
Applied Mathematics, 2021, 12, 1189-1209 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2021.1212076  Dec. 22, 2021 1189 Applied Mathematics 
 

 
 
 

A Comprehensive Price Prediction System 
Based on Inverse Multiquadrics Radial Basis 
Function for Portfolio Selection 

Mengmeng Zheng 

Jinan University, Guangzhou, China 

 
 
 

Abstract 
Price prediction plays a crucial role in portfolio selection (PS). However, most 
price prediction strategies only make a single prediction and do not have effi-
cient mechanisms to make a comprehensive price prediction. Here, we pro-
pose a comprehensive price prediction (CPP) system based on inverse multi-
quadrics (IMQ) radial basis function. First, the novel radial basis function 
(RBF) system based on IMQ function rather than traditional Gaussian (GA) 
function is proposed and centers on multiple price prediction strategies, 
aiming at improving the efficiency and robustness of price prediction. Under 
the novel RBF system, we then create a portfolio update strategy based on 
kernel and trace operator. To assess the system performance, extensive expe-
riments are performed based on 4 data sets from different real-world finan-
cial markets. Interestingly, the experimental results reveal that the novel RBF 
system effectively realizes the integration of different strategies and CPP sys-
tem outperforms other systems in investing performance and risk control, 
even considering a certain degree of transaction costs. Besides, CPP can cal-
culate quickly, making it applicable for large-scale and time-limited financial 
market. 
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1. Introduction 

The target of PS is to achieve some long-term financial goals by constructing an 
effective investment strategy that can reasonably allocate wealth among a set of 
assets. There are two main theories about PS. One is the mean-variance theory 
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[1], which aims to balancing the expected return (mean) and risk (variance) of a 
portfolio and is generally applicable to the single-period PS. The other is Kelly 
investment [2] [3] which focuses on maximizing the expected log return and is 
suitable for multiple-period PS. These two theories are also the cornerstone of 
modern PS research and are constantly exploited and innovated. Considering 
the real financial market environment, most portfolio researches are more in 
line with the Kelly investment model. In other words, the essence of PS can be 
understood as an optimization problem on expected log return. Therefore, in 
order to make portfolio selection more effective under known historical price 
information, price prediction is an important link to the construction of portfo-
lio. 

Adam’s theory mentioned that there was a high chance that the market would 
go towards a particular direction [4]. Therefore, price prediction plays an indis-
pensable role in PS. At present, the most commonly used price prediction sys-
tems generally follow three principles, namely, trend-following principle, trend- 
reversing principle and pattern-matching principle [5]. Trend-following prin-
ciple assumes that a well-performing asset’s price will keep rising over next pe-
riod, and vice versa. For example, PPT [6] exploits the maximum value of asset 
prices within a time window to predict future prices. In contrast to the trend- 
following, the trend-reversing principle assumes that future asset prices will re-
verse to some kinds of historical mean. The investment behavior is to sell good 
performance and buy poor performance [7] [8] [9] [10]. For example, RMR and 
OLMAR exploit L1-median [8] and the exponential moving average (EMA) [10], 
respectively, to make future price prediction. Pattern-matching principle is to 
look for historical price pattern that fit the current financial environment and 
use it to predict the future prices [11] [12] [13]. 

Although some strategies mentioned above can be applied to some data sets 
with encouraging results, no attempt has been made to combine these strategies 
to construct a comprehensive price prediction system. In fact, the exponential 
moving average (EMA) [5], the PP [6] and L1-median [8] are all classic and 
widely used price prediction tools. L1-median and EMA are both moderate 
strategies, while PP is an aggressive strategy that can actively strive for high re-
turns. Depending on the financial environment, sometimes aggressive strategies 
are needed to achieve high returns, while sometimes moderate strategies are 
needed to avoid risks. This inspires us to construct a system able to take full ad-
vantage of multiple strategies. 

Radial basis functions (RBF) are widely exploited in solving partial differential 
equations and image denoising, [14]-[21]. The Gaussian (GA) function, the 
multiquadrics (MQ) function and inverse multiquadrics (IMQ) function are 
three classic expressions of RBF [20] [22]. Despite its good smoothing effect, GA 
is a function only with good local characteristics, which means it’s significant 
merely in a neighborhood near the center point. MQ was originally introduced 
by Hardy [23] and generally accepted by researchers. Although Franke [24] 
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proved that MQ performed best in dealing with the interpolation problem of 
scatter data, MQ was conditionally positive definite. Therefore, a more applica-
tion-oriented IMQ was proposed. The outstanding advantages of IMQ are good 
global feature, strict positive definite and stable eigenvalue [14] [18]. For exam-
ple, Abbasbandy [14] pointed out that IMQ could be used to approximate the 
unknown analytic function to get a more stable and accurate solution in solving 
the global optimization problem. And Tanbay [19] pointed out that compared 
with GA in the solution of the neutron diffusion equation, IMQ had a more sta-
ble performance and could obtain highly numerical solution. Therefore, we in-
corporate IMQ rather than traditional GA in our novel RBF system to increase 
efficiency and robustness. 

In this paper, a comprehensive price prediction (CPP) system based on IMQ 
radial basis function is constructed. The system firstly uses IMQ basis function 
to construct a novel RBF system. Then, combining with the novel RBF system, a 
portfolio update strategy based on kernel and trace operator is constructed. Now 
let’s consider H different price prediction strategies. This paper mainly focuses 
on three strategies, namely EMA, L1-median and PP. Firstly, CPP selects the 
best-performing strategy according to investing performance of all strategies 
within the recent window and given it the largest influence in future price pre-
diction. Secondly, CPP exploits the similarity between the best-performing strat-
egy and other price prediction strategies to calculate the influence of other strat-
egies. This system effectively integrates the advantages of all price prediction 
strategies and innovative measuring the influence by investing performance. In 
genneral, this paper’s main contributions are as follows:  

1) Propose a novel RBF system based on IMQ radial basis function and cen-
tered on multiple price predictions, which form a comprehensive price predic-
tion.  

2) Propose a comprehensive combination of aggressive strategies and mod-
erate strategies to achieve a better balance between returns and risks.  

3) Propose a portfolio update strategy based on kernel and trace operator.  
The rest parts of this paper are presented as follows. Section 2 describes the 

relevant problem setting and related work about PS. The CPP system is intro-
duced and described in detail in Section 3. Experiments on 4 benchmark data 
sets are carried out to assess CPP in Section 4. Finally, conclusions are presented 
in Section 5.  

2. The Relevant Problem Setting and Related Work 
2.1. The Relevant Problem Setting  

In this paper, d assets with a time span of n periods in financial market are con-
sidered. For the sake of understanding, let’s think of a period as a day. The asset 
prices of the tth period is presented by the close prices vector d

t +∈q  ,  
0,1,2, ,t n=  , where i

tq  represents the price of the ith asset and d
+  is a 

d-dimensional nonnegative real space. The change of asset prices is presented by 
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the price relative vector [25]  

 
1

, , 1, 2,3, , ,dt
t t

t

t n+
−

= ∈ =
q

s s
q

                 (1) 

where division between two vectors represents the division of corresponding com-

ponents, i.e. 
1

i
i t
t i

t

q
s

q −

= . Note that the price relative vector is an crucial metric in  

PS, because it’s always used to evaluate the performance of an asset. When 
1i

t >s , the ith asset price goes up, and vice versa. Of course when 1i
t =s , it 

means the price doesn’t change. 
At the beginning of each trading period, wealth needs to be allocated across a 

range of assets. In this paper, when investing, the proportion of each asset in to-
tal weath is recorded as the portfolio vector. Suppose there are d assets and their 
portfolio vector in the tth period is  

 ( )

1
: : 1 ,

d
id

t d
i

+
=

 ∈∆ = ∈ = 
 

∑v v v                  (2) 

where d∆  is a d-dimensional simplex. A non-negative constraint indicates that 
non-short-selling and the equality constraint indicates that self-financing, which 
means it is not allowed to borrow money and all of the wealth is reinvested. 
Since all the wealth in the previous periods is invested over next period, the cu-
mulative wealth (CW) increases at a multiple rate, i.e. 1t t t tW W Τ

−= v s , which  
t t
Τv s  is the increasing factor. So after n periods, the final cumulative wealth is  

 ( )0
1

,
n

n t t
t

W W Τ

=

= ∏ v s                        (3) 

where 0W  is the initial wealth. In this paper, for the convenience of calculation, 
it is assumed that 0 1W = . Then the final cumulative wealth nW  is  

 ( )
1

.
n

n t t
t

W Τ

=

=∏ v s                         (4) 

The ultimate purpose of PS system is to maximize the final cumulative wealth 

nW  by constructing a set of the portfolio vectors { } 1

n
t t=

v , that is  

 
{ }

( )
1 1

max .
n

t d t

n

n t t
t

W
=

Τ

∈∆ =

= ∏
v

v s                      (5) 

From the above equation, this is equivalent to maximizing the increasing fac-
tor t t

Τv s . Note that this optimization problem does not require statistical as-
sumption about the changes in asset price. 

2.2. Related Work  

In this subsection, some classical prediction strategies are introduced to help us 
understand how to build a PS system. 

The UBAH strategy [5], which is generally used as a market strategy to gener-
ate a market index, is to start with an equal distribution of wealth among d assets 
and keep it constant, thus the final cumulative wealth  
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 ( )

1 1

1 .
nd

iMarket
n t

i t
W

d = =

= ∑∏ s                         (6) 

Both OLMAR [10] and RMR [8], which keep a moderate attitude, use the 
mean reversion phenomenon to predict the future asset prices. OLMAR points 
out that the future asset prices would recover to historical moving average and 
proposed the exponential moving averages (EMA). The EMA exploits all histor-
ical price information to achieve price prediction. The specific representation of 
EMA is as follow:  

 

( ) ( ) ( ) ( )
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( )
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, 1

1 1
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− −
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+ −
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= + −
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s
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s
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1

1

           (7) 

where tEMA  represents the previous EMA and 1  is a d-dimensional vector 
with components of 1. 0 1α< <  is a decaying factor and ts  is the real price 
relative on the tth period. 

When expanding tEMA , then  

 

( )
( ) ( )

( ) ( )
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             (8) 

as a result, EMA really makes full use of all historical prices and gives lager 
weight to more recent price information. 

Unlike OLMAR, RMR no longer uses the simple mean, but instead exploits 
the robustness of L1-median [26] [27] to predict the future asset prices. Statisti-
cally speaking, the L1-median has a more attractive property than the simple 
mean because it’s breakdown point is 0.5, meaning that when 50% of the points 
in the data set are pollution values, the L1-median can take values that exceed all 
boundaries. A higher the breakdown point means a more stable estimator, and 
the breakdown point of the simple mean is 0. The corresponding future price 
relative of RMR is  

 
( )1 1

, 1 ,t
L t

t

L med ω+
+ =s

q
                        (9) 

where  

 ( ) 1
1 1 0arg min ,k

t t iiL med
µ

ω µ−
+ −=

= −∑ q                (10) 

where ⋅  represents the Euclidean norm. 
OLMAR and RMR exploit the same optimization approach to update strate-

gies as follows:  

 2
1 1

1ˆ ˆarg min , s.t 0.
2d

t t t
v

εΤ
+ +

∈∆
= − ≥ >v v v v s              (11) 
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EMA and L1-median essentially exploits the principle of mean reversion. They 
are cautious in their price prediction. However, there are plenty of evidence in 
real financial markets that irrational investment can keep prices trends. There-
fore, the importance of trend-following strategies should not be ignored. In real 
financial markets, most investors profit from rising prices. So they are more 
concerned about recent maximum prices. PPT system suggests using the PPs 
from different asset prices within a time window [6].  

1 0 1
max , 1,2, ,i i

t t kk
i d

ω+ −≤ ≤ −
= =q q

  

 1
, 1 ,t

P t
t

+
+ =

q
s

q


                          (12) 

and , 1P t+s  can also be understood as the growth potential of the assets. 
EMA and L1-median belong to the trend-reversing, both of which are con-

servative and moderate investment strategies. In contrast, PP is an active and 
aggressive strategy as it belongs to the trend-following. Depending on the finan-
cial environment, sometimes aggressive strategies are needed to achieve high re-
turns, while sometimes moderate strategies are needed to avoid risks. All of 
these motivate us to construct a comprehensive price prediction system that can 
effectively integrate the advantages of different strategies.  

3. A Comprehensive Price Prediction Based on Inverse  
Multiquadrics Radial Basis Function  

3.1. Novel RBF System Based on IMQ Function  

The classical expression of RBF system is as follow:  

 

( ) [ ]

( )

1 2

2

2

, , , ,

exp
2

H

h
h

h

ψ ψ ψ

ψ
σ

Τ= =

 − −
 =
 
 

y Q x

x
x

ψ ψ

ρ                   (13) 

where x  and y  are input and output respectively, d H×∈Q   represents the 
weight matrix of the RBF system, d is the dimension of output, ψ  is a vector 
composed of GA radial basis function, both hρ  and 2

hσ  are the center points 
and the scale parameters of the GA function, respectively. Note that 2

hσ  reflects 
the width of the function image. 

Besides GA, IMQ is another radial basis function that cannot be ignored. Here, 
a novel RBF system based on IMQ radial basis function is constructed, that is  

 
( ) [ ]

( )

1 2

2 2

, , , ,
1

H

h

h h

ψ ψ ψ

ψ
σ

Τ= =

=
− +

y Q x

x
x

ψ ψ

ρ

                  (14) 

There is a theoretical basis for this improvement. GA and IMQ are essentially 
the same and both are positive definite functions [28]. However, in practical ap-
plication, IMQ performance is more stable and better than GA [14] [19]. 

As for the formula in this paper, H price prediction strategies are denoted as 

https://doi.org/10.4236/am.2021.1212076


M. M. Zheng 
 

 

DOI: 10.4236/am.2021.1212076 1195 Applied Mathematics 
 

{ }, 1 1

H
h t h+ =

s . In this paper, three typical price prediction strategies are integrated, 
namely , 1E t+s , , 1L t+s  and , 1P t+s  in formula Equation (7), Equation (9) and Eq-
uation (12), corresponding to 3H = . The next step is to determine the input 
x  and the center hρ . First, all price prediction strategies { }3

, 1 1h t h+ =
s  serve as 

the centers of novel RBF system. Secondly, projection operation is exploited to 
get qualified portfolio , 1h t+v , and then choose the strategy with the best perfor-
mance as the input. The specific methods are as follows:  

 
2

, 1 , 1arg min , 1,2,3
d

h t h t h+ +
∈∆

= − =
s

v s s                 (15) 

 , 1 ,0 11 3
arg min min ,t h t k t kkh ω

Τ
∗ + − −≤ ≤ −≤ ≤

=s v s                   (16) 

where d∆  is defined as Equation (2) in Equation (15), ,h t k t k
Τ

− −v s  represents the 
increasing factor of the hth price prediction strategy of the ( )t k− th period and 

t k−s  is the actual price relative generated by Equation (1). The method is firstly 
transformed { }1, 1 2, 1 3, 1, ,t t t+ + +s s s    onto a d-dimensional simplex [31]. Then it ex-
ploits { } 1

, 0

w
h t k k

−

− =
v  generate the increasing factors to evaluate the investing per-

formance and select the input , 1t∗ +s  of the novel system. The essence of , 1t∗ +s  
is select the best-performing strategy, where the best-performing strategy means 
that it can get the highest return even in the worst financial environment. The 
general process is that the smallest increasing factors of each strategy is selected 
within a time window, and then the largest increasing factor is selected from a 
set composed of the smallest increasing factors. This approach ensures that we 
get the best price prediction strategy in the worst trading environment, which is 
the key to improving the overall robustness of the system. 

In the novel RBF system mentioned in Equation (14), all qualified portfolios 
calculated by Equation (15) serve as centers of the novel RBF system, and the 
best strategy , 1t∗ +s  serves as fixed inputs. The specific form of novel RBFs in 
Equation (14) is transformed into  

 

( ) [ ]

( )
1 1 , 1 1 2 3

, 1 2 2
, 1 , 1

, , ,

1 , 1, 2,3

t t t

h t

t h t h
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ψ ψ ψ

ψ
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+ + ∗ +

∗ +

∗ + +

∆ = =

= =
− +

v S s

s
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ψ ψ

            (17) 

where 1t+∆v  represents the updated increment of the portfolio on the ( )1t + th 
period and 3

1 1, 1 2, 1 3, 1, , d
t t t t

×
+ + + + = ∈ S s s s

     is equivalent to the weight matrix. 
The reason for this representation of 1t+∆v  will be explained in the later Section 
3.3. From the above formula, it can be seen that the system quantifies the simi-
larity degree between , 1t∗ +s  and , 1h t+v . If , 1h t+v  is close to , 1t∗ +s , then the 
function hψ  will increase, and , 1h t+s  will amplify its influence on the incre-
ment 1t+∆v . With the change of the time t, the input , 1t∗ +s  also changes be-
tween different strategies in order to adapt to the latest changes in the financial 
environment. 

The proposed novel RBF system in Equation (17) is different from in Equa-
tion (13) in many different ways which are mainly reflected in the problem set-
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ting, data characteristics and the selection of radial basis functions.  
1) The centers { }hρ  in Equation (13) are obtained by minimizing the error 

of fitting y . While the centers { }, 1h t+v  in Equation (17) represent the corres-
ponding price prediction strategies.  

2) Although the inputs of those two RBF systems are fixed, , 1t∗ +s  is deter-
mined by the recent investing performance of all prediction strategies. This 
means that each price prediction strategy is likely to be an input.  

3) The basis functions of those two RBF systems are different. The system in 
Equation (13) uses Gaussian radial basis function, while Equation (17) uses the 
IMQ radial basis function.  

4) The objective of Equation (13) is to fit y . So the back-propagation me-
thods can be used to solve the problem [29] [30]. However, the objective of Equ-
ation (17) aims to maximize the generalized increasing factor and the solution 
method is different from Equation (13).  

3.2. Comprehensive Price Prediction System  

In order to apply the theory to practice, the next step is to construct a PS model 
using the proposed novel RBF system. As described in Section 2.1, in order to 
obtain better investing performance, the increasing factor 1 1t t

Τ
+ +v s  should be 

maximized when price information of t periods is known. Although the price 
relative 1t+s  is unknown, we can use the price prediction strategy { }, 1h t+s  to 
generate the future price relative. In addition, the novel RBF system can be ex-
ploited to construct a generalized increasing factor as follow:  

 

( ) ( )

( )

1 1 3

1 1, 1 2, 1 3, 1

arg max ,

, , ,

ˆs.t. , , 0,

t t

t t t t

d t

tr
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ε ε

Τ Τ
+ +

+ + + +

= =

 = =  
∈∆ − ≤ >

v
v V S V v

S s s s

v v v





  

1

ψ

Ψ

Ψ                (18) 

where tr is the trace operator, V  is an 3-dimensional vector with component 
v , Ψ  is a diagonal matrix with ψ  as diagonal elements, 1t+S  is a matrix 
composed of 3 predicted future price relatives, and 31  is an 3-dimensional vector 
with elements of 1. Notice the difference between 31  here and d-dimensional 
1 , and the v  and v̂  are different vectors. The constraints of v  make it act 
as a qualified portfolio and within a distance ε  from ˆtv . 

Compared with the classical form of the increasing factor 1t
Τ

+v s  in PPT [6], 

( )1ttr +V SΨ  can be considered as a generalized increasing factor. Because 

( )1ttr +V SΨ  includes Ψ  as the kernel to adjust the influence of different price 
prediction strategies. Strategy with the best performance , 1t∗ +s  given it the larg-
est influence, while other strategies { }, 1h t+s  have the less influence and the 
magnitude of influence measured by their similarity to , 1t∗ +s . 

Inspired by the gradient projection principle [6] [8] [10] [31], when solving 

1t+v , the simplex constraint of v  is firstly relaxed to only consider 1Τ =v1 , 
and then the result is projected onto the simplex. And make ˆt= −u v v  here, 
then Equation (18) can be further converted into  
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U u v v u

 1

1

Ψ
             (19) 

the reason for this simplification is that ˆtv  is fixed and ˆ 0t
Τ Τ Τ= − =u v v1 1 1 . 

Therefore, the optimization goal is now switching from 1t+v  to the update in-
crement 1t+u . 

3.3. Solution Algorithm  

In this subsection, the solution algorithm of CPP is introduced in detail, which 
has briefly concluded in Proposition 1. It is worth noting that our solution is 
suboptimal, not only because there is a certain bias in estimating the future with 
historical data but also to avoid over-fitting. So it’s not necessary to get the op-
timal solution.  

Proposition 1. If ( )1 3
1 0td

Τ
+

  − ≠  
  

I S11 1Ψ , the unique solution of Equa-

tion (19) is  

 
( )

( )

1 3

1

1 3

1

,
1

t

t

t

d

d

ε Τ
+

+
Τ

+

 − 
 =
 − 
 

I S
u

I S





11 1

11 1

Ψ

Ψ
                   (20) 

note that if ( )1 3
1 0td

Τ
+

 − = 
 

I S11 1Ψ , we make 1 0t+ =u . 

Proof. The first step is to prove that 1t+u  satisfies all constraints in Equation 
(19), that is  

 1 1t+ =u                            (21) 
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So 1t+u  satisfies the two constraints. The second step is to prove that the op-
timization problem in Equation (19) maximizes at 1t+u . By contradiction we 
suppose that there exists û  that satisfies all constraints and  

 ( ) ( )1 1 1
ˆ ,t t ttr trΤ Τ

+ + +>U S U S Ψ Ψ                   (23) 

where 3
ˆ ˆ=U u1 , 1 1 3t t+ +=U u 1 . 

On the one hand, the right side of the Equation (23) can be converted to  

 ( ) ( ) ( )1 1 1 3 1 3 1 1 3 1 1t t t t t t t ttr tr trΤ Τ Τ Τ Τ Τ Τ
+ + + + + + + += = =U S u S S u S u   1 1 1Ψ Ψ Ψ Ψ   (24) 
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Note that 3 1 1t t
Τ Τ

+ +S u1 Ψ  is a scalar. 
Then we substitute 1t+u  into the scalar  
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The second equation is derived from the idempotent of 1
d

Τ − 
 

I 11 . 

On the other hand, the left side of the Equation (23) can be converted to  
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The inequality is derived from Cauchy-Schwarz inequality. 
Take Equation (23), Equation (25) and Equation (26) into consideration, we 

have  

 ( )1 3 13
1 1 ˆt td d

ε Τ Τ Τ Τ
+ +

   − < −   
   

I S S I u 11 1 1 11Ψ Ψ           (27) 

Hence, we can deduce ˆ ε<u . This contradicts ˆ ε≤u . It is proved that the 
optimization problem in Equation (19) obtain the maximum at 1t+u  

Finally, we prove that the solution 1t+u  is unique. If 1t+u  is not the only so-
lution, then there must be another optimal solution 1t∗ +≠u u , and  

 ( ) ( )3 1 1 1 1 1 3 1t t t t t ttr trΤ Τ Τ Τ Τ Τ
+ + + + ∗ + + ∗= = =S u U S U S S u   1 1Ψ Ψ Ψ Ψ        (28) 

This shows that 1t∗ +u u . So the Cauchy-Schwarz inequality is strict  

 3 1 3 1 3 1
1 1

t t td d
Τ Τ Τ Τ Τ Τ Τ Τ

+ ∗ + ∗ + ∗
   = − < −   
   

S u S I u S I u  1 1 11 1 11Ψ Ψ Ψ    (29) 

According to Equation (25) and Equation (29), we obtain ε∗ >u . This con-
tradicts the constraint ε∗ <u . 

To sum up, we can get that 1t+u  is the optimal and unique solution of opti-
mization problem in Equation (19).                                   □ 

Regarding Proposition 1, the update increment  

 ( )1 1 13
1 1 ,t t td dε ε

Τ Τ
+ + +

      = − = −      
      

u I S I S  11 1 11 ψΨ     (30) 
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where ε  is a mapping projected onto the ε -Euclidean ball. Compared with 
Equation (17), in order to satisfy the constraint conditions in Equation (19), 

1t+u  adds two operators on the basis of 1t+∆v . Thus, this is also explains why 
the update increment of the portfolio is represented as Equation (17). 

Then, the portfolio 1ˆt+v  on the next period is shown as follows:  

 
1 1

2
1 1

ˆ

ˆ arg min .
d

t t t

t t

+ +

+ +
∈∆

= +

= −
v

v v u

v v v                     (31) 

The complete CPP system is outlined in Algorithm 1. CPP is a fast algorithm 
because it only uses ordinary matrix calculation without any iterative calculation, 
which significantly reduces the operation time. 

4. Experiments  
4.1. Data Sets and Comparison Approaches  

In this subsection, in order to comprehensively assess the performance of sys-
tems, a large number of experiments were carried out on four data sets, namely 
NYSE(N), DJIA, SP500 and HS300. In fact, they contain the daily price relatives 
of assets, originating from the New York Stock Exchange, Dow Jones Industrial 
Average, Standard & Pool 500 and China Stock Index 300, respectively. These 
data sets have larger assets scales and long time spans. So they can be used to as-
sess the investing performance of systems. The details of these data sets are in-
troduced in Table 1. 
 
Table 1. Summary of 4 benchmark data sets from real-world financial market. 

Dataset Region Time Periods Stocks 

NYSE(N) US 1/1/1985-30/6/2010 6431 23 

DJIA US 14/1/2001-14/1/2003 507 30 

SP500 US 2/1/1998-31/1/2003 1276 25 

HS300 CN 21/1/2006-16/10/2017 421 44 

 
Algorithm 1. The whole CPP system. 
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Six commonly used PS systems are introduced, namely RMR, OLMAR, PPT, 
TRLR [32], SSPO [33] and AICTR [34], to compete with CPP that we proposed. 
A detailed descriptions of these systems are as follow.  

1) RMR: RMR uses L1-median to make price prediction as describled in Sec-
tion 2.2.  

2) OLMAR: OLMAR uses the moving averages to make price prediction, which 
are described in Section 2.2.  

3) PPT: PPT is an aggressive strategy that uses the maximum values of differ-
ent assets to make price prediction as mentioned in Section 2.2.  

4) TRLR: TRLR [32] is a novel trend representation strategy. It exploits weighted 
ridge regression to represent the price trend pattern with time t as a variable, 
which improves the efficiency of the price prediction.  

5) SSPO: SSPO [33] is an aggressive strategy and concentrates wealth on a 
small number of assets by taking advantage of the inherent sparsity of assets to 
maximize the final CW.  

6) AICTR: AICTR [34] is a composite trend tracking system using Gaussian 
basis function.  

In order to ensure the performance of these systems, the parameter settings of 
these systems are consistent with the default settings in the original paper [6] [8] 
[10] [32] [33] [34]. RMR: 5ω = , 5ε = ; OLMAR: 0.5ν = , 10ε = ; PPT: 

5ω = , 100ε = ; TRLR: 5ω = , 1 0.1q = , 0.7λ = , 0.3σ = , 40000η = ; SSPO: 
5ω = , 0.01γ = , 0.5λ = , 0.005η = , 500ζ = ; AICTR: 5ω = , 2 0.0025hσ = , 
1000ε = . Note that for consistency, all time window sizes are set to 5ω = . In 

the experiments, the portfolio vector is initialized to ( )1 1 d=v 1 . 
In general, the parameters of CPP are determined based on the results of final 

cumulative wealth (CW), operating in the same way as previous studies. The 
calculation of final CW is described in detail in Section 2.1. First, we set the 
window size 5ω = , which is widely used and consistent with other systems. 
Secondly, we change one parameter to fix the other parameters for the experi-
ments. Since ε  is the updating strength, it is roughly estimated to be larger 
value, while 2

hσ  is a parameter used to evaluate the difference between two 
portfolios, it should be a small value. On the one hand, we firstly set 5ω = , 

1400ε = , and then set 2
hσ  change between 0.0007 and 1.0012. According to the 

results in Figure 1, the investing performance of CPP around 2 0.0008hσ =  is 
stable and good. On the other hand, we firstly set 5ω = , 2 0.0008hσ =  and 
then make ε  change between 1200 and 1700. The results are shown in Figure 
2 and we know that CPP is stable and good around 1400ε = . Therefore, the 
parameters of CPP are set as: 2 0.0008hσ = , 1400ε = . 

4.2. Experimental Results 

In this paper, a scheme containing seven evaluation indicators are designed to 
assess the performance of different systems and achieve the most excellent re-
sults. These seven indicators can be roughly divided into three categories, namely 
investing performance, risk metrics and application issues. Investing performance  
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Figure 1. Final CWs of CPP in regard to 2

hσ  on four data sets (fixed 5=ω , 1400=ε ). 
(a) NYSE(N), (b) DJIA, (c) SP500, (d) HS300. 
 

 
Figure 2. Final CWs of CPP in regard to ε  on four data sets (fixed 5=ω ,  

2 0.0008h =σ ). (a) NYSE(N), (b) DJIA, (c) SP500, (d) HS300. 

 
includes CW, mean excess return (MER) and α  Factors. Risk metrics consist 
of sharpe ratio (SR) and information ratio (IR). As for application issues, we 
chose transaction cost and running times to assess them. Those indications will 
be discussed in the following subsection. 

4.2.1. Investing Performance 
1) CW: The final CWs are the primary consideration in evaluating a system. 

Without taking transaction into account, the results of CWs for various systems 
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mentioned in Section 4.1 are shown in Table 2. CPP outperforms seven com-
monly used systems on three data sets and ranks third on NYSE(N). For exam-
ple, CPP(4.74, 18.05) is significantly higher than PPT(3.08, 10.78), TRLR(2.71, 
13.17) and OLMAR(1.16, 9.59), respectively. In addition, DJIA is a challenging 
data set because many systems do not perform well in this data set, such as PPT, 
and OLMAR. But CPP can reach a value of 4.74, which is 53.90% higher than 
PPT. These results shows that CPP is an effective PS system and can accumulate 
more wealth in the real financial market. 

In order to show the superiority of the system CPP, the CWs of each system 
on DJIA is plotted in Figure 3. By observing the Figure 3, the excellent investing 
performance of CPP can be shown more intuitively.  

2) MER: Return is a financial term that describes the proportion of wealth by a 
PS system gained or lost over one investing period. In this paper, the daily return  
 
Table 2. Final CWs and MERs of different PS systems on 4 data sets. 

System 
NYSE(N) DJIA SP500 HS300 

CW MER CW MER CW MER CW MER 

RMR 3.25E+8 0.0032 2.67 0.0029 8.28 0.0019 1.35 0.0001 

OLMAR 4.69E+8 0.0032 1.16 0.0012 9.59 0.0020 1.20 0.0001 

PPT 2.89E+9 0.0036 3.08 0.0031 10.78 0.0022 1.09 −0.0004 

TRLR 2.29E+9 0.0035 2.71 0.0030 13.17 0.0023 1.34 0.0001 

SSPO 1.62E+9 0.0035 3.68 0.00036 16.97 0.0025 1.08 −0.0004 

AICTR 7.66E+8 0.0033 4.17 0.0038 14.22 0.0024 1.42 0.0003 

CPP 1.67E+9 0.0034 4.74 0.0041 18.05 0.0025 1.48 0.0004 

 

 
Figure 3. Daily CWs of different PS systems on DJIA. 
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on the tth period is ˆ 1t t tr Τ= −v s . MER [35] is an indicator that computes the 
long-term average daily excess return of attended PS systems  

 ( ), ,
1

1MER ,
n

s m s t m t
t

r r r r
n =

= − = −∑                   (32) 

where ,s tr  and ,m tr  present the daily returns of attended PS system and the 
market baseline on the tth period, respectively. Note that, the UBAH system is 
defined as the market baseline. 

The MER results from various PS systems are described in Table 2. CPP ob-
tains the largest MER on three data sets and ranks third on NYSE(N). For in-
stance, CPP(0.0041, 0.0004) is significantly higher than PPT(0.0031, −0.0004), 
OLMAR(0.0012, 0.0001) and TRLR(0.0030, 0.0001) on DJIA and HS300 respec-
tively. In addition, a small MER gap is likely to produce a lager CW gap in the 
long-term. Therefore, the above results demonstrate that CPP can achieve an 
outstanding investing performance.  

3) α  Factor: MER measures the investing performance of a PS system with-
out considering market risks. However, in the real financial market, the volatility 
of the market will undoubtedly affect the performance of assets. Capital asset 
pricing model(CAPM) [36] points out that the expected return sources of PS 
systems can be divided into two parts: the first part comes from the market re-
turn, and the second comes from the inherent excess return, also called α  
Factor [37] [38]. Therefore, α  Factor able to evaluate the investing perfor-
mance of different PS systems:  

 ( ) ( ) ( )
( )2

ˆ ,ˆ ˆˆ, ,
ˆ

s m
s m s m

m

c r r
E r E r r r

s r
α β β α β= + = = −            (33) 

where ( )E ⋅  is the mathematical expectation of the sample data, and ( )ĉ ⋅  and 
( )ŝ ⋅  are covariance matrix and standard deviation calculated from the daily re-

turn of n trading days, respectively. 
The α  Factor results from all PS systems mentioned are presented in Table 

3. CPP achieved the highest α  on three data sets and ranked second on the 
NYSE(N). For example, CPP (0.0042, 0.0002) achieves a higher α , compared  
 
Table 3. α  Factors (with p-Values of t-tests) of different PS systems on four data sets. 

System 
NYSE(N) DJIA SP500 HS300 

α  Factor p-Value α  Factor p-Value α  Factor p-Value α  Factor p-Value 

RMR 0.0031 <0.0001 0.0030 0.0054 0.0018 0.0102 −4.5e−5 0.5261 

OLMAR 0.0031 0.0000 0.0013 0.1366 0.0019 0.0082 −0.0003 <0.0001 

PPT 0.0035 <0.0001 0.0034 0.0024 0.0020 0.0065 −0.0005 0.7465 

TRLR 0.0035 <0.0001 0.0031 0.0043 0.0022 0.0039 0.0001 <0.0001 

SSPO 0.0034 <0.0001 0.0037 0.00009 0.0024 0.0019 −0.0005 <0.0001 

AICTR 0.0032 <0.0001 0.0039 <0.0001 0.0022 0.0027 6.8e−5 0.4638 

CPP 0.0034 <0.0001 0.0042 <0.0001 0.0024 <0.0001 0.0002 <0.0001 
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with RMR(0.0030, −4.5E−5), PPT(0.0034, −0.0005), OLMAR(0.0013, −0.0003) 
and TRLR(0.0031, 0.0001) on DJIA and HS300, respectively. The above results 
show that CPP is still able to achieve higher inherent excess return in the face of 
market volatility. In addition, the statistical t-test is used to determine whether 
α  is significantly lager than 0, proving that the inherent excess return is not 
achieved by luck. The results of p-value presented in Table 3 and the α  of CPP 
is significantly lager than 0 at a high confidence level of 99% (with all p-values < 
0.01). It shows that CPP achieves good inherent excess returns and the obtained 
results are not the result of luck.  

4.2.2. Risk Metrics 
1) Sharpe Ratio: In the real financial market, risks and returns coexist, and high 

excess returns often mean high risks. Wise investors will balance returns and 
risks before investing. Sharpe proposed SR [36] [39] to measure risk-adjusted 
return  

 
( )

SR
ˆ
s f

s

r r
s r
−

=                           (34) 

where fr  is the return of risk-free assets, and sr  and ( )ˆ ss r  are the average 
return and the standard deviation calculated from the daily return of n periods 
respectively. Note that, this article don’t consider risk-free assets. So let 0fr = . 

The results of SR for various PS systems are presented in Table 4. CPP stands 
out among commonly used systems and achieves the highest SR on all data sets. 
For example, CPP(0.1076, 0.0599) achieves the highest SR compared to AICTR 
(0.0995, 0.0555), OLMAR(0.0252, 0.0353), and SSPO(0.0919, 0.0192) on DJIA 
and HS300 respectively. The above results prove that CPP has an excellent abili-
ty to balance return and risk compared with commonly used systems.  

2) Information Ratio: Unlike SR, IR [40] does not directly measure the risk- 
adjusted excess return of a system, but measures it compared to the Market  

 
( )

IR
ˆ

s m

s m

r r
s r r

−
=

−
                         (35) 

 
Table 4. SRs and IRs of different PS systems on four data sets. 

System 
NYSE(N) DJIA SP500 HS300 

SR IR SR IR SR IR SR IR 

RMR 0.1033 0.0953 0.0763 0.1092 0.0600 0.0678 0.0473 −0.0061 

OLMAR 0.1050 0.0970 0.0252 0.0457 0.0682 0.0700 0.0353 0.0001 

PPT 0.1087 0.1008 0.0821 0.1176 0.0699 0.0728 0.0207 −0.0255 

TRLR 0.1086 0.1004 0.0750 0.1091 0.0738 0.0777 0.0463 0.0001 

SSPO 1.1060 0.0035 00919 0.00036 0.0791 0.0025 0.0192 0.0079 

AICTR 0.1056 0.0979 0.0995 0.1364 0.0763 0.0810 0.0555 0.0181 

CPP 0.1087 0.1012 0.1076 0.1471 0.0818 0.0872 0.0599 0.0259 
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The results of IR are presented in Table 4. CPP obtains the highest IR among 
commonly used systems on all data sets. For example, CPP(0.1012, 0.1417) out-
performs AICTR(0.0979, 0.1364), PPT(0.1008,0.1176), OLMAR(0.0970, 0.0457), 
RMR(0.0953, 0.1092) and SSPO(0.0979, 0.1304) on NYSE(N) and DJIA respec-
tively. Therefore, CPP is a robust system, which can obtain good excess returns 
and able to control risks effectively.  

4.2.3. Application Issues 
1) Transaction Cost: In the real-world financial environment, the transaction 

cost is a problem that cannot be ignored. Suppose that the transaction cost rate 
required to update the portfolio denoted as ( )0,1γ ∈ . The proportional trans-
action cost model [8] [10] [41] assumes that the final CW at the beginning of the 
tth period can be expressed as  

( ) ( )
0 11

1

ˆ ˆ1
2

dn ii
n t t t tt

i
W Wγ γΤ

−=
=

  = × − −  
  

∑∏ v s v v  

( )
( ) ( )

1 1
1

1 1

ˆ
ˆ

i i
i t t

t
t t

− −
− Τ

− −

∗
=

v s
v

v s
  

where ( )
1

i
t−v  represents the adjusted portfolio of the tth asset at the end of the 

( )1t − th period and let 0 0=v . ( )
11

ˆ
2

d ii
t ti

γ
−=

  − 
 

∑ v v  stands the proportional  

transaction cost used to update portfolios from the adjusted portfolio to the next 
portfolio tv . 
 

 
Figure 4. Final CWs of different PS systems in regard to transaction cost rate γ  on four 
data sets. (a) NYSE(N), (b) DJIA, (c) SP300, (d) HS300. 
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In the case of considering transaction costs, in order to better assess the in-
vestment performance of CPP, we let γ  change between 0% and 0.5% and carry 
out experiments to calculate the final CWs of different commonly used systems. 
The results are presented in Figure 4. CPP achieves the highest CW on all data 
sets when the transaction cost rate γ  fluctuates between 0% and 0.15%. In addi-
tion, even when γ  reaches a high value ( 0.15% 0.5%γ≤ ≤ ), CPP still outper-
forms other PS systems on three data sets. Therefore, it shows that CPP can bear 
moderate transaction costs and can be applied in real world financial markets.  

2) Running Times: Running Time is an important indicator to judge whether 
a system can be applied in a large-scale and time-limiting environment, such as 
High-Frequency Trading (HFT) [42]. We use a regular computer equipped an 
Intel Core i5-8250U CPU and 8GB DDR4 2400 MHZ memory card to perform 
CPP in the experiments. The average running times of CPP for one trading pe-
riod are 1.751e−4, 1.876e−4, 1.936e−4 and 1.876e−4 on NYSE(N), DJIA, SP500 
and HS300, respectively. Therefore, CPP has good computational efficiency and 
can be applied in large-scale financial markets.  

5. Conclusion  

In this paper, we proposed a new CPP system based on IMQ radial basis func-
tion with an integration of three different aggressive and moderate strategies 
for effective and robust PS. Instead of using a traditional GA function, here we 
chose a more stable and accurate function that is IMQ for the novel RBF system, 
which centers on multiple strategies. With regard to portfolio update, different 
from the traditional increasing factor, we propose a generalized growth factor 
based on a kernel and trace operation. And CPP is fast and can be applied in 
larger scale and limited time financial environment. Extensive experiments are 
performed on 4 worldwide benchmark data sets to indicate that CPP can effec-
tively integrate the advantages of different strategies and it was proved to be ef-
fective in PS. On the one hand, in most cases CPP outperforms other common-
ly used systems in performance indicators CW, MER and α  Factor. On the 
other hand, CPP achieves the highest SR and IR compared with other systems. 
The results show that CPP has not only excellent investing performance but al-
so good risk control ability. In addition, CPP can withstand reasonable transac-
tion costs and fast operation, which have to be considered in the real financial 
market. In conclusion, CPP is an efficient and robust PS system and deserves 
further investigation. Of course, the CPP system has its own shortcomings. On 
one hand, the problem of reducing transaction cost was not considered at the 
initial stage of modeling. On other hand, this paper considers only the three 
strategies. In the future, we can improve the performance of the system from 
these two aspects. 
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