determine the periodic solution

to find such an initial condition). For the other two example solutions, shown in red and yel-

low, we slightly changed the initial conditions, adding Δp = ±0.1 m to the initial position and

Δv = ±0.1 m s−1 to the initial velocity to showcase how this changes the solutions over time.

These different initial conditions lead to movements that are markedly different over the first

few steps. The differences in velocity mostly disappear towards the end, as the initially per-

turbed yellow and red solutions become more similar to the blue solution (Fig 2C and 2D).

For position, substantial differences in the absolute position remain (Fig 2A and 2B), but the

position of the CoM relative to the CoP becomes similar to the periodic orbit again (Fig 2E

and 2F). This shows that although the red and orange solutions are different, they relax to the

same periodic orbit after some time, in relative terms. The path in the horizontal plane formed

by the combination progressive stepping in the anterior-posterior direction and alternating

stepping in the medial-lateral direction is shown in Fig 2G.

The walking solutions depend not only on the initial conditions, but also on the values of

the control parameters bo, bp, bd and Tstep. This blue solution in this example corresponds to a

periodic orbit in the phase space of the system, and this periodic orbit is asymptotically stable,

indicated by the fact that the system returns to the periodic orbit after small changes in the ini-

tial conditions (red and yellow lines). In the next section we will show that for all possible val-

ues of the control parameters a periodic orbit exists. In the subsequent section we will analyze

the asymptotic stability of these periodic orbits depending on the values of the control

parameters.

2.2 Periodic orbits

In the example above, we chose one specific set of values for the parameters, ω, bo, bp, bd and

Tstep, and simulated solutions for different initial conditions. We found that one of these solu-

tions was periodic and the other solutions, starting from slightly different initial conditions,

relaxed towards this periodic orbit. Now, we will analyze the system for any value for the con-

trol parameters, with the goal of determining (1) whether periodic orbit exist for the given sys-

tem and (2) whether any periodic orbit is asymptotically stable. We will find that any walking

system has a periodic orbit. We will give formulas for the state of the system at midstance of

the step when it is on this periodic orbit, which we used to generate the initial condition for

the example above (blue lines in Fig 2. Finally, we will find that only some of these periodic

orbits are asymptotically stable and determine the region of the parameter space in which this

is the case. We will develop the concepts and then state these results formally, while providing

the technical derivations in the S1 Text.

For any initial condition, the solutions of the system are given by Eq 2. Without loss of gen-

erality, we will analyze solutions of the system starting at midstance, so that the first step hap-

pens at time ts ¼ 1

2
Tstep and the next midstance is reached at time tm = Tstep. To simplify
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notation, we choose short-hand variables for the hyperbolic functions after half a step as

c ¼ cosh o
1

2
Tstep

� �

; s ¼ sinh o
1

2
Tstep

� �

: ð5Þ

Since we are interested in the position of the CoM relative to the contact point, rather than

the absolute CoM position, we define a new variable,

qðtÞ ¼ xðtÞ � pðtÞ ð6Þ

for the relative position.

Result 1 Consider any walking system, given by a set of parameters ω, bo, bp, bd and Tstep.

This system has a periodic orbit for (q, v). For systems with progressive step control, the period of
this orbit is Tstep and the state at midstance is given by

qref ;ap ¼ 0; vref;ap ¼
bo

2 s
o
� bd

: ð7Þ

For systems with alternating step control, the period of the orbit is 2Tstep and the state at mid-
stance is given by

qref;ml
n ¼ ð� 1Þ

n bo
2c � bp

; vref;ml ¼ 0: ð8Þ

We use the superscript “ref” for reference here, since going forward we will use the state at mid-

stance of the periodic orbit as a reference point to analyze other solutions at midstance. This

result shows that at midstance of the periodic orbit, the CoM of the walking system will be

exactly above the contact point in the anterior-posterior direction (qref,ap = 0). In the medial-

lateral direction, the walking system will reach zero velocity at midstance of the periodic orbit

(vref,ml = 0). The non-zero values in each case change depending on the system parameters

according to Eqs 7 and 8.

Fig 3 shows an example of the periodic solution in phase space for progressive walking (Fig

3A) and alternating walking (Fig 3B). The control parameters in this example are the same as

in the previous example, with solutions shown in Fig 2. The difference here is that instead of

showing the solutions against time or the paths in space, we show the orbits in phase space, i.e.

CoM position, x on the horizontal and velocity, v, on the vertical axis. The blue line shows how

the state of the system develops in phase space for the first second (2Tstep in this example). In

both panels, the initial condition is on the very left of the blue curve, and the gray arrows inside

the blue curve indicate the direction of movement along the orbit, as well as the time, with

arrows placed evenly at 0.05 s intervals. In progressive walking, the position continuously

increases, with velocity going up and down but consistently positive (Fig 3A). In alternating

walking, both position and velocity go up and down, forming a closed loop, with the state

returning to the initial condition at time 2Tstep. The contact point at each step, pn, are shown

as orange dots on the horizontal. At time t ¼ 1

2
Tstep, the contact point is changed from p0 to p1,

according to Eqs 3 (progressive stepping, Fig 3A) and 4 (alternating stepping, Fig 3B).

The dynamics of the overall system are illustrated by the thin gray flow lines. These flow

lines are examples of other orbits, with dots at 50 ms intervals indicating timing. With the

change in contact point, the dynamics also change instantaneously, according to Eq 1. This

change in dynamics is indicated by the vertical gray lines. Note that this limit line, where the

illustration changes from showing the flow lines of the system for p0 to the system for p1, is

only a choice of the illustration. The change of dynamics is a result of the change in foot place-

ment, which happens at a specific point in time, rather than when the CoM position, x, reaches
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the vertical line. At this point in time, the whole system dynamics changes, including the parts

beyond the area shown in Fig 3. For the orbit shown in blue, the combination of timing and

new foot placement location line up so that the velocity at the end of step is exactly the same as

at the beginning of the step, which makes this the periodic orbit.

While some of the other flow lines shown in gray look like they might be periodic, they are

not. With the chosen control parameters, the orbit lines up to be periodical only if the state is on

the specific point shown here when it is time for a step. If it is at any other point in phase space,

including any other point on the gray vertical line, the new foot placement location, determined

by Eqs 3 and 4 would be different in a way that makes the solution as a whole non-periodic.

2.3 Stability

We analyze the local stability of the walking system, i.e. how it responds to small perturbations.

Note that this is conceptually different from related concepts such as global stability or viability

[19]. We have shown that each walking system, defined by a set of parameters ω, bo, bp, bd and

Tstep, has a periodic orbit. For the parameter set that we have chosen in the examples above,

shown in Figs 2 and 3, this periodic orbit is asymptotically stable, in the sense that when the

initial condition is not on the periodic orbit, the system will relax towards the periodic orbit

over time. This is not necessarily the case for other choices of parameters.

Examples of stable and unstable walking. Fig 4 shows example solutions for four walking

systems taking alternating steps in the medial-lateral direction. The system parameters are the

same in all four examples, except for the derivative control gain, bd, which is set to four differ-

ent values of bd = 0.3, 0.6, 1.1 and 1.5 s. This parameter determines how strongly the controller

responds to a change in the CoM velocity at midstance (see Eqs 3 and 4). As implied by Result

1, each walking system has a periodic orbit. This orbit is the same for all four systems in this

Fig 3. Phase plot of the periodic orbits for progressive (Panel A) and alternating stepping (Panel B). The horizontal axis is position of the CoM, the

vertical axis is velocity. The thick blue line is the orbit. Here, the solutions are shown over 1 s, starting at midstance and including two steps. Gray

arrows in the blue orbit indicate direction and time, spaced 0.05 s apart. The thin gray curves are other orbits. The vertical gray lines indicate an

instantaneous change in the dynamics from taking a step, and the orbit has a cusp at these points. The contact point, pn, is shown in orange for each

step.

https://doi.org/10.1371/journal.pcbi.1011861.g003
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example, because the reference configuration that determines the periodic orbit does not

depend on the parameter bd for alternating stepping, as seen from Eq 8. Here we simulated all

four systems with this shared reference state as initial condition, and they follow the periodic

orbit for the first second of the movement, taking two steps (gray lines in Fig 4). At time t = 1

s, we simulated a small perturbation by increasing the CoM position by 1 cm. The subsequent

nine seconds show that the four systems react to this perturbation very differently. The first

system, with bd = 0.6, is the one we already analyzed in the previous section. The solution of

this system (blue) changes very little in response to the perturbation at 1 s and relaxes back to

the periodic orbit quickly afterwards. A small increase in derivative gain to bd = 1.1 in the sec-

ond system (yellow) changes very little, with the curves for position and velocity virtually iden-

tical. Increasing the derivative control gain further to bd = 1.5, however, leads to a substantially

different effect in the third system (purple). The system oscillates with increasing amplitude,

and does not relax back to the periodic orbit. The control gain is too large, so the system over-

corrects on each step, responding too strongly to the velocity difference at midstance. In the

fourth system (green), we changed the control gain in the opposite direction, to bd = 0.3. This

also leads to failure. The state starts to diverge soon after the perturbation, becoming more and

more positive. The control gain is too small, so the system under-corrects on each step and the

velocity keeps building up from step to step.

Fig 4. Examples of solutions with four different values of the derivative gain parameter, bd. Panel A shows the

CoM position, Panel B the CoM velocity, vs. time. The initial condition is the same in all four systems, and the solution

over the first second is also identical (gray). At t = 1 s, a small perturbation is applied, which changes the solution of the

system depending on the value of the control gain, bd.

https://doi.org/10.1371/journal.pcbi.1011861.g004
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When is a walking system stable?. While all walking systems have a periodic orbit, these

examples show that this periodic orbit is not necessarily stable. Some periodic orbits are “sta-

ble” only in the sense of a pencil standing on its tip: while it is theoretically possible, any

minuscule deviation from the upright will lead to a fall. In this section, we analyze the stability

of a walking system, in the sense of whether they will return to a periodic orbit after a perturba-

tion. Our goal is to characterize how this stability depends on the system parameters. We start

by introducing a measure for the deviation from the periodic orbit of the system at midstance

of the n-th step

dn ¼
qn � qref

vn � vref

 !

; ð9Þ

where we omit the index, n, in qref;ml
n in alternating systems for brevity. We call a walking sys-

tem stable if and only if for small perturbations of the system at initial midstance, δ0, the devia-

tion at subsequent steps, δn, goes to zero, i.e.

lim
n!1

dn ¼ 0: ð10Þ

Note that this definition of stability is the same as the asymptotic stability of the periodic orbit.

We will sometimes add the qualifier “asymptotically” to make this clear.

To analyze the stability of a system, we need to calculate how the deviation at midstance of

one step determines the deviation at the midstance of the next step. In other words, the devia-

tion is an error, and we need to calculate how that error propagates from one midstance to the

next. We do this in the following Result, which also draws conclusions from the error propaga-

tion about stability of the system.

Result 2 For any walking system given by a set of control parameters ω, bo, bp, bd and Tstep,

the error propagation from the n-th to the n + 1-th step is given by the linear mapping

dn 7! dnþ1 ¼ Ad0; ð11Þ

with

A ¼
c2 þ s2 � cbp 2 s

o
� bd

� �
c

ð2c � bpÞso c2 þ s2 � sobd

0

@

1

A: ð12Þ

The walking system is asymptotically stable if and only if the largest absolute eigenvalue of A is
less than 1.

How do the control parameters affect stability?. We have now established a criterion for

the stability of a walking system. We have already seen in the example above in Fig 4 that when

we increase the derivative gain, bd, and hold all other parameters constant, the walking system

changes from unstable to stable, and back to unstable. Result 2 allows us to determine the sta-

bility of a walking system directly from the system parameters, without having to calculate dif-

ferent solutions, by calculating the eigenvalues of A. Note that stability depends on the

transition matrix, A, which in turn depends on the body eigenfrequency, ω, the control gains,

bp and bd, and the step time, Tstep, via c and s from Eq 5. The constant offset parameter, bo, on

the other hand does not affect the stability of the system. Since ω depends only on the biome-

chanics of the body, we will assume that it is constant. For now we will also keep the step time,

Tstep, constant. The following result shows how stability depends on the remaining parameters,

the control gains bp and bd. Note that while this result can tell us whether the walking system is

asymptotically stable or not, this does not in any way relate to how large of a perturbation the
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system can handle. In fact, it has repeatedly been shown that there is a very limited (if any)

relationship between the local stability of a system, in terms of eigenvalues around a fixed

point or limit cycle, and robustness, in terms of the size of a perturbation that can be handled

without falling, for walking systems [20–22].

Result 3 Given ω and Tstep, the region of stable control parameters is the set of control gains
(bp, bv) satisfying the following three inequalities

2c � bp > 0; 2
s
o
� bd < 0 and bd < bp

c
os

ð13Þ

Fig 5 illustrates this Result by showing how stability of the walking system over the parame-

ter space spanned by bp and bd, for a fixed step time Tstep = 0.5 s. Color represents the largest

absolute eigenvalue of A, which is referred to as the spectral norm, ρ(A). White indicates insta-

bility (ρ(A)�1). Other colors indicate stability, with brighter colors denoting smaller ρ(A),

implying that the system relaxes towards its periodic orbit faster after a perturbation. The pairs

of control gains for which the walking system is stable form a triangular region in the parame-

ter space spanned by bp and bd, delimited by three lines. At each of these three lines, one of the

inequalities in Eq 13 changes between true and false, and the inner triangle is the region in

which all three inequalities hold.

Fig 5. Stability region in the parameter space spanned by bp and bp. White indicates that the system is unstable. The colored triangle is the region of

stable walking systems, with color corresponding to the largest absolute eigenvalue, ρ, of the system’s transition matrix A.

https://doi.org/10.1371/journal.pcbi.1011861.g005
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3 Predictions and comparison to human data

In the previous section we have defined a simple walking system by combining the biomechan-

ics of a single-link inverted pendulum with a simple point mass and a rigid leg with a propor-

tional-derivative control law for the foot placement of steps that are taken after a constant time

interval. Analysis of the system equations showed that for each parameter set, the walking sys-

tem has one periodic orbit. Moreover, the analysis provided a criterion for the asymptotic sta-

bility of this periodic orbit. In this section, we will compare the implications of these

theoretical results with actual human walking. We will make a prediction of how the neural

feedback control gains should change between slow and fast walking and make preliminary

comparisons with experimental data.

3.1 Stability changes with cadence

We showed in Result 3 above that for a given step time, the region of stable parameter combi-

nations is a triangle in the space spanned by the two gains parameters of the proportional-

derivative feedback controller for foot placement, bp and bd. An example of this region for

Tstep = 0.5 s is shown in Fig 5. Fig 6A shows this triangular stability region in the parameter

space spanned by bp and bd for two other step times of Tstep = 0.55, 0.75 s, corresponding to

stepping cadences of 110 and 80 steps per minute. These two examples indicate that the region

of stable parameter sets shifts towards higher control gains for slower-paced walking. This

means that when walking at a slower cadence, with longer step times, control gains need to be

higher, or the system will not be stable. Similarly, when walking at faster stepping cadences,

with shorter step times, control gains need to be lower.

Fig 6B and 6C shows how the stability region changes with cadence in more detail. Fig 6B

plots the range of bp-gains that are part of a stable parameters set changes against cadence. For

Fig 6. The limits of the stability region change with cadence. Panel A shows the triangular stability region for two example cadences, 80 (blue) and

110 (yellow) steps per minute. The dots show estimated parameter values from humans walking to metronomes at that cadence. The right side shows

how the limits of the stability region change with cadence. The gray areas represent the projections of the stability region onto the bp (Panel B) and the

bd axes (Panel C), vs. cadence on the horizontal. The dots are parameter estimates from the same human data as in Panel A, plotted here against the

average cadence each participant walked at The cadence for each participant is the average for that trial, which usually differs by some degree from the

paces imposed by the metronome.

https://doi.org/10.1371/journal.pcbi.1011861.g006
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each cadence value on the horizontal axis, all bp-gains that are part of a stable parameter sets at

this cadence are shown in gray on the vertical axis. This is essentially the bottom side of the tri-

angular stability region at that cadence. As indicated by the two individual examples in Fig 6A,

this graph shows that for decreasing cadence, the control gain, bp, has to increase for the sys-

tem to be stable. Fig 6C shows the same graph for the derivative control gain, bd, vs. cadence.

Similar as for the proportional gain, the projected stability region shifts to higher derivative

gains, bd, for lower cadences.

This theoretical result makes a prediction for human walking: With decreasing walking
cadence, control gains from CoM to foot placement should increase. As can already be appreci-

ated from the dots in Fig 6, this prediction seems to hold to some extent for human data. In

the next section, we will discuss how to estimate control gains and compare such a prediction

with experimental data.

3.2 Comparison with human data

The control law in our model determines the foot placement at each step based on sensory

information about the CoM state at midstance (see Eqs 3 and 4). If we assume that humans

use this control law, we can estimate the parameters from experimental data, as initially pro-

posed and done by [13]. The approach, briefly, is to fit a linear regression model that predicts

foot placement based on the CoM state at midstance. The slopes resulting from the linear

regression for foot placement by CoM position, b̂p, and velocity, b̂d, are estimates of the control

gains bp and bd (see Section 6 in the S1 Text).

To see how model predictions agree with actual human walking, we calculated the slopes,

b̂p and b̂d, for the medial-lateral direction from an existing data set from a previous experi-

ment. Briefly, N = 21 neurotypical young participants walked on a self-paced treadmill to a

metronome at two different cadences, 80 and 110 beats per minute, with resulting average

walking speeds of 0.73 and 1.17 m s−1. At randomized points throughout the trial participants

received a perturbation in the form of a galvanic vestibular fall stimulus, but here we only ana-

lyze steps without such perturbations and after a wash-out period. For further details on the

experimental protocol, we refer to [23].

Fig 6 shows the slopes estimated from this data set, relative to the stability region predicted

by the model, for walking at 80 steps per minute (blue) and 110 steps per minute (yellow). Note

that in the model simulations in Fig 6 we used a parameter value for the pendulum eigenfre-

quencyo ¼

ffiffiffiffiffiffiffiffi

gl̂ � 1

q

based on the average leg length l̂ ¼ 0:77 m from the 21 participants in the

experimental sample, in order to make the model as similar as possible to the experimental

data. The figure shows that the model stability regions predict the experimental estimates well

in some aspects, but less well in others. For walking at 110 steps per minute, the estimated pro-

portional gains, bp, are well within the parameter range of the stability region, but the estimated

derivative gains, bd are too low. For 80 steps per minute, the human parameter estimates are

substantially more variable. The range of the position gains goes beyond the stability region on

both sides, and the velocity gains are substantially lower than predicted by the model. Overall,

this shows that the model predicts the position gains observed in humans reasonably well, espe-

cially for higher cadence walking. Moreover, the model showed the same trend for increasing

cadence as found in humans. However, velocity gains were less well predicted by the model.

4 Discussion

We have presented a model of walking combining biomechanics and neural control of stabil-

ity. Our general hypothesis was that a meaningful quantification of stability in walking requires
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consideration of both these aspects, biomechanics as well as neural control, of walking. For

biomechanics, we followed the well established linearized single-link inverted pendulum

model (Eq 1) to approximate the body dynamics [8, 16, 17]. For neural control, we used a pro-

portional-derivative controller for foot placement based on the center of mass state at mid-

stance (Eqs 3 and 4), also following well-established ideas in the literature [13, 24]. With these

equations, a walking system is parameterized by the proportional-derivative control gains, bp
and bd, the step time, Tstep, the foot placement offset, bo and the body pendulum eigenfre-

quency, ω. We analyzed a walking system by characterizing the periodic orbit of each system

(Result 1), finding a condition for stability of this periodic orbit (Result 2) and determining the

combinations of control parameters for which the system is stable (Result 3). Finally, we com-

pared model predictions with experimental data from previous studies.

What does stability mean?

The term stability refers to several different but overlapping concepts. Most generally, some-

thing is stable if it is unlikely to change in a substantial way. A fall is certainly a substantial

change, so we call a period of standing or walking stable if it is less likely to include a fall. This

characterization is indirect, because any particular period of walking or standing either does

or does not include a fall. Since falls are rather rare events in practice, directly estimating the

likelihood of a fall for a specific person and activity would require a large number of observa-

tions, which is not feasible in practice. A roundabout way of doing this is to estimate the fall

risk for certain groups of people, like older adults or populations with specific neuromotor

impairments, by comparing the incidence of falls over longer time periods with control

groups. One problem with such estimates is that it is impossible to control what people do

over a long period of time, and a difference in activity can easily lead to a difference in fall inci-

dence. Nonetheless, such fall risk estimates provide meaningful differences between groups.

While group-level effects are informative, it is important to understand why certain groups

are less stable and tend to fall more often than others. To that end, we study stability over

shorter periods of time, where it is easier to control other factors, mostly by imposing certain

conditions in a laboratory. Since falls are both rare and dangerous, we usually observe other

effects that are also associated with stability. In standing, the need to take a step is a substantial

change of behavior that is easy to observe and can be made to happen frequently by designing

an experimental protocol around it. This is the basis of the Margin of Stability measure, which

characterizes how close the biomechanical state of the system is to the threshold of having to

take a step. In walking, taking a step is part of the normal behavior and not a substantial change

from it. Nonetheless, the MoS has been frequently used to characterize stability in walking.

This mismatch is mostly due to the lack of alternative measures, and it has been widely recog-

nized [9] and has led to some “paradoxical” results [10].

In dynamical systems theory, asymptotic stability is a well-defined property of a fixed point

or periodic orbit of a system [25]. A “substantial change” is defined here as any change at all
following an infinitesimally small perturbation after an infinitely long time. This definition, and

associated methods from dynamical systems theory, have been widely applied to the analysis

of walking movements, mostly in the form of measures that quantify how fast a system relaxes

back towards the stable state after a perturbation, e.g. Lyapunov exponents [26], Floquet multi-

pliers [27].

In our analysis of walking as a dynamical system with biomechanical and control compo-

nents presented here, we have adopted the dynamical systems definition of stability. We use a

definition of stability which is closely linked to Floquet multipliers, to ask whether a periodic

orbit is stable or not, depending on the parameters. This question has a different quality than
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the analysis of experimental data from human walking. For actual walking, the question

whether it is stable is an extreme case, because the actual loss of stability is a rare and extreme

event. A more reasonable question to ask is how stable a specific period of walking is, i.e. to

measure a degree of stability. For a walking system as modeled here, in contrast, we have to ask

whether it is stable before we can meaningfully quantify a degree of stability. We stress that in

the model analysis presented here only answered the first question. We did not, in any way,

provide a measure for a degree of stability. Specifically, our work does not offer any measure

that is applicable to experimental data in the way the MoS is. While the MoS has several draw-

backs, as discussed in the introduction, it is currently the most useful way we have to quantify

stability of actual walking humans.

How is the model useful?

If the model analysis here does not measure a degree of stability, how is it relevant to our

understanding of human walking? In the spirit of “all models are wrong, but some are useful”

[28, 29], we contend that our walking model is both wrong and useful. One way in which a

model can be useful is to make predictions. As shown above, our model predicts that control

gains should change with walking cadence (see Fig 6). Specifically, when walking at slower

cadences, the control gains have to be higher. This prediction is at odds with a result from

[13], which found no significant difference between regression slopes at three different speeds

(see Section 6 in the S1 Text for the relation between control gains and regression slopes), but

in line with our own data (presented here in Fig 6). Humans generally vary their cadence in

direct proportion to their step length, and modulate both together to vary walking speed [30],

so our model predicts an effect of walking speed that [13] did not observe. One thing to point

out here is that [13] showed the absence of significance, rather than the significance of absence
of the effect of walking speed. The speeds in their protocol were 1.0, 1.2 and 1.4 m s−1, which is

not a large range, and all of these speeds can be reasonably described as “medium”. Moreover,

the protocol controlled speed, and different people will use different cadences to walk at the

same speed. As mentioned, our analysis of data from a previous experiment, in which cadence

was controlled, supports that decreased cadence leads to increased control gains, as we found

slopes for position being higher at 80 vs. 110 beats per minute (Fig 6, paired t-test, p< 0.001),

although there was no significant difference in the velocity slopes (p = 0.39). However, this

study also was not specifically designed to test this hypothesis, and included only two cadences.

A study by [31] analyzed walking on a treadmill at a wider range of speeds by fitting regression

models, and results show that the R2 values, i.e. the amount of foot placement variance

explained by the CoM state at midstance, changed with speed, but this study does not report

the regressions slopes, which estimate the control gains. Based on the evidence, we conclude

that our model makes a prediction that is partially in agreement with current understanding

and that more research is needed to test whether foot placement control indeed changes with

walking speed.

Our model also predicts specific values for the feedback gain parameter. Comparison with

experimental data in Fig 6 shows that the model predictions do not match the observations in

some aspects. While the parameter estimates for the proportional gain, b̂p, are within or rea-

sonably close to the predicted interval, the derivative gain estimates, b̂d, are substantially lower

than the values predicted by the model. Our modelling results and the experimental data

clearly do not fully match, and it may be interesting to consider why this is so. This mismatch

could either be due to the experimental design introducing unintended effects, e.g. from walk-

ing on a treadmill, or from the model missing some key aspects of human walking. Below, we

consider three potential reasons for why the model might be wrong in this aspect. In short,
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they are (1) the assumption that collisions do not matter, (2) the assumption that the pendu-

lum eigenfrequency, ω, is constant, whereas effective leg lengths varies between participants,

and (3) the model does not include ankle roll control.

Energy loss. The first reason why our model may show results which are not in agreement

with human walking is that our model does not contain collision dynamics [32]. It is well

known that at heelstrike, energy is lost from the collision between the foot and the ground

[33]. Such a loss of energy would shift the actual place where the foot needs to be placed to

come to a standstill backwards (inwards in the frontal plane). However, in humans, during

steady state walking, such a collision loss is compensated for by an equal injection of energy

due to push off. While it is possible to write out the equations while accounting for such colli-

sions, doing so would yield equations which can only be solved numerically [32]. Moreover,

energy loss will be compensated for over time on average, as stated above, so we expect that

neglecting collision dynamics has limited effects on our results.

Effective leg length. The second reason why our model results show limited agreement

with the human results is that we assumed the eigenfrequency of the body as an inverted pen-

dulum, ω, to be constant. While this is a common assumption, the effective leg length, i.e. the

distance between the body CoM and the contact point, changes substantially throughout the

gait cycle. The common understanding is that the effective leg length is modulated to minimize

vertical CoM motion [30], but modulation of the CoM height can also be used to affect the

CoM dynamics, making it a candidate for a feedback control mechanism [34]. We are cur-

rently unaware of any experimental evidence that humans might actually use leg length modu-

lation as a control mechanism during walking, in contrast to ankle roll (see below). In our

comparison of model predictions with experimental data, we used the average effective leg

length of the human participants, l̂ ¼ 0:77 m. The eigenfrequency parameter, o ¼

ffiffiffiffiffiffiffiffi

gl̂ � 1

q

,

affects the stability of the system. Specifically, with increasing leg length the triangular stability

region grows larger, and also shifts downward and to the left. This effect is relatively small,

however, indicating that even if humans use active modulation of effective leg length as a con-

trol mechanism, the gain parameters for foot placement control would be largely unaffected by

that. Here we note that not accounting for this relationship by using a single group estimate

for ω might affect how the model prediction compares to the experimental data, but a detailed

investigation of this effect would go beyond the scope of this manuscript.

Ankle roll. The third aspect potentially responsible for the observed discrepancy between

model predictions and experimental data is ankle roll control, which, we will argue, is likely to

be the main factor. Ankle roll is a control mechanism for stability during walking, where

humans actively use lateral ankle musculature during single stance to move the body in a

desired direction [35–40]. Ankle roll and foot placement control interact with each other. A

model study showed that adding ankle roll control resulted in reduced use of the foot place-

ment mechanism in response to a simulated perturbation [41]. Human experiments showed

similarly that larger lateral ankle responses to a perturbation are correlated with smaller foot

placement changes [42]. The relation between ankle roll and foot placement also changes with

cadence. Humans showed larger foot placement responses to a perturbation at high vs. low

cadence, and larger ankle roll responses at low vs. high cadence [23]. To sum up, these results

indicate that ankle roll is an important aspect of human stability control, and that it is more

relevant at slower walking (although, see [39]). The model presented here does not have ankle

roll control. We postulate that due to this lack of ankle roll, the walking system is overall less

stable and requires higher foot placement control gains than those observed in humans. In

other words, humans need less foot placement control because they already stabilize with

ankle roll to some degree, and this difference is more prevalent in the low-cadence condition.
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To explore the hypothesis that ankle roll allows smaller foot placement gains, we re-ana-

lyzed data from an experiment where ankle roll was restricted. N = 30 healthy participants

walked on a treadmill at normal and slow speeds, wearing either standard shoes or shoes with

a ridge below the sole that restricted the contact surface of the foot and effectively removed the

Fig 7. Gain parameter values estimated from human data change when restricting the ankle roll mechanism. Bars

show the average proportional (Panel A) and derivative (Panel B) gain parameter estimate from N = 30 participants,

with normal walking on the left and ankle roll restricted by a ridge attached to the sole of the shoes on the right. Gray

dots represent individual participants, with gray lines connecting data from the same participant in both conditions.

https://doi.org/10.1371/journal.pcbi.1011861.g007
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effect of ankle roll moments on stability. For further details on the experimental protocol,

please refer to [43]. Fig 7 shows data from walking at normal speed (1:25
ffiffi
l
p

m s−1), with and

without the ankle roll restriction. The position slopes are similar between the two conditions

(t-test, p = 0.16). The velocity slopes are substantially higher in the condition with restricted

ankle roll (p<0.001). This indicates that with access to ankle roll control, humans use lower

derivative gains for foot placement control, supporting our hypothesis that the lack of ankle

roll in the model is the main reason for the discrepancy between model prediction and experi-

mental data.

Limitations

There are different ways in which the model is wrong that limit what we can infer from com-

parisons between model predictions and experimental data. When analyzing the relationship

between the body CoM state and foot placement, the CoM is often approximated by the posi-

tion of markers on the posterior-superior iliac spine [44]. Although this is a reasonable approx-

imation, there is still considerable difference between these pelvis markers and the whole-body

CoM. This error between the approximation from pelvis markers and the true CoM might

affect the slope estimate. Midstance is usually defined functionally, as the pelvis crossing the

stance foot ankle. In our model, midstance is defined as the temporal mid-point between two

heel-strikes. This difference might introduce a bias in the regression slope estimates of the con-

trol gains. Midstance was initially chosen as a point of interest because this is where the explan-

atory power of the CoM state predicting the foot placement location reaches a plateau [13].

But a later study by [31] shows that this is not necessarily the case for slow walking, where the

R2 values keep rising substantially during the later part of the step. Estimating the state of the

body CoM, and constructing a descending motor command and physically moving the swing

leg according to a neural control law takes time. In reaching, goal-directed updates of a move-

ment during execution can be as fast as 50–100 ms after a stimulus [45], while voluntary move-

ments are generally understood to have a delay of>100 ms [46]. For normal and fast walking,

the time between midstance and heelstrike is not much longer, so it is reasonable that the

explanatory power of the CoM for foot placement would plateau around midstance. For slow

walking, however, the time between midstance and heelstrike is substantially longer, and there

is no need to cease control arbitrarily at midstance. A later time point might be more suitable

to calculate regression slopes between CoM state and foot placement estimate control gains in

slow walking, but how such a point in time should be determined is an open question. In fact,

if humans actually estimate CoM state in some way, and how they do so, are still open research

questions. While it is well known that visual [37, 47], vestibular [48–51], and proprioceptive

systems [52] all play a role in the control of foot placement (see also [18] for a review), it is

unknown if, and how, these are integrated into an estimate of center of mass state. Nonethe-

less, in modeling work, center of mass state seems to predict balance responses better than

joint level feedback, suggesting that sensory sources are integrated in some way [53].

The fact that high R2 (up to 0.95) are consistently reported when estimating velocity and

position gains from human data [13] suggest that these parameters can be estimated with good

precision from the data. Here we found adjusted R2 values around 0.754 ± 0.0966

(mean ± standard deviation) for normal walking to a metronome at 110 beats per minute, and

0.666 ± 0.132 for slow walking at 80 beats per minute. Between the two predictors, the CoM

position at midstance tends to be have more explanatory power for the foot placement than

the velocity. When using either variable as a single predictor, the adjusted R2 values for normal

walking drop to 0.497 ± 0.158 for the model with position as single predictor and 0.246 ± 0.129

for velocity. However, the velocity still has substantial explanatory power and is significant as a
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predictor (p< 0.0001 for all subjects). This indicates that even though bd is not well predicted

by the model, and the estimates tend to vary more between subjects, the CoM velocity is

important for the neural controller to adjust foot placement location with the goal of maintain-

ing upright stability.

Our theoretical approach analyzed stability by determining parameter values for which the

periodic orbit of the walking system is asymptotically stable. It is tempting to infer varying

degrees of stability from this analysis. Fig 6 shows that the triangular stability region of the

parameter plane spanned by the two proportional-derivative control gains, bp and bd, is smaller

for slow-paced walking. This does not imply that slow-paced walking is less stable. Comparing

stability in different systems would require definition of a stability measure. One option for

such a measure would be the spectral radius of the transition matrix, ρ(A), which is already

used to determine the binary notion of ρ< 1 indicating stable and ρ> 1 indicating unstable
we used here. Could we extend this notion of stability to one where smaller spectral radius

indicates a more stable system? This is possible in principle, but it is questionable how useful

such a definition would be in practice (see for instance [20, 21]). As shown above, there are

substantial discrepancies between the predicted stability region and estimated gain parameter

values. This implies that if we fitted model parameters to experimental data in order to mea-

sure stability with the spectral radius of the fitted model, this model would not actually be sta-

ble, and it would be unclear how the spectral radius measure relates to stability of the walking

human. One could argue that a larger stability region is preferable, as it would allow for a more

flexible system, in which larger fluctuations can be handled. If motor or sensory noise are

taken into account, we could even speculate that their effects would be similar to changes in

control gains at each step, and hence systems which have larger stable regions for control gains

are more likely to be robust against noise. Taking these speculations one step further, one

could argue that having control gains which are at the borders of the stability region is unfa-

vorable, as changes in the control gains would be more likely to result in leaving the stability

region. However, as of yet, this is speculation, and testing these ideas would require the addi-

tion of motor and sensory noise to these models. Moreover, we have seen that the estimated

control gains of humans typically do not fall within the regions specified by the model, and we

would need large sets of human data to see the typical stability regions in humans. Potentially,

those human participants that have control gains which are at the borders of the healthy

human population are then at a higher risk for falls. There is some evidence that indeed such

differences in control gains are related to pathologies [54]. For these reasons, while a stability

measure based on this model, or a similar one, could be very useful, such a model would have

to be fully validated and explain the human data more closely than the version presented here

as a starting point.

We assumed that the step time, Tstep, is chosen as a parameter and then kept constant,

rather than modulated from step to step. However, modulating the step time based on the

CoM state could also be used as a feedback mechanism. Larger step time will result in faster

movement of the CoM at the point when a step is eventually taken, because the CoM had lon-

ger time to fall and build up speed. It is conceivable to use this effect as a feedback mechanism

for stability control, where the step time is modulated based on the CoM position and velocity

at midstance. Neither step time, nor modulation of ω via effective leg length or ankle roll, as

described above, are included in the current model, despite ankle roll being well supported as

a control mechanism in the literature. Further research is required to investigate how the addi-

tion of these mechanisms would affect stability, and whether humans might actually modulate

their CoM height and step timing as predicted by these mechanisms.

Humans live in a three-dimensional world and walk on two-dimensional surfaces. The

approximation of the body as a single-link inverted pendulum allows to neglect the vertical
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dimension and analyze the two horizontal dimensions separately. A small difference in the

control law of alternating the offset term, bo, changes from describing progressive walking in

the anterior-posterior direction to alternating walking in the medial-lateral direction (Eqs 3

and 4). Interestingly, the subsequent analysis shows that the stability criteria are identical for

both of these two variants of the walking system (Result 2), implying that stability is the same

in both directions. This is in direct contrast to common understanding in the field that main-

taining stability in the frontal plane is more challenging than in the sagittal plane. Kuo ana-

lyzed the passive walking in two planes and found that while motion in the sagittal plane can

be passively stable when walking on a ramp with a specific incline, frontal plane motion is

unstable [55]. Kuo and Bauby study directional stability in humans [56], finding that foot

placement variability is larger in the frontal vs. the sagittal plane, and frontal plane variability

increases more when closing the eyes. Furthermore, visual perturbations affect foot placement

variability in the frontal plane substantially more than in the sagittal plane [57]. Our model

fails to predict this difference between frontal and sagittal plane stability, because the criterion

for the stability of a walking system, stated in Result 2, is the same for the progressive and alter-

nating version of the walking system. This implies that the reasons for the difference between

frontal and sagittal plane stability reported by Kuo et al. are not based on alternating vs. pro-

gressive stepping, but rather due to features not currently included in our model, such as the

foot being much longer than it is wide, or the neural control parameters being different for the

two directions.

As discussed above, ankle torques play a substantial role in balance control, and ankle tor-

ques in the sagittal plane have a much higher range due to the increased moment arm along

the foot. The system analyzed by Kuo and colleagues [55–57], following [33], contains legs, hip

joints and roll motion, leading to more complex dynamics compared to the linearized single-

link inverted pendulum analyzed here. These passive dynamics contribute to the stability of

the system via interaction forces and reduce the need for active control, to the point where, in

certain specific configurations, the sagittal plane is passively stable. Adding these factors to the

model analyzed here is a subject of future work.

Relationship to other modeling studies

Many studies have analyzed walking using simple inverted pendulum models, both in human

motor control and in robotics. Hof introduced the concept of the extrapolated center of mass

[8] and suggested possible controllers to walking that maintain balance by modulating either

the step time or the foot placement location [12]. For the latter, Hof proposed placing the foot

at a constant offset from the extrapolated center of mass. This controller can be expressed as a

special case of the control law analyzed here (Eqs 3 and 4), with control gains bp = c + s and bd
= ω−1(c + s), where some transformations are required due to Hof using the state at foot place-

ment, rather than at midstance, as input. These parameters are well within the stability region

(see Fig 5), with spectral norm ρ = 0.21 for the example used here. Roboticists have thoroughly

studied similar simple models. For instance, Koolen et al. analyze stability and “capturability”

of a mechanically similar model in general terms, determining regions of state space from

where the robot can be brought to a stand within a certain number of steps [58]. Similarly,

Zaytsev et al. analyze “viability”, i.e. the ability to avoid falls or, more generally, failures, for

both the compass walker with push-off and the linearized inverted pendulum [19]. This line of

work is different from ours in that it is mainly mechanical and agnostic to the controller, ask-

ing whether a specific state of the system is capturable or viable assuming the best possible con-

trol actions. Thus, it provides relevant boundary conditions and complementary information

to our work. Modeling studies in human motor control, on the other hand, are often analyzing
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specific controllers. Joshi and Srinivasan designed a controller for foot placement and push-off

for a compass walker and fitted the parameters to human data from experiments with sizable

mechanical perturbations [59]. Their parameter estimates for foot placement, accounting for

dimensionality, are within the stability region of our model, though the fact that cadence was

not controlled precludes a detailed evaluation. Patil et al. analyzed a compass walker with dif-

ferent task-level controllers for push-off and found that the basin of attraction is largest and

most regular using a closed-loop controller for speed [60]. Furthermore, a relatively low num-

ber of controllers with different target speeds covers the viability kernel, i.e. the region of state

space where the system can continue walking indefinitely [61], and they suggest that humans

might maintain balance by switching between pre-learned controllers using high-level, execu-

tive control. This work shares our main goal of determining how humans control walking. A

critical difference is that Patil et al. use an optimal control approach to consider different task-

level controllers for speed and position in the anterior-posterior direction, and analyze the sta-

bility as an incidental property of such a controller, while we use a linear proportional-deriva-

tive controller with the main goal of maintaining stability. The major novel result of this study

in comparison to these other works is that we show that when using a PD controlled linear

inverted pendulum, there exists a limited region in parameter space where walking is stable,

and that this region shifts as a a function of cadence.
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Contributions of Stance Leg Muscle Spindle Afference to Planning of Mediolateral Foot Placement for

Balance Control in Young and Old Adults. Frontiers in Physiology. 2018; 9. https://doi.org/10.3389/

fphys.2018.01134 PMID: 30246780

53. Afschrift M, De Groote F, Jonkers I. Similar sensorimotor transformations control balance during stand-

ing and walking. Neuroscience; 2020. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.09.30.

320127.

54. Stimpson KH, Heitkamp LN, Embry AE, Dean JC. Post-stroke deficits in the step-by-step control of

paretic step width. Gait & Posture. 2019; 70:136–140. https://doi.org/10.1016/j.gaitpost.2019.03.003

PMID: 30856525

55. Kuo AD. Stabilization of Lateral Motion in Passive Dynamic Walking. The International Journal of Robot-

ics Research. 1999; 18(9):917–930. https://doi.org/10.1177/02783649922066655

56. Bauby CE, Kuo AD. Active control of lateral balance in human walking. Journal of Biomechanics. 2000;

33(11):1433–1440. https://doi.org/10.1016/S0021-9290(00)00101-9 PMID: 10940402

57. O’Connor SM, Kuo AD. Direction-dependent control of balance during walking and standing. Journal of

Neurophysiology. 2009; 102(3):1411–1419. https://doi.org/10.1152/jn.00131.2009 PMID: 19553493

58. Koolen T, de Boer T, Rebula J, Goswami A, Pratt JE. Capturability-based analysis and control of legged

locomotion, Part 1: Theory and application to three simple gait models. The International Journal of

Robotics Research. 2012; 31(9):1094–1113. https://doi.org/10.1177/0278364912452673

59. Joshi V, Srinivasan M. A controller for walking derived from how humans recover from perturbations.

Journal of The Royal Society Interface. 2019; 16(157):20190027. https://doi.org/10.1098/rsif.2019.

0027 PMID: 31409232

60. Patil NS, Dingwell JB, Cusumano JP. Task-level regulation enhances global stability of the simplest

dynamic walker. Journal of The Royal Society Interface. 2020; 17(168):20200278. https://doi.org/10.

1098/rsif.2020.0278 PMID: 32674710

61. Patil NS, Dingwell JB, Cusumano JP. Viability, task switching, and fall avoidance of the simplest

dynamic walker. Scientific Reports. 2022; 12(1):8993. https://doi.org/10.1038/s41598-022-11966-3

PMID: 35637216

PLOS COMPUTATIONAL BIOLOGY The condition for dynamic stability in humans walking with feedback control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011861 March 18, 2024 25 / 25

https://doi.org/10.1007/s00221-012-3041-8
http://www.ncbi.nlm.nih.gov/pubmed/22370742
https://doi.org/10.1016/j.humov.2015.01.012
http://www.ncbi.nlm.nih.gov/pubmed/25687664
https://doi.org/10.1152/japplphysiol.00621.2011
https://doi.org/10.1152/japplphysiol.00621.2011
http://www.ncbi.nlm.nih.gov/pubmed/21868684
https://doi.org/10.1113/JP272614
https://doi.org/10.1113/JP272614
http://www.ncbi.nlm.nih.gov/pubmed/28008621
https://doi.org/10.3389/fspor.2019.00025
http://www.ncbi.nlm.nih.gov/pubmed/33344949
https://doi.org/10.1038/s41598-021-93037-7
https://doi.org/10.1038/s41598-021-93037-7
http://www.ncbi.nlm.nih.gov/pubmed/34215780
https://doi.org/10.3389/fphys.2018.01134
https://doi.org/10.3389/fphys.2018.01134
http://www.ncbi.nlm.nih.gov/pubmed/30246780
http://biorxiv.org/lookup/doi/10.1101/2020.09.30.320127
http://biorxiv.org/lookup/doi/10.1101/2020.09.30.320127
https://doi.org/10.1016/j.gaitpost.2019.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30856525
https://doi.org/10.1177/02783649922066655
https://doi.org/10.1016/S0021-9290(00)00101-9
http://www.ncbi.nlm.nih.gov/pubmed/10940402
https://doi.org/10.1152/jn.00131.2009
http://www.ncbi.nlm.nih.gov/pubmed/19553493
https://doi.org/10.1177/0278364912452673
https://doi.org/10.1098/rsif.2019.0027
https://doi.org/10.1098/rsif.2019.0027
http://www.ncbi.nlm.nih.gov/pubmed/31409232
https://doi.org/10.1098/rsif.2020.0278
https://doi.org/10.1098/rsif.2020.0278
http://www.ncbi.nlm.nih.gov/pubmed/32674710
https://doi.org/10.1038/s41598-022-11966-3
http://www.ncbi.nlm.nih.gov/pubmed/35637216
https://doi.org/10.1371/journal.pcbi.1011861

