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Abstract

The determination of the relation between a number and a numerical interval is one of the

core problems in the scientific calculation of privacy protection. The calculation of the rela-

tionship between two numbers and a numerical interval to protect privacy is also the basic

problem of collaborative computing. It is widely used in data queries, location search and

other fields. At present, most of the solutions are still fundamentally limited to the integer

level, and there are few solutions at the real number level. To solve these problems, this

paper first uses Bernoulli inequality generalization and a monotonic function property to

extend the solution to the real number level and designs two new protocols based on the

homomorphic encryption scheme, which can not only protect the data privacy of both parties

involved in the calculation, but also extend the number domain to real numbers. In addition,

this paper designs a solution to the confidential cooperative determination problem between

real numbers by using the sign function and homomorphism multiplication. Theoretical anal-

ysis shows that the proposed solution is safe and efficient. Finally, some extension applica-

tions based on this protocol are given.

Introduction

With the rapid development of Internet technology, especially the rapid rise of big data com-

puting, blockchains, artificial intelligence and other technologies, collaborative computing

occupies an increasingly important position in humans’ daily work and learning. However,

while the users are assisting in completing some computations, the need for the privacy and

security of the data information of each cooperative participant is particularly urgent. Secure

Multiparty Computation (SMC) was first proposed by A.C. Yao in 1982 in [1]. In [2], the the-

ory of SMC has been further developed and laid its theoretical foundation. Secure multiparty

computation mainly solves the problem that in a multiuser network in which users do not

trust each other, each user can cooperate to perform a reliable computing task without disclos-

ing their own private input information [3]. Therefore, secure multiparty computation has

become a research hotspot in the field of cryptography in recent years [4] and is a core technol-

ogy that can solve the collaborative computing problem to protect data information privacy.
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In fact, it is impractical to use general protocols to solve some special instances in secure

multiparty computation. In order to achieve high efficiency, some special methods are needed

for some special problems [5]. In recent years, secure multiparty computation technology has

been introduced by many scholars to the traditional fields of scientific computing, data min-

ing, computational geometry, information retrieval and statistical analysis. Thus, new research

directions, such as the correlation of protecting private information [6], privacy preserving

cooperative scientific computations [7–9], Privacy Preserving Data Mining (PPDM) [10, 11],

Privacy Preserving Computation Geometry (PPCG for short) [12–15], Private Information

Retrieval (PIR) [16], Privacy Preserving Statistical Analysis (PPSA) [17], and the question of

preserving the data ranking of private information [18–20], and secure multiparty quantum

computation [21, 22] are generated, thus solving some important security application

problems.

The relationship between and between numerical values is the core of the scientific compu-

tational problem of privacy protection. In reference [23], with the help of the theory of compu-

tational geometry, the input rational number or interval endpoint is taken as the straight line

slope passing through the origin in the coordinate system, the problem of interval confidential

calculation is transformed into the problem of a positional relation judgment between straight

lines, and a solution providing a rational number and a rational interval confidential calcula-

tion is proposed. In reference [8], the positional relationship between rational numbers and

rational intervals is transformed into other problems with the help of polynomials. It converts

the problem into an integer vector to solve the issues of previous studies, which are confined

to the rational number level and are still converted to an integer to solve. There are some limi-

tations. The research purpose of this paper is to use the new technique to solve the decision

problem of the relationship between the real and the real number interval and expand the real

number level while improving the efficiency of the protocol. Furthermore, a new solution to

the confidential cooperative determination problem between real numbers is designed by

using the sign function and homomorphism multiplication.

Contributions of this paper

First, by combining Bernoulli inequality generalization with a monotonic function, the scope

of the data size comparison with privacy protection is extended to real numbers. In addition,

before collaborative comparison calculation, by means of the Bernoulli inequality extension

technique, the numerical range of real numbers to be compared is reduced to the interval level,

and the addition and decryption operations are reduced. Based on the ElGamal encryption

system and Paillier encryption system, this paper constructs a real number size comparison

protocol.

Second, using symbolic functions and homomorphic encryption systems, an efficient coop-

erative decision protocol for confidentiality between real numbers is designed with certain

techniques. Finally, the protocol is designed and applied to solve the problem of confidential

data queries and the problem of confidential cooperative relationships between real numbers.

Structure of this paper

Section 2 of this paper introduces the preparatory knowledge. In section 3, the designed proto-

col solves the problem of the collaborative calculation of the size comparison between real

numbers to protect privacy. Section 4 designs a real number and the relationship between the

real number confidentiality collaborative determination protocol. In section 5, the correctness

and security of the protocol are analyzed, and simulation examples are used to prove that the

protocol is secure. Section 6 analyzes the performance of the protocol, and Section 7 presents

PLOS ONE Collaborative calculation and application of interreal and real interval relations to protect privacy

PLOS ONE | https://doi.org/10.1371/journal.pone.0261213 December 14, 2021 2 / 15

https://doi.org/10.1371/journal.pone.0261213


the specific extended applications of the three protocols. Section 8 summarizes this paper and

forecasts future research directions.

Preparatory knowledge

Security definition

Semihonest participant [24]: In the secure multiparty computation protocol, participants are

divided into three types according to their behaviors in the protocol: honest participants, semi-

honest participants and malicious participants. A semihonest participant in the implementation

of the protocol will follow the protocol process in an honest way, but he may be corrupted by the

attacker who discloses all his inputs, outputs and intermediate results to the attacker or deduces

the information beyond the protocol or that of others based on the information he possesses.

Protocol security under the semihonesty model: According to Goldreich’s study [24], since

the secure multiparty protocol under the semihonesty model can be transformed into the new

protocol under the malicious model in most cases, this paper only designs the protocol under

the semihonesty model and gives the corresponding security simulation examples.

Assume that the two parties involved in the calculation are Alice and Bob. Alice owns x and

Bob owns y. They need to cooperate in the calculation of function f(x,y) = (f1(x,y),f2(x,y)) on

the premise of ensuring the privacy of x and y. The purpose of the collaborative computation

is that Alice and Bob obtain the two components of f and of f1(x,y) and f2(x,y), respectively. Let

π represent the calculated protocol of f, and the information sequences obtained by Alice and

Bob during the implementation of the protocol are respectively recorded as:

viewp

1
ðx; yÞ ¼ ðx; r1;m

1

1
; � � � ;ms

1
; f1ðx; yÞÞg ð1Þ

viewp

2
ðx; yÞ ¼ ðx; r2;m

1

2
; � � � ;mt

2
; f2ðx; yÞÞg ð2Þ

where r1 and r2 represent the independent random numbers of Alice and Bob, respectively;

and mi
1
ði ¼ 1 � � � ; sÞ represents the ith message received by Alice. After the execution of proto-

col π, the output of Alice is denoted as f1(x,y). mj
2ðj ¼ 1 � � � ; tÞ represents the jth message

received by Bob. After the execution of protocol π, Bob obtains the output, which is denoted as

f2(x,y).

Definition: For protocol π that computes function f, the probabilistic polynomial time algo-

rithms S1 and S2 are as follows:

fS1ðx; f1ðx; yÞÞgx;y�
c
fviewp

1
ðx; yÞgx;y ð3Þ

fS2ðy; f2ðx; yÞÞgx;y�
c
fviewp

2
ðx; yÞgx;y ð4Þ

Therefore, π computes the function f confidentially, where�c is computationally

indistinguishable.

Therefore, in the calculation of the two sides in the process of those protocols, only infor-

mation from their input and output calculations can be obtained and the participants are

unable to obtain the other party’s privacy information, thus proving that multiparty computa-

tion protocols are safe. You need to construct (3) and (4) set up the simulators of S1 and S2,

respectively; therefore, the security method is called simulation examples.

Paillier homomorphic encryption system

The Paillier encryption system is specifically described as follows [25].
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Key generation: Select two large prime numbers p and q to calculate N = pq and λ = lcm(p
−1,q−1). Define function LðxÞ ¼ x� 1

N and randomly select a generator g 2 Z�N2 to make gcd(L
(gλ mod N2),N) = 1; then, the public key and private key of the encryption scheme are (g,N)

and λ, respectively.

Encryption process: For plaintext m<N, random number r<N is selected to calculate

ciphertext c = E(m).

c ¼ gmrNmodN2 ð5Þ

Decryption process: For ciphertext c, calculate plaintext m = D(c).

m ¼
LðclmodN2Þ

LðglmodN2Þ
modN ð6Þ

Additive homomorphism: Because the following property is true,

DðEðm1Þ � Eðm2ÞÞ

¼ Dðgm1rN
1
gm2rN

2
modN2Þ

¼ Dðgm1þm2ðr1r2Þ
NmodN2Þ

¼ ðm1 þm2ÞmodN;

ð7Þ

the Paillier encryption algorithm has additive homomorphism.

Homomorphic multiplication: Because the following property is true,

DðEðm1Þ
m2Þ

¼ Dðgm1m2rN
1
modN2Þ

¼ m1m2modN;

ð8Þ

the Paillier encryption algorithm has homomorphism multiplication.

ElGamal homomorphic encryption system

The ElGamal encryption system is described as follows [26].

Key generation: Select parameter k, generate a large prime number p of k bits and a genera-

tor g 2 Z�p , and randomly select g 2 Z�p as the private key; then, the corresponding public key

is h = gx mod p.

Encryption process: For plaintext m 2 Z�p , random number r is selected to calculate the

ciphertext.

c ¼ EðmÞ ¼ ðc1; c2Þ ¼ ðg
rmodp;mhrmodpÞ ð9Þ

Decryption process: For ciphertext c, calculate the plaintext m = D(c).

m ¼ c2 � c1
� x modp ð10Þ

Multiplicative homomorphism: Since the following property is true,

DðEðm1Þ � Eðm2ÞÞ

¼ Dððgr1 ;m1hr1Þ � ðgr2 ;m2hr2ÞÞ

¼ Dððgr1þr2 ;m1 �m2hr1r2ÞÞ

¼ ðm1 �m2Þmodp

ð11Þ

the ElGamal encryption algorithm has multiplicative homomorphism.
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Bernoulli inequality

The Bernoulli inequality is described as follows.

For any integer n and for any real number h, the following inequality holds:

ð1þ hÞn � 1þ nh; ðn 2 N�; h 2 R; h > � 1Þ ð12Þ

If n is positive and even, the Bernoulli inequality can be extended to any real number h2R,

that is:

ð1þ hÞn � 1þ nh; ðh 2 R; n is positive even numbersÞ ð13Þ

Identification: When h>−1, the original inequality shows that for any integer n, (1+h)n�1

+nh is true.

When h�−1, since n is even, (1+h)n�0, 1+nh�1−n<0, and (1+h)n�1+nh are true.

Therefore, when n is even, the range of h in (1+h)n�1+nh is any real number.

According to the promotion, we can derive the following two properties:

Property 1: For any real numbers x and y, n takes any even number. Then, if

y � 1þ x� 1

n

� �n
, y � 1þ x� 1

n

� �n
� 1þ n� x� 1

n ¼ x, that is, y�x.

Property 2: For any real numbers x and y, n takes any even number. Then, if

y � 1 � nþ nx1
n

� �
, y � 1 � nþ nx1

n
� �

� 1þ x1
n � 1

� �n
¼ x, that is, y�x.

Monotonic function

In general, let the domain of the function f(x) be I. Regarding the values of x1 and x2, for any

two independent variables belonging to an interval of I, when x1>x2, f(x1)>f(x2), and then f(x)

is an increasing function on this interval. When x1>x2, f(x1)<f(x2), and then f(x) is a negative

function on this interval.

Symbolic function

Set the function sign(m,n) as any two real variables m and n following the following rules:

signðm; nÞ ¼

1;m � n > 0

0;m � n ¼ 0

� 1;m � n < 0

8
>><

>>:

ð14Þ

The function is a symbol whose return value is the difference between the two real variables

involved in the operation.

Collaborative calculation of the size between real numbers to

protect privacy

Problem description and calculation principle

Problem description: Alice has a real number x and Bob has a real number y (Fig 1). Through

collaborative calculation, the two collaborative calculators can compare the size of the real

number data they hold without revealing their own data information.

Fig 1. The relation between real numbers x and y.

https://doi.org/10.1371/journal.pone.0261213.g001
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Calculation principle: For any two real numbers x and y, according to the generalization of

the Bernoulli inequality above, for any even number n, if y � t ¼ 1þ x� 1

n

� �n
, then y�x; and if

y � s ¼ 1 � nþ nx1
n

� �
, then y�x. In order to protect the data privacy, any positive even n

value passed by the protocol in each round later in this paper is randomly generated. For the

residual case, this paper uses a homomorphic encryption system to construct a monotonic

function containing the residual interval.

Specific protocol

Protocol 1. Collaborative calculation of the size between real numbers to protect privacy

Input: Alice has a real number x, and Bob has a real number y.

Output: The size comparison of x and y results in sign(x,y).

1. Alice sets a random positive even number n to construct t ¼ 1þ x� 1

n

� �n
. Then, Alice sends

it to Bob.

2. Bob calculates sign(t,y), that is, Bob compares the size of y and t and returns the result sign
(t,y) = -1. Then, the process ends. Otherwise, go to step 3.

3. Alice sets a random positive even number n0 to construct s ¼ 1 � n0 þ n0x
1
n0

� �
and then

sends it to Bob.

4. Bob calculates sign(s,y), that is, Bob compares the sizes of y and s and returns the result sign
(s,y) = 1. Then, the process ends. Otherwise, go to step 5.

5. Bob selects Paillier, a homomorphic encryption mechanism, to obtain (g,N) and λ. Then, he

encrypts his data value y to obtain ciphertext E(y), E(y2) and sends it to Alice.

6. Alice selects random numbers α, β and γ to construct the monotonic function containing

(s,x) in the defined domain, such as monotonic increasing function f(x) = αx2+βx+γ to cal-

culate f(s) and f(x). At the same time, Alice performs a homomorphism operation on the

received E(y), E(y2) to obtain ciphertext c = E(y2)α E(y)β E(γ) = E(αy2+βy+γ). Then, Alice

sends f(s), f(x) and c to Bob.

7. After Bob decrypts the ciphertext c received, he gets f(y); and then he compares the sizes of f
(s), f(x) and f(y). If f(s)�f(y)�f(x), output sign(x,y) = 1. Otherwise, output sign(x,y) = -1.

Protocol analysis: In the first four steps in the protocol, Alice constructs x into new values

t and s by selecting random positive even numbers, and then these are sent to Bob. On his

side, Bob simultaneously calculates the rules of the calculation result according to the symbol

function and returns the value. Therefore, those involved in the simultaneous calculations

of the two sides are unable to get any information on the other side. In the second part of the

protocol, Bob’s master private key and his own y value encryption will be sent to Alice, so

Bob’s information is not leaked to Alice. In addition, the monotonic function is constructed

and mastered by Alice, and Bob cannot solve the monotonic function according to f(s) and

f(x).

Next, we use the multiplicative homomorphism of the ElGamal encryption system to con-

struct a similar protocol to solve the problem of the collaborative calculation of the size com-

parison between real numbers that protect privacy.

Protocol 2. Collaborative calculation of the sizes of real numbers to protect privacy

Input: Alice has a real x, and Bob has a real y.

Output: Size comparison of x and y results in sign(x,y).
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1. Alice sets a random positive even number n to construct t ¼ 1þ x� 1

n

� �n
. Then, she sends it

to Bob.

2. Bob calculates sign(t,y), that is, Bob compares the sizes of y and t and returns the result sign
(t,y) = -1. Then, the process ends. Otherwise, go to step 3.

3. Alice sets a random positive even number n0 to construct s ¼ 1 � n0 þ n0x
1
n0

� �
and then

sends it to Bob.

4. Bob calculates sign(s,y), that is, Bob compares the sizes of y and s and returns the result sign
(s,y) = 1. Then, the process ends. Otherwise, go to step 5.

5. Bob selects ElGamal a homomorphic encryption mechanism, to obtain (g,N) and λ. Then,

he encrypts his data value y to obtain ciphertext E(y), E(y2) and sends it to Alice.

6. Alice selects random numbers α, β and γ to construct the monotonic function f(x) contain-

ing (s,x) in the defined domain, the coefficients of function variables are required to be

independent of the order of random numbers, to calculate f(s) and f(x). At the same time,

Alice performs a homomorphism operation on the received E(y) to obtain ciphertext c.
Then, Alice sends f(s), f(x) and c to Bob.

7. After Bob decrypts the ciphertext c received, he gets f(y), and then compares the sizes of f(s),
f(x) and f(y). If f(s)�f(y)�f(x), sign(x,y) = 1 is output. Otherwise, sign(x,y) = -1 is output.

Confidential collaborative determination of the interval

relationship between real numbers

Problem description and calculation principle

The problem description assumes that one of the two parties involved in the collaborative cal-

culation has a real number and the other has an interval of real numbers. The two parties

should work together to calculate the relationship between the real number and the interval of

real numbers without revealing their respective data information. For example, Alice has a real

number [s,x] and Bob has a real number interval y, and the two should secretly work together

to determine the relationship between the real number and the interval of real numbers.

In order to determine whether a real number is in an interval, the calculation principle can

determine whether a real number is in an interval by calculating the sign of the difference

between the real number and the value at both ends of the interval, that is, it can determine

whether a real number is in an interval of real numbers by using a sign function. For example,

for a real number point y, to determine whether y is in an interval of [s,x], then the sign of sign
(y,[s,x]) = sign((x−y)(y−s)) can be determined.

signðy; ½s; x�Þ

¼ signððx � yÞðy � sÞÞ

¼ signðyðxþ sÞ � xs � y2Þ

ð15Þ

From the above expansion, we can find the result value of sign(y(x+s)−xs−y2).

Specific protocol

Protocol 3. Confidential collaborative determination of the interval relationship between real

numbers
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Input: Alice inputs real number [s,x], and Bob inputs real number interval y.

Output: Bob outputs sign(y,[s,x]).

The protocol constructed in this paper is as follows:

1. Alice selects Paillier, a homomorphic encryption mechanism, and obtains (g,N) for the pub-

lic key and λ for the private key. Alice calculates c1 = −xs and c2 = x+s based on her data val-

ues s and x, encrypts c1 and c2, and obtains ciphertext E(c1) and E(c2). Then, she sends them

to Bob.

2. Bob generates a random number v, encrypts the random number E(v). Then, Bob calculates

E(v), y together with the received E(c1) and E(c2) as follows:

�c ¼ Eðc2Þ
y
� Eðc1Þ � EðnÞ ¼ Eðyc2 þ c1 þ nÞ:

3. Bob sends �c to Alice.

4. Alice decrypts �c to obtain c_ ¼ yðx þ sÞ � xsþ n and sends c_ to Bob.

5. Bob calculates:

ĉ ¼ signðc_ � n � y2Þ

¼ signðyðx þ sÞ � xs � y2Þ

6. If ĉ ¼ 1, y is in the interval [s,x] or y is at the end point of the interval [s,x]; and ĉ ¼ � 1

means that y is outside the interval [s,x]. Then, Bob sends the result to Alice.

Protocol analysis: In Protocol 3, Alice’s data value s and x was mixed and encrypted before

being sent to Bob who could not decrypt it. Bob added a random number v during the encryp-

tion operation, so although Alice decrypted �c, Alice could not obtain the specific information

of y due to the existence of v.

Correctness and safety analysis

Correctness analysis

Protocol 1, in steps 1 to 4, according to the generalized properties 1 and 2 of Bernoulli inequal-

ity, the protocol can correctly calculate the size of the variables x and y and reduce the range of

sizes to (s,t). In step 6, Alice chooses random numbers α, β and γ, the tectonic domain range

contains the monotonic function of (s,x), and Alice calculates

c ¼ Eðy2Þ
aEðyÞbEðgÞ ¼ Eðay2 þ byþ gÞ. In step 7, Alice unlocks c and accesses f(y). According

to the nature of the monotonic function, s, x, and y are consistent with f(s), f(x) and f(y),

respectively; therefore, through comparing the sizes of f(s), f(x) and f(y), the function can be

calculated within the scope of the (s,t) and y and the sizes of s, x, and y.

Similarly, the correctness analysis of Protocol 2 is similarly verifiable.

In Protocol 3, Bob calculates:

�c ¼ Eðc2Þ
y
� Eðc1Þ � EðvÞ

¼ Eðyc2 þ c1 þ vÞ

¼ Eðyðx þ sÞ � xsþ vÞ
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Alice decrypts to get �c 0 ¼ yðx þ sÞ � xsþ n. In step 4, Bob replaces v with −y2 to obtain y(x
+s)−xs−y2 = (x−y)(y−s). Then, the specific sign value can be calculated according to the sign

function. Therefore, protocol 3 is correct.

Security analysis

Theorem 1. Protocol 1 can determine the size relationship between real numbers in a coopera-

tive and confidential manner.

Proof: For the convenience of the description, this paper divides protocol 1 into two parts:

part 1 is the first 4 steps, and part 2 is steps 5~7.

First, we will prove that the data are safe during the first 4 steps of the protocol’s execution.

In the first and third steps of the protocol, there are positive even numbers n and n0 ran-

domly selected by Alice, and t and s are constructed. Because Bob does not obtain the values of

n and n0, he cannot obtain the specific information for Alice.

In steps 2 and 4 of the protocol, Bob calculates according to information t and s his receives

and his own data, and he only sends the symbol of the calculated result back to Alice, so Alice

cannot obtain Bob’s specific information. Therefore, the first 4 steps of the protocol are safe.

The following simulation example is used to strictly prove the security of steps 5~7 of the protocol,

that is, the simulators are constructed to make formulas (1) and (2) hold in the security definition.

In this protocol, let f1(x,y) = f2(x,y) = sign(x,y), and construct simulator S1. S1 accepts (x,f1(x,

y)) as its input and proceeds as follows:

Step 5: Accept input (x,f1(x,y)) = (x,sign(x,y))

Since S1 has sign(x,y), it can pick any y0 that satisfies sign(x,y) = sign(x,y0).
y0 is encrypted according to protocol S1 to obtain ciphertext E(y0).
Step 6: S1 selects a random number α0, β0 and γ0 constructs the monotonic function contain-

ing (s,x) in the defined domain interval, and calculates h(s) and h(x). Simultaneously, it calcu-

lates ciphertext c0 ¼ Eðy02Þa
0

Eðy0Þb
0

Eðg0Þ ¼ Eða0y02 þ b0y0 þ g0Þ.
Step 7: After S1 decrypts ciphertext c0, it obtains h(y0) and calculates sign(h(s),h(y0)) and sign

(h(x),h(y0)). If sign(h(s),h(y0)) = -1 and sign(h(x),h(y0)) = 1, output sign(x,y0) = 1. Otherwise,

output sign(x,y0) = -1.

In this protocol,

viewp

1
ðx; yÞ ¼ fx; y; c; signðx; yÞg;

S1ðx; f1ðx; y
0ÞÞ ¼ fx; y0; c0; signðx; y0Þg:

Since α, β, γ, α0, β0 and γ0 are random numbers and f(y) = αy2+βy+γ, h(y0) = α0y02+β0y0+γ0

and f ðyÞ�chðy0Þ are derived.

Since c = E(αy2+βy+γ), c0 = E(α0y02+β0y0+γ0), α, β, γ, α0, β0 and γ0 are random numbers and c
and c0 are the same as the public key algorithm encryption results, c and c0 are indivisible, that

is, c �
c
c0.

Therefore, fS1ðy; f1ðx; yÞÞgx;y �
c
fviewp

1
ðx; yÞgx;y.

Similarly, simulator S2 can be constructed in a similar way so that:

fS2ðy; f2ðx; yÞÞgx;y�
c
fviewp

2
ðx; yÞgx;y:

Therefore, protocol 1 can confidentially calculate the size relationship between real

numbers.

Theorem 2. Protocol 2 can determine the size relationship between real numbers in a coop-

erative and confidential manner.
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The proof of theorem 2 is similar to that of theorem 1 and will not be detailed in this article.

Theorem 3. Protocol 3 can determine the relationship between real points and intervals in a

cooperative and confidential manner.

Identification: The security of the protocol is strictly proven by the simulation example

below, that is, the emulators are constructed to make formula (1) and formula (2) hold in the

security definition.

In this protocol, let f1(y,[s,x]) = f2(y,[s,x]) = sign(y,[s,x]) and construct the simulator S1. S1

accepts (y,f1(y,[s,x])) as the input and proceeds as follows:

Step 1: S1 accepts input (y,f1(y,[s,x])) = (y,sign(y,[s,x])). Since S1 has sign(y,[s,x]), it picks any

[s0,x0] that satisfies sign(y,[s,x]) = sign(y,[s0,x0]). c0
1
¼ � x0s0 and c0

2
¼ x0 þ s0 are calculated

according to protocol S1, and c0
1

and c0
2

are encrypted to obtain ciphertext Eðc0
1
Þ and Eðc0

2
Þ,

respectively.

Step 2: S1 generates a random number v0, encrypts the random number E(v0), and com-

putes: �c 0 ¼ Eðc0
2
Þ
y
� Eðc0

1
Þ � Eðn0Þ ¼ Eðyc0

2
þ c0

1
þ n0Þ.

Step 3: After S1 decrypts D, c_ 0 ¼ yðx0 þ s0Þ � x0s0 þ n0.

Step 4: Calculate
ĉ 0 ¼ signðc_ 0 � n0 � y2Þ

¼ signðyðx0 þ s0Þ � x0s0 � y2Þ
.

In this protocol,

viewp

1
ðy; ½x; s�Þ ¼ fy;�c; signðy; ½s; x�Þg;

S1ðy; f1ðy; ½s; x�ÞÞ ¼ fy;�c
0; signðy; ½s0; x0�Þg:

Since sign(y,[s,x]) = sign((x−y(y−s)), sign(y,[s0,x0]) = sign((x0−y)(y−s0)), and

sign(y,[s,x]) = sign(y,[s0,x0]), sign((x−y)(y−s)) = sign((x0−y)(y−s0)).
Since �c and �c 0 are the same as the public key algorithm encryption results, �c and �c 0 are insep-

arable, namely, �c �
c

�c 0. Thus:fS1ðy; f1ðy; ½s; x�ÞÞgy;s;x �
c
fviewp

1
ðy; ½x; s�Þgy;s;x Similarly, simulator

S2 can be constructed in a similar way so that: fS2ðy; f2ðy; ½s; x�ÞÞgy;s;x �
c
fviewp

2
ðy; ½x; s�Þgy;s;x.

Therefore, protocol 3 can confidentially calculate the relationship between real points and

intervals.

Efficiency analysis

This section analyzes the efficiency of Protocols 1, 2 and 3 and comparatively analyzes protocol 3

and protocol 1 in references [23] and [8] and protocol 3 in this paper. Because the protocol uses a

homomorphic encryption mechanism, the number of costly modular exponentiation operations

is taken as an indicator to measure the computing costs while the other operations are ignored. In

the Paillier encryption scheme, one encryption or decryption requires two modular exponentia-

tion operations. In the ElGamal encryption scheme, one encryption requires two modular expo-

nentiation operations, and one decryption requires one modular exponentiation operation.

Computational complexity analysis and communication complexity analysis: Protocol 1

and Protocol 2 have negligible computational overheads in the first four steps. In the fifth to

seventh steps of Protocols 1 and 2, both Alice operations need two modular exponentiation

operations, and Bob performs encryption and decryption once each. Therefore, no more than

six modular exponentiation operations are required in Protocol 1, and no more than five mod-

ular exponentiation operations are required in Protocol 2. Although protocol 1 and Protocol 2

need to perform 6 (or 5) modular exponentiation operations in the worst case, the protocol in

this paper can complete the computations without requiring modular exponentiation opera-

tions in the best case.
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Protocol 3 in reference [23] requires 13 modular exponentiation operations and 2 rounds

of communication. Protocol 1 in reference [8] requires 12 modular exponentiation operations

and 2 rounds of communication. In protocol 3 in this paper, Alice encrypts twice and decrypts

once, which requires 6 modular exponentiation operations, Bob encrypts once and conducts

ciphertext modular exponentiation operations once, which requires 3 modular exponentiation

operations, a total of 9 modular exponentiation operations, and 2 rounds of communication.

In order to verify the efficiency of the protocol, we used the Java programming language to

implement protocol 3 and the comparison protocol.

The experimental test environment is as follows: the operating system is the 64-bit Win-

dows7 flagship version operating system, the processor is an Intel(R) Core(TM) i5-3470 3.20

GHz, and the amount of memory is 8.00 GB. The set value of each group was averaged after

1000 experiments. In the experiment, the large prime p and q bits used in the Paillier encryp-

tion algorithm are the same, both of which are 256 bits.

As seen in Tables 1 and 2, protocol 3 in this paper has fewer scheme modular exponentia-

tion operations and has higher efficiency. Both the theoretical analysis and experimental

results show that the protocol in this paper is efficient.

Extended applications

Confidential data query

The problem can be described as follows: one party participating in collaborative computing

has an ordered data set, and the other party has a value to be searched. The two parties should

cooperate to determine the specific location of the value in the data set without revealing their

respective data information. For example, Alice has ordered data set {c1,c2,� � �cn}, Bob has data

set s, and the two should work together confidentially to determine the specific location of

numerical value s in data set {c1,c2,� � �cn}. Therefore, using binary search, protocol 1 or 2 can be

used to compare the median of the data to be checked and the narrowing range of the data set

for multiple times to achieve the required results.

Cooperative determination of the relationship between real number

intervals to protect privacy

The problem can be described as follows: the two parties involved in the collaborative calcula-

tion have a real interval, and they should work together to calculate the relationship between

Table 1. Comparative analysis of the performance of the three protocols.

Protocol Computational complexity Communication complexity

Document [23] Protocol 3 13 2

Document [8] Protocol 1 12 2

Protocol 3 in this article 9 2

https://doi.org/10.1371/journal.pone.0261213.t001

Table 2. Comparative analysis of the experimental results of the three protocols.

Property

Alice’s running time (ms) Bob’s running time (ms) Total running time (ms)

Document [23] Protocol 3 16.246 15.328 31.574

Document [8] Protocol 1 15.412 12.831 28.243

Protocol 3 in this article 11.587 10.095 21.682

https://doi.org/10.1371/journal.pone.0261213.t002
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the two intervals without revealing the numerical information of their respective intervals.

For example, Alice has an interval [x1,x2], Bob has an interval [y1,y2], and they work together

confidentially to determine the relationship between the two intervals. As shown in the Figs 2

and 3, the relationship between two real intervals can be divided into three categories: separa-

tion, intersection and overlap. This paper adopts the following methods to address this

problem:

1. Alice calculates the magnitude of the interval [x1,x2] where t = |x2−x1|, and Bob calculates

the magnitude of the interval [y1,y2] where s = |y2−y1|. Alice and Bob compare the sizes of t
and s.

2. If x2<y1, then the left phase of the interval [x1,x2] is separated from the interval [y1,y2]; and

if x1>y2, then the right phase of the interval [x1,x2] is separated from the interval [y1,y2].

3. When t<s, x2>y1>x1. If y2>x2>y1, then the left part of the interval [x1,x2] intersects at the

interval [y1,y2]; and if y2>x1>y1, then the right part of the interval [x1,x2] intersects at the

interval [y1,y2]. Otherwise, if y1,y2 is less than x2 and greater than x1, then the interval [y1,y2]

overlaps within the interval [x1,x2].

4. When t<s, x2>y1>x1, and then the left part of the interval [x1,x2] intersects the interval [y1,

y2]; and if x2>y2>x1, then the right part of the interval [x1,x2] intersects the interval [y1,y2].

Otherwise, if x1,x2 is less than y2 and greater than y1, then the interval [x1,x2] overlaps

within the interval [y1,y2].

In conclusion, the above scheme can be implemented by means of protocol 1 or 2 and Pro-

tocol 3 in this paper.

Fig 2. Five scenarios for |x2−x1|>|y2−y1|.

https://doi.org/10.1371/journal.pone.0261213.g002
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Conclusion and discussion

The determination of the relation between a number and a numerical interval is one of the

core problems of scientific calculation to protect privacy, and the calculation of the relation

between two numbers and numerical intervals on the premise of protecting privacy is also the

basic problem of collaborative calculation. At present, most of the solutions reach the integer

level while few reach the real number level. This article uses the Bernoulli inequality extension

type and combines it with the monotonic function technique to extend the numerical interval

to determine the relationship between the real number level, mainly the homomorphic

encryption scheme based on two different design size comparisons between the two new real

numbers. The Bernoulli inequality extension type reduces the scope of use of the homomor-

phic encryption system comparison to the range, reduces the encryption algorithm, and

improves the efficiency. In addition, a protocol is designed to solve the confidential coopera-

tive determination problem between real numbers by using symbolic functions and other tech-

niques. The protocols in this paper are based on the fact that all parties involved in

collaborative computing are semihonest, and the constructed protocols are secure under the

semihonest model. The relationship between the number of privacy protections and the

numerical interval under the malicious model will be the direction of our future work.
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