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1 Introduction

In Rn, we take into account the Cauchy problem of the convection–diffusion equation. Form > 1 and b ∈ Rn\{0},{
∂tv −∆v = b · ∇(|v|m−1u), t > 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,
(1)

where v0 = v0(x); Rn → R is the initial data and v = v(t, x); R+ × Rn → R is an unknown function. Our
fundamental reason here is to solve (1) and establish the well-posedness for initial condition which may not
decay at space infinity but rather not be locally bounded.

For any initial condition v0 ∈ L1(Rn), Escobedo and Zuazua [2] proved that there exists a unique global classical
solution v ∈ C([0,∞);L1(Rn)) of (1) with

v ∈ C((0,∞);W 2,s(Rn)) ∩ C1((0,∞);Ls(Rn)), (2)

for any s ∈ (1,∞). In addition, they demonstrated decay properties when the initial condition is in L1(Rn)
and established the large–time behavior of solutions to (1).

Numerous authors have considered problem (1) (see, e.g., [3], [4], [5], [6], [7], [8], [9, 10], [11], [12], [13], [14], [15],
[16]).

In contrast, in [17], [18], [19], [20], [21], [22], [1] and [23, 24, 25, 26], the authors employ spaces of functions
whose elements have a uniform size when measured in balls of arbitrary center but fixed radius. Uniformly
local spaces are the name given to these areas. For solving parabolic equations in unbounded domains with
non-decaying initial functions, these spaces are natural and useful. In addition to belonging to any constant
functions, the spaces have compact embeddings and appropriate inclusion properties. Particularly, the definition
of uniformly local Lebesgue space is straightforward, and it is evident that it contains some functions that may
have singularities and may not decay at infinity of space. Additionally, when time reaches zero, mild solution
convergences to initial data are relatively straightforward. Maekawa and Terasawa [1] established the Lpuloc,ρ(R

n)-

Lquloc,ρ(R
n) estimates for convolution kernels including et∆, ∇et∆ and et∆P∇ by constructing a mild solution of

the Navier-Stokes equations with initial condition in uniformly local Lebesgue spaces. Haque–Ogawa–Sato [27]
demonstrated the existence and uniqueness of weak solutions to (1) with initial data in uniformly local function
spaces Lruloc,ρ(Ω). In order to accomplish this, they presented the semigroup method solution for BUC(Ω),
bounded uniformly continuous functions. In this paper, we broaden the result included in [27] into uniformly
local Lebesgue spaces.

Definition (Uniformly local Lebesgue spaces). Let 1 ≤ r ≤ ∞ and ρ > 0. The Lebesgue spaces on Rn that are
uniformly local and are denoted by Lruloc,ρ(Rn), are defined as

Lruloc,ρ(Rn) :=

{
g ∈ L1

loc(Rn) : ‖g‖Lr
uloc,ρ

<∞
}
,

where for ρ > 0 and

‖g‖Lr
uloc,ρ

=


sup
x∈Rn

(∫
Bρ(x)

|g(y)|rdy

) 1
r

, 1 ≤ r <∞,

sup
x∈Rn

sup
y∈Bρ(x)

|g(y)|, r =∞.
(3)

We distinguish here L∞uloc,ρ(Rn) as L∞(Rn). Lruloc,ρ(Rn) which is a uniformly local Lebesgue spaces is a Banach
space with the standard characterized in (3). We characterize the subspace Lruloc,ρ(Rn) as the closure of the
space of continuous functions which is uniformly bounded, BUC(Rn) in the space Lruloc,ρ(Rn), i.e.,

Lruloc,ρ(Rn) := BUC(Rn)
‖·‖Lr

uloc,ρ
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and the definition of L∞uloc,ρ(Rn) is L∞uloc,ρ(Rn) = BUC(Rn).

We transform the equation into the following form of integral equation in order to solve (1)

v(t) = et∆v0 +

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds. (4)

Here et∆v0 is distinguish the heat semigroup. The solution which we obtain from the integral equation (4) is
referred to as the mild solution of (1) with initial condition v0. The exact importance of each term and the way
that they are well defined follows from the uniformly local Lpuloc,ρ(R

n)-Lquloc,ρ(R
n) estimates of convolution type

operators acquired in [18] and [1].

We express our principal result for the existence of a mild solution for (1) in uniformly local Lebesgue spaces.

Theorem 1.1 (Existence and uniqueness). Assume m > 1 and 1 ≤ r <∞ with the conditions
n(m− 1) < r if 1 + 1

n
< m,

1 < r if 1 + 1
n

= m,

1 ≤ r if 1 + 1
n
> m > 1.

(5)

Then, for every v0 ∈ Lruloc,ρ(Rn), there is a T > 0, depens on n, m, r and ‖v0‖Lr
uloc,ρ

and a unique mild solution

v ∈ L∞(0, T ;Lruloc,ρ(Rn)) ∩ C((0, T );Lruloc,ρ(Rn)) of (1).

Theorem 1.2 (Convergence to initial data). Assume the same circumstances as in Theorem 1.1. Consider
v ∈ L∞(0, T ;Lruloc,ρ(Rn)) be a mild unique solution with initial condition v0 ∈ Lruloc,ρ(Rn). Then we have got

‖v(t)− v0‖Lr
uloc,ρ

→ 0 as t→ 0. (6)

This paper is coordinated as follows. We will list some uniformly local space properties in Section 2. We will
present estimates of the Lpuloc,ρ(R

n)-Lquloc,ρ(R
n) type for convolution operators with integrable functions that

satisfy a few conditions in Section 3. By applying these estimates, we will develope mild solutions of (1). In
section 4, we will demonstrate our principal Theorem 1.1 and Theorem 1.2 utilizing the estimates that expressed
in segment 3.

2 Uniformly Local Spaces and their Properties

In this segment, we express a few properties of the function class Lruloc,ρ(Rn) and Lruloc,ρ(Rn). We use the
abbreviations like Lruloc(Rn) := Lruloc,1(Rn) and Lruloc(Rn) := Lruloc,1(Rn) when ρ = 1, . The following are the
inclusion relations for Lruloc,ρ(Rn) spaces:

Proposition 2.1. (1) For every ρ1, ρ2 > 0, we know Lruloc,ρ1
(Rn) = Lruloc,ρ2

(Rn) with the norm of equivalence.
(2) For any 1 ≤ p ≤ q ≤ ∞ and ρ > 0, we have Lquloc,ρ(R

n) ⊂ Lpuloc,ρ(R
n).

(3) Let 1 ≤ r <∞ and ρ > 0, we have Lr(Rn) ⊂ Lruloc,ρ(Rn), L∞(Rn) ⊂ Lruloc,ρ(Rn).

Proof of Proposition 2.1. The inclusions (1), (2) and (3) of the Proposition 2.1 follow from the Hölder
inequality, we omit the detail.

Proposition 2.2. The class of compact supported smooth functions; C∞0 (Rn) and L∞(Rn) are not dense in
Lruloc,ρ(Rn).
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Proof of Proposition 2.2. We know that 1 ∈ Lruloc,ρ(Rn). Let g ∈ C∞0 (Rn). We may assume that there exist
Rf > 0 such that supp g ⊂ BRf (0). Then

‖g − 1‖Lr
uloc,ρ

= sup
x∈Rn

(∫
Bρ(x)

|g(y)− 1|rdy

) 1
r

≥

(∫
Bρ(x))

|g(y)− 1|rdy

) 1
r

.

Take x0 ∈ Rn such that |x0| > Rg + ρ. Then g(y) = 0 on Bρ(x0).
Now

‖g − 1‖Lr
uloc,ρ

≥

(∫
Bρ(x0)

1dy

) 1
r

=|Bρ(x0)|
1
r = |Bρ(0)|

1
r .

This holds for any g ∈ C∞0 (Rn). Hence for all g ∈ C∞0 (Rn) can not approximates 1 ∈ Lruloc,ρ(Rn). This stands
that C∞0 (Rn) is not dense in Lruloc,ρ(Rn).

Assume f ∈ C∞0 (Rn) be a function satisfies that supp f ⊂ B1(0),
∫
Rn |f |

rdx = 1 and f ≥ 0. Choose any

countable points {xm}m ≥ 1 such that B1(xm)∩B1(xm′) = ∅. Set fm(x) = m
n
r f(m(x− xm)). Then supp fm ⊂

B 1
m

(xm). So if we set

f̃(x) =

{
fm(x), for x ∈ B1(xm),

0, otherwise,

then we have

‖f̃‖Lr
uloc

(Rn) = sup
m
‖fm‖Lr(B1(xm)) = 1.

Suppose q > r. For every g ∈ Lruloc(Rn), we know that ‖f̃ − g‖Lruloc(Rn) ≥ 1. To be sure, we have

‖f̃−g‖Lr
uloc

(Rn) ≥ ‖fm − g‖Lr(B1(xm)) ≥ ‖fm − g‖Lr(B 1
m

(xm))

≥
∣∣‖fm‖Lr(B 1

m
(xm)) − ‖g‖Lr(B 1

m
(xm))

∣∣ ≥ 1− |B 1
m

(xm)|
1
r

(1− r
q

)‖g‖Lq
uloc

(Rn)

≥ 1− C

mn( 1
r
− 1

q
)
‖g‖Lq

uloc
(Rn) → 1 as m→∞.

This implies that f̃ does not belong to ∪q>rLquloc(Rn)
Lruloc(Rn)

.As a result, we know that the subset ∪q>rLquloc(Rn)
does not have a dense in Lruloc(Rn) and implies that L∞(Rn) is not dense in Lruloc(Rn). Hence the space L∞(Rn)
not dense in Lruloc,ρ(Rn).

We have the following characterizations of Lruloc,ρ(Rn). These characterizations are obtained in [18] and [1].

Proposition 2.3. For every positive ρ, the accompanying three properties are equivalent:
(1) g ∈ Lruloc,ρ(Rn).
(2) lim|s|→0 ‖g(·+ s)− g(·)‖Lr

uloc,ρ
(Rn) = 0.

(3) limt→0+ ‖et∆g − g‖Lr
uloc,ρ

(Rn) = 0.

For the proof see [1].
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3 Mild Solutions in Uniformly Local Spaces

In this part, we will give the meaning of mild solutions (solutions of the integral equations) for the convection–
diffusions equation (1). Key estimates for the convolution operators et∆ and ∇et∆, which are derived in [18]
and [1] will also discussed.

Definition (Mild solution). Assume the conditions m > 1 and T > 0. The function v ∈ L∞(0, T ;Lruloc,ρ(Rn)) is
known as a mild solution of the convection–diffusion equations (1) on (0, T )× Rn if there is a v0 ∈ Lruloc,ρ(Rn)
that satisfies the integral equation

v(t) = et∆v0 +

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds (7)

in C((0, T );Lruloc,ρ(Rn)).

In [1], the following theorem is demonstrated.

Theorem 3.1. Assume 1 ≤ q ≤ p ≤ ∞ and suppose that Gt is the heat kernel in Rn. We set Gt(x) = t−
n
2 G1( x√

t
)

for t > 0. Then, for every function f ∈ Lquloc,ρ(R
n), we can characterize pointwise

Gt ∗ f(x) =

∫
Rn
Gt(x− y)f(y)dy.

Furthermore, we have the estimate

‖Gt ∗ f‖Lp
uloc,ρ

(Rn) ≤
(
C1‖G1‖L1(Rn)

ρ
n( 1
q
− 1
p

)
+
C2‖G1‖Lr(Rn)

t
n
2

( 1
q
− 1
p

)

)
‖f‖Lq

uloc,ρ
(Rn), (8)

where r satisfies the condition 1
p

= 1
r

+ 1
q
− 1, as well as C1, C2 are constants which are positives depends only

on n.

For the proof see [1].

Estimates of Lpuloc,ρ(R
n)-Lquloc,ρ(R

n) for the linear and nonlinear terms in the integral equation (7) can be derived
from Theorem 3.1.

Corollary 3.2 (Lpuloc,ρ(R
n)-Lquloc,ρ(R

n) estimates). Assuming 1 ≤ q ≤ p ≤ ∞. Then for every f ∈ Lpuloc,ρ(R
n),

we know that

‖et∆f‖Lp
uloc,ρ

(Rn) ≤
(

C1

ρ
n( 1
q
− 1
p

)
+

C2

t
n
2

( 1
q
− 1
p

)

)
‖f‖Lq

uloc,ρ
(Rn), (9)

‖∇et∆f‖Lp
uloc,ρ

(Rn) ≤
(

C3

t
1
2 ρ

n( 1
q
− 1
p

)
+

C4

t
n
2

( 1
q
− 1
p

)+ 1
2

)
‖f‖Lq

uloc,ρ
(Rn), (10)

satisfies. Here the positive constants C1 and C3 depend only on n as well as the positive constants C2 and C4

depend only on n, p and q.

For the proof see [1].

Remark: The heat semigroup Lpuloc,ρ(R
n)-Lquloc,ρ(R

n) estimate is also obtained in [18]. The estimate is found in
[10] when p = q =∞.

4 Proof of Theorem

Proof of Theorem 1.1. For any positive M and any positive T . Assume 1 ≤ r <∞, and we set

Y = L∞(0, T ;Lruloc,ρ(Rn)) ∩ L∞loc(0, T ;Lmruloc,ρ(Rn))
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and

YM,T,r :=

{
v ∈ Y : sup

0<t<T
‖v(t)‖Lr

uloc,ρ
(Rn) ≤M and sup

0<t<T
t
α
2 ‖v(t)‖Lmr

uloc,ρ
(Rn) ≤M

}
,

where α = n(m−1)
mr

< 1
m
< 1 and M and T are constants depending on ‖v0‖Lr

uloc,ρ
(Rn), r, m and n, determined

later. For every v and w ∈ YM,T,r, we define

dYM,T,r (v, w) = |||v − w|||YM,T,r ≡ sup
0<t<T

t
α
2 ‖v(t)− w(t)‖Lmr

uloc,ρ
(Rn).

. This implies that (YM,T,r, dYM,T,r ) is a complete metric space. Then we consider a map

Φ : YM,T,r → YM,T,r by

Φ[v](t) = et∆v0 +

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds, v0 ∈ Lruloc,ρ(Rn), (11)

and want to that Φ is a contraction mapping from YM,T,r onto itself. This implies an existence of the fixed
point for the map Φ on YM,T,r and it becomes a solution to the coresponding integral equation (7) has a unique
fixed point and it becomes an Lruloc,ρ(Rn)-mild solution.

For any v ∈ YM,T,r, we will estimate ‖Φ[v](t)‖Lr
uloc,ρ

(Rn) and t
α
2 ‖Φ[v](t)‖Lmr

uloc,ρ
(Rn). By taking Lruloc,ρ(Rn)-

Lruloc,ρ(Rn) estimate, we obtain

‖et∆v0‖Lr
uloc,ρ

(Rn) ≤
(

C1

ρn( 1
r
− 1
r

)
+

C2

t
n
2

( 1
r
− 1
r

)

)
‖v0‖Lr

uloc,ρ
(Rn)

= C‖v0‖Lr
uloc,ρ

(Rn),

(12)

and ∥∥∇e(t−s)∆(|v(s)|m−1v(s)
)∥∥
Lr

uloc,ρ
(Rn)

≤
(

C3

(t− s) 1
2 ρn( 1

r
− 1
r

)
+

C4

(t− s)n2 ( 1
r
− 1
r

)+ 1
2

)
‖|v(s)|m−1v(s)‖Lr

uloc,ρ
(Rn)

= C′(t− s)−
1
2 ‖v(s)‖mLmr

uloc,ρ
(Rn).

(13)

Then, we obtain

|b|
∫ t

0

∥∥∇e(t−s)∆(|v(s)|m−1v(s)
)∥∥
Lr

uloc,ρ
(Rn)

ds

≤ C′
∫ t

0

(t− s)−
1
2 ‖v(s)‖mLmr

uloc,ρ
(Rn)ds

≤ C′
(

sup
0<t<T

t
α
2 ‖v(t)‖Lmr

uloc,ρ
(Rn)

)m ∫ t

0

(t− s)−
1
2 s−

mα
2 ds

≤ C′Mmt
1
2
−mα

2 β
(1

2
, 1− mα

2

)
.

(14)

The integral and t
1
2
−mα

2 is bounded if and only if 1− mα
2
> 0 and 1

2
− mα

2
≥ 0, that is, r > n(m− 1). Thus if

these conditions are satisfied, we have

‖Φ[v](t)‖Lr
uloc,ρ

(Rn) ≤ C‖v0‖Lr
uloc,ρ

(Rn) + C′MmT
1
2
−mα

2 β(
1

2
, 1− mα

2
). (15)

Next we estimate t
α
2 ‖Φ[v](t)‖Lmr

uloc,ρ
(Rn). By taking Lmruloc,ρ(Rn)-Lruloc,ρ(Rn) estimate and choose ρ ≥ t

1
2 , we

obtain

t
α
2 ‖et∆v0‖Lmr

uloc,ρ
(Rn) ≤ t

α
2

(
C1

ρn( 1
r
− 1
mr

)
+

C2

t
n
2

( 1
r
− 1
mr

)

)
‖v0‖Lr

uloc,ρ
(Rn)

≤ t
α
2 t−

α
2 ‖v0‖Lr

uloc,ρ
(Rn) = C‖v0‖Lr

uloc,ρ
(Rn),

(16)
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and ∥∥∇e(t−s)∆(|v(s)|m−1v(s)
)∥∥
Lmr

uloc,ρ
(Rn)

≤
(

C3

(t− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
‖|v(s)|m−1v(s)‖Lr

uloc,ρ
(Rn)

= C′(t− s)−
1
2
−α

2 ‖v(s)‖mLmr
uloc,ρ

(Rn).

(17)

Then, we obtain

|b| t
α
2

∫ t

0

∥∥∇e(t−s)∆(|v(s)|m−1v(s)
)∥∥
Lmr

uloc,ρ
(Rn)

ds

≤ C′t
α
2

∫ t

0

(t− s)−
1
2
−α

2 ‖v(s)‖mLmr
uloc,ρ

(Rn)ds

≤ C′t
α
2
(

sup
0<t<T

t
α
2 ‖v(t)‖Lmr

uloc,ρ
(Rn)

)m ∫ t

0

(t− s)−
1
2
−α

2 s−
mα
2 ds

≤ C′Mmt
1
2
−mα

2 β
(1

2
− α

2
, 1− mα

2

)
.

(18)

The integral and t
1
2
−mα

2 is bounded if and only if 1
2
− α

2
> 0, 1− mα

2
> 0 and 1

2
− mα

2
≥ 0, that is, α < 1 and

r > n(m− 1). Thus if these conditions are satisfied, we have

t
α
2 ‖Φ[v](t)‖Lmr

uloc,ρ
(Rn) ≤ C‖v0‖Lr

uloc,ρ
(Rn) + C′MmT

1
2
−mα

2 β(
1

2
− α

2
, 1− mα

2
). (19)

We next consider the condition in which Φ is contraction. Let v0, w0 ∈ Lruloc,ρ(Rn). We have for any v,
w ∈ YM,T,r and t ∈ (0, T )

t
α
2 ‖Φ[v](t)−Φ[w](t)‖Lmr

uloc,ρ
(Rn) ≤ t

α
2 ‖et∆(v0 − w0)‖Lmr

uloc,ρ
(Rn)

+ |b|t
α
2

∫ t

0

∥∥∇e(t−s)∆(|v(s)|m−1v(s)− |w(s)|m−1w(s)
)∥∥
Lmr

uloc,ρ
(Rn)

ds.
(20)

By taking Lmruloc,ρ(Rn)-Lruloc,ρ(Rn) estimate and choose ρ ≥ t
1
2 , we obtain

t
α
2 ‖et∆v0 − et∆w0‖Lmr

uloc,ρ
(Rn) ≤ t

α
2

(
C1

ρn( 1
r
− 1
mr

)
+

C2

t
n
2

( 1
r
− 1
mr

)

)
‖v0 − w0‖Lr

uloc,ρ
(Rn)

≤ Ct
α
2 t−

α
2 ‖v0 − w0‖Lr

uloc,ρ
(Rn)

= C‖v0 − w0‖Lr
uloc,ρ

(Rn).

(21)

Again, by taking Lmruloc,ρ(Rn)-Lruloc,ρ(Rn) estimate, choose ρ ≥ (t−s)
1
2 and then applying the Hölder inequality,
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we obtain∥∥∇e(t−s)∆(|v(s)|m−1v(s)− |w(s)|m−1w(s)
)∥∥
Lmr

uloc,ρ
(Rn)

≤
(

C3

(t− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)∥∥∥∥|v(s)|m−1v(s)− |w(s)|m−1w(s)

∥∥∥∥
Lr

uloc,ρ
(Rn)

≤
(

C3

(t− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
∥∥∥∥(mmax{|v(s)|m−1, |w(s)|m−1}|v(s)− w(s)|

)∥∥∥∥
Lr

uloc,ρ
(Rn)

≤
(

C3

(t− s) 1
2 (t− s)n2 ( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
∥∥∥∥(mmax{|v(s)|m−1, |w(s)|m−1}|v(s)− w(s)|

)∥∥∥∥
Lr

uloc,ρ
(Rn)

≤ C′(t− s)−
1
2
−α

2 ‖v(s)− w(s)‖Lmr
uloc,ρ

(Rn)

∥∥max{|v(s)|m−1, |w(s)|m−1}
∥∥
L
mr
m−1
uloc,ρ

(Rn)

≤ C′(t− s)−
1
2
−α

2 ‖v(s)− w(s)‖Lmr
uloc,ρ

(
‖ |v(s)|m−1‖

L
mr
m−1
uloc,ρ

+ ‖ |w(s)|m−1‖
L
mr
m−1
uloc,ρ

)
= C′(t− s)−

1
2
−α

2 ‖v(s)− w(s)‖Lmr
uloc,ρ

(
‖v(s)‖m−1

Lmr
uloc,ρ

+ ‖w(s)‖m−1
Lmr

uloc,ρ

)
.

(22)

Hence we have

sup
t∈(0,T )

t
α
2 ‖Φ[v](t)− Φ[w](t)‖Lmr

uloc,ρ
(Rn)

≤ C‖v0 − w0‖Lr
uloc,ρ

+ C′Mm−1 sup
t∈(0,T )

t
α
2 ‖v(t)− w(t)‖Lmr

uloc,ρ
(Rn)

∫ t

0

(t− s)−
1
2
−α

2 s−
α
2

(m−1)ds

≤ C‖v0 − w0‖Lr
uloc,ρ

+ C′Mm−1t
1
2
−αm

2 sup
t∈(0,T )

t
α
2 ‖v(t)− w(t)‖Lmr

uloc,ρ
(Rn)β(

1

2
− α

2
, 1− α(m− 1)

2
).

(23)

The integral and t
1
2
−mα

2 is bounded if and only if 1
2
− α

2
> 0, 1− (m−1)α

2
> 0 and 1

2
− mα

2
≥ 0, that is, α < 1

and r > n(m− 1). Thus if these conditions are satisfied, we have

sup
t∈(0,T )

t
α
2 ‖Φ[v](t)− Φ[w](t)‖Lmr

uloc,ρ
(Rn)

≤ C‖v0 − w0‖Lr
uloc,ρ

+ C′Mm−1t
1
2
−αm

2 sup
t∈(0,T )

t
α
2 ‖v(t)− w(t)‖Lmr

uloc,ρ
(Rn)

≤ C‖v0 − w0‖Lr
uloc,ρ

+ C′Mm−1T
1
2
−αm

2 sup
t∈(0,T )

t
α
2 ‖v(t)− w(t)‖Lmr

uloc,ρ
(Rn).

(24)

Setting v0 = w0, we obtain

dYM,T,r (Φ[v],Φ[w]) ≤ CMm−1T
1
2
−αm

2 dYM,T,r (v, w).

It follows from the above estimates that if T is small enough then the map Φ is contraction from YM,T,r onto
YM,T,r and by virtue of the Banach fixed point principle, there is a unique fixed point of Φ in YM,T,r. By the
definition, this fixed point satisfies the integral equation (7) and besides, v(t) → v0 as t → 0 by Theorem 1.2.
Hence v is the Lruloc,ρ(Rn)- mild solution to (1). This shows the existence of solution.

The uniqueness of the mild solution in Lruloc,ρ(Rn) is then demonstrated. With the initial data v0 ∈ Lruloc,ρ(Rn),
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suppose v1, v2 ∈ L∞(0, T ;Lruloc,ρ(Rn)) be two mild solutions. Then by (24), we can obtain for any 0 < t < T ′ < T

sup
t∈(0,T ′)

t
α
2 ‖v1(t)− v2(t)‖Lmr

uloc,ρ
(Rn)

≤ CMm−1T ′
1
2
−αm

2 sup
t∈(0,T ′)

t
α
2 ‖v1(t)− v2(t)‖Lmr

uloc,ρ
(Rn).

Therefore, it follows that v1 = v2 in 0 < t < T ′ for sufficently small T ′ > 0. Repetition of this argument, we see
that v1 = v2 in 0 < t < T.

We have to prove taht v ∈ C((0, T );Lruloc,ρ(Rn)). Let 0 < t < t+ h < T. Since

v(t) = et∆v0 +

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds,

we have

‖v(t+ h)− v(t)‖Lmr
uloc,ρ

(Rn)

≤‖e(t+h)∆v0 − et∆v0‖Lmr
uloc,ρ

+

∥∥∥∥ ∫ t+h

0

b · ∇e(t+h−s)∆(|v(s)|m−1v(s)
)
ds−

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds

∥∥∥∥
Lmr

uloc,ρ
(Rn)

.

(25)

Applying Corollary 3.2 we have et∆v0 ∈ Lpruloc,ρ(R
n) for every positive t. As a result , by Proposition 2.3, we

conclude that

‖e(t+h)∆v0 − et∆v0‖Lmr
uloc,ρ

(Rn) = ‖eh∆et∆v0 − et∆v0‖Lmr
uloc,ρ

(Rn) → 0 as h→ 0.

Next we have ,∥∥∥∥ ∫ t+h

0

b·∇e(t+h−s)∆(|v(s)|m−1v(s)
)
ds−

∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds

∥∥∥∥
Lmr

uloc,ρ
(Rn)

≤ |b|
∫ t

0

∥∥∇e(t+h−s)∆(|v(s)|m−1v(s)
)
−∇e(t−s)∆(|v(s)|m−1v(s)

)∥∥
Lmr

uloc,ρ
(Rn)

ds

+|b|
∫ t+h

t

∥∥∇e(t+h−s)∆(|v(s)|m−1v(s)
)∥∥
Lmr

uloc,ρ
(Rn)

ds = I1 + I2.

(26)

Again, from Corollary 3.2 we know that ∇e(t−s)∆(|v(s)|m−1v(s)
)
∈ Lmruloc,ρ(Rn) for 0 ≤ s < t, therefore, the

Proposition 2.3 implies that∥∥∇e(t+h−s)∆(|v(s)|m−1v(s)
)
−∇e(t−s)∆(|v(s)|m−1v(s)

)∥∥
Lmr

uloc,ρ
(Rn)
→ 0 as h→ 0,

for any t > s ≥ 0.

Then again, by taking Lmruloc,ρ(Rn)-Lruloc,ρ(Rn) estimate, we acquire∥∥∇e(t+h−s)∆(|v(s)|m−1v(s)
)
−∇e(t−s)∆(|v(s)|m−1v(s)

)∥∥
Lmr

uloc,ρ
(Rn)

≤
(

C3

(t+ h− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t+ h− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
‖v(s)‖mLmr

uloc,ρ
(Rn)

+

(
C3

(t− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
‖v(s)‖mLmr

uloc,ρ
(Rn)

≤ 2

(
C3

(t− s) 1
2 ρn( 1

r
− 1
mr

)
+

C4

(t− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
‖v(s)‖mLmr

uloc,ρ
(Rn)

71



Khatun et al.; Asian J. Math. Comp. Res., vol. 31, no. 3, pp. 63-74, 2024; Article no.AJOMCOR.12248

Consequently, by the Lebesgue convergence hypothesis, we have I1 → 0 as h→ 0.

I2 ≤
∫ t+h

t

(
C3

(t+ h− s) 1
2 ρ

n
2

( 1
r
− 1
mr

)
+

C4

(t+ h− s)n2 ( 1
r
− 1
mr

)+ 1
2

)
‖v(s)‖mLmr

uloc,ρ
(Rn)ds

≤C
(
h

1
2 ρ−

n
2

( 1
r
− 1
mr

) + h
1
2
−n

2
( 1
r
− 1
mr

)) sup
0<t<T

‖v(t)‖mLmr
uloc,ρ

(Rn) → 0 as h→ 0.

This indicates that v ∈ C((0, T );Lruloc,ρ(Rn)). This finishes the evidence of Theorem 1.1.

As t approaches to zero, we take into account the convergence of mild solutions to initial condition. The portrayal
of Lruloc,ρ(Rn) in Proposition 2.3 is basically applied. We will demonstrate that as t approaches to zero, v(t)
converges to v0 in Lruloc,ρ(Rn)-norm if v0 belongs to Lruloc,ρ(Rn).

Proof of Theorem 1.2. From (14) it is simple to confirm∥∥∥∥ ∫ t

0

b · ∇e(t−s)∆(|v(s)|m−1v(s)
)
ds

∥∥∥∥
Lr

uloc,ρ
(Rn)

≤Ct
1
2
−mα

2 → 0 as t→ 0.

(27)

For every initial data v0 ∈ Lruloc,ρ(Rn), we have from (27) and Propositin 2.3,

lim
t→0
‖v(t)− v0‖Lr

uloc,ρ
(Rn) ≤ lim

t→0
‖et∆v0 − v0‖Lr

uloc,ρ
(Rn) = 0.

5 Conclusion

In this paper, we consider existence and uniqueness issue for a convection–diffusion equation in uniformly local
Lebesgue spaces. In uniformly local Lebesgue spaces, we established the local existence and uniqueness of the
mild solution for a convection–diffusion equation. These results provide new insights into the behaviour of
solution of the convection-diffusion equation in uniformly local Lebesgue spaces and have implications for the
modelling and simulation of complex physical systems.
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