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Abstract

The gut-neural axis plays a critical role in the control of several physiological processes,

including the communication of signals from the microbiome to the nervous system, which

affects learning, memory, and behavior. However, the pathways involved in gut-neural sig-

naling of gut-governed behaviors remain unclear. We found that the intestinal distension

caused by the bacterium Pseudomonas aeruginosa induces histone H4 Lys8 acetylation

(H4K8ac) in the germline of Caenorhabditis elegans, which is required for both a bacterial

aversion behavior and its transmission to the next generation. We show that induction of

H4K8ac in the germline is essential for bacterial aversion and that a 14-3-3 chaperone pro-

tein family member, PAR-5, is required for H4K8ac. Our findings highlight a role for H4K8ac

in the germline not only in the intergenerational transmission of pathogen avoidance but

also in the transmission of pathogenic cues that travel through the gut-neural axis to control

the aversive behavior.

Introduction

Increasing evidence suggests that the intestine plays an important role in response to environ-

mental changes, which ultimately affect behaviors by communicating with neurons [1–5].

While there is also evidence indicating that microbial cues sensed by the intestine can be trans-

mitted to the offspring and affect their behavior [6,7], the pathways involved in gut-neural

communication and the inheritability of gut-governed behaviors remain unclear. The germ-

line can transmit epigenetic information from the environment to the next generation through

communication with other tissues [8,9], and it may regulate behaviors in response to environ-

mental stress [10,11]. However, a potential role of the germline in the gut-neural axis has not

been established.

To provide insights into the gut-neural circuits that regulate behaviors in response to

microbial colonization of the intestine, we have taken advantage of the nematode Caenorhab-
ditis elegans, which has evolved behavioral responses that allow the animal to avoid potentially

pathogenic bacteria. Upon exposure to Pseudomonas aeruginosa, C. elegans exhibits a patho-

gen-aversive behavior, which is governed by distinct groups of neurons [12–15]. Moreover,
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recent studies indicate that P. aeruginosa colonization of the intestine causes a distension that

regulates behavior and learning via neuroendocrine signaling [16,17].

In this study, we show that the germline is part of the gut-neural axis involved in pathogen

avoidance. The mechanism through which intestinal colonization by bacteria induces patho-

gen avoidance requires histone H4 Lys8 acetylation (H4K8ac) in the germline. H4K8ac is also

needed for the transmission of the pathogen-aversive behavior to the next generation. Chro-

matin immunoprecipitation-mass spectrometry (ChIP-MS) identified a 14-3-3 chaperone pro-

tein family member, PAR-5, as essential in the germline for H4K8ac and gut-neural signaling

of pathogen avoidance. These results suggest that H4K8ac in the germline participates in a cir-

cuit that receives inputs from the infected gut and transmits the information to the nervous

system to elicit pathogen avoidance.

Results and discussion

Microbial colonization of the intestine induces H4K8ac in the germline

Histone posttranslational modifications (PTM) are the most common epigenetic mechanisms,

and different modifications have been found to be involved in diverse biological processes

across species, including C. elegans [18–20]. Methylation and acetylation are common histone

PTM that generally affect gene expression by altering the activity of origins of DNA replication

or chromatin structure and gene transcription [21,22]. As a first step to studying whether his-

tone PTM play a role in the control of the pathogen-aversive behavior elicited by microbial col-

onization of the C. elegans intestine, we looked at monomethylation of histone H3 Lys4

(H3K4me1), trimethylation of histone H3 Lys4 (H3K4me3), and histone H4K8ac as they have

been linked to immunological memory in plants and mammals [23,24]. First, we studied these

histone modifications in young adult animals that were exposed to P. aeruginosa for 24 hours.

To ensure that the histone PTM analyzed do not correspond to the progeny of the animals, we

used fer-1 animals, which are infertile at 25˚C due to a mutation that prevents the sperm from

penetrating the oocyte [25]. We found that only H4K8ac increased (Fig 1A and S1A Fig), sug-

gesting that P. aeruginosa infection induces it in the infected animals.

Because infection by P. aeruginosa correlates with colonization and distension of the C. ele-
gans intestinal lumen, which triggers bacterial aversion [16,26], we reasoned that H4K8ac may

also increase as a consequence of intestinal distension. To test this hypothesis, we studied

H4K8ac in aex-5 and eat-2 RNA interference (RNAi) animals. Inhibition of genes aex-5 and

eat-2, which alters the defecation motor program (DMP) of the animals, results in pathogen

avoidance triggered by intestinal distension [16]. Consistent with the idea that intestinal dis-

tension alone induces H4K8ac, inhibition of aex-5 and eat-2 resulted in induced H4K8ac in

uninfected animals (Fig 1B, S1B and S1C Fig).

To determine where histone acetylation occurs, we performed whole animal fluorescent

immunohistochemistry using an antibody that recognizes H4K8ac. We found that H4K8ac

increased mainly in the germline upon exposure to P. aeruginosa (Fig 1C) or inhibition by

RNAi of aex-5 or eat-2 (Fig 1D, S1D Fig). These results highlight an important role of the

germline in communicating danger signals from the intestine to the nervous system to elicit

pathogen avoidance.

Gut-germline-neural signaling is required for pathogen avoidance

We sought to address whether the germline was part of the gut-neural signaling required for

the elicitation of pathogen avoidance. To study a potential role of the germline in gut-neural

signaling, we used glp-1 animals, which lack most germline cells due to defects in mitotic and

meiotic division [27,28]. As shown in Fig 2A and S2A Fig, P. aeruginosa-induced H4K8ac was
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Fig 1. P. aeruginosa infection and intestinal distension induce H4K8ac in the germline. (A) Western blots of extracts

from fer-1(b232) animals exposed to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C (n� 1,000; representative of 3

independent experiments). (B) Western blots on extracts from fer-1(b232) animals exposed to E. coli (E. c) or P. aeruginosa
(P. a) following aex-5 and eat-2 RNAi for 24 hours at 25˚C (n� 1,000; representative of 3 independent experiments). The

fer-1(b232) animals were maintained at 15˚C. To induce sterility, L1-stage animals were transferred to 25˚C and allowed to

develop. L4-stage animals were then transferred to RNAi plates and allowed to grow for 24 hours at 25˚C. “n” represents the

number of animals for each experiment (A, B). (C) Representative microscopic images of portions of C. elegans germline

depicting differences in H4K8ac patterns. Yellow-dotted lines were used to outline the germline. (D) Whole-mount

immunofluorescence profile of wild-type animals stained with anti-H4K8ac antibody, post exposure to E. coli (E. c) or P.

aeruginosa (P. a) following aex-5 and eat-2 RNAi for 24 hours at 25˚C. See S1 Raw Images for uncropped immunoblot

images. H4K8ac, histone H4 Lys8 acetylation; RNAi, RNA interference.

https://doi.org/10.1371/journal.pbio.3001169.g001
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Fig 2. The germline is part of the gut-neural axis involved in pathogen avoidance. (A) Western blot of extracts from

fer-1(b232) and glp-1(e2141) animals exposed to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C (n� 1,000;

representative of 3 independent experiments). (B) Representative microscopic images of wild-type N2 and glp-1(e2141)
animals stained with anti-H4K8ac antibody following exposure to P. aeruginosa for 24 hours at 25˚C. (C) Lawn

occupancy of wild-type N2 (WT) or glp-1(e2141) animals at 24 hours of exposure to P. aeruginosa at 20˚C following

aex-5 and eat-2 RNAi (n = 20). Three independent experiments were performed. “n” represents the number of animals

for each experiment. “�” asterisk indicates significant difference; ���� P� 0.0001. (D) Bacterial colonization of wild-

type N2 and glp-1(e2141) animals after 48 hours of exposure to P. aeruginosa at 20˚C following aex-5 and eat-2 RNAi

(n = 4). (E) Lawn occupancy of wild-type N2 (WT) or glp-1(e2141) animals at 48 hours of exposure to P. aeruginosa at

20˚C following aex-5 and eat-2 RNAi (n = 20). Three independent experiments were performed. “n” represents the

number of animals for each experiment. “�” asterisk indicates significant difference; ���� P� 0.0001. The fer-1(b232)
and glp-1(e2141) animals were maintained at 15˚C. To induce sterility, L1-stage animals were transferred to 25˚C and

allowed to develop into young adults and subjected to the corresponding assays. For RNAi induction, L4-stage animals

were transferred to RNAi plates and allowed to grow for 24 hours at 25˚C. See S1 Raw Images for uncropped

immunoblot images and S1 Data for the corresponding data. H4K8ac, histone H4 Lys8 acetylation; RNAi, RNA

interference; WT, wild type.

https://doi.org/10.1371/journal.pbio.3001169.g002
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not observed in glp-1 animals. We also confirmed the lack of H4K8ac by immunohistochemis-

try (Fig 2B, S2B Fig), which also indicates that histone acetylation indeed occurs in the germ-

line in response to intestinal distension caused by microbial colonization.

Because H4K8ac is induced in the germline of DMP-defective animals, which exhibit rapid

pathogen avoidance, and glp-1 animals lack most germline cells and exhibit no H4K8ac, we

hypothesized that intestinal distention in glp-1 animals would fail to elicit avoidance to P. aeru-
ginosa. As shown in Fig 2C, inhibition of aex-5 and eat-2 did not elicit pathogen avoidance in

glp-1 animals. It is known that glp-1 animals exhibit enhanced resistance to a wide array of

microbes, including P. aeruginosa [29], which results in a slow microbial colonization [30].

Thus, it was not clear whether the inability of glp-1 animals to avoid P. aeruginosa was due to

the absence of the germline or the enhanced resistance to infection and colonization by the

pathogen. To distinguish between these two possibilities, we tested pathogen avoidance after

48 hours, when bacterial colonization was comparable in wild-type and glp-1 animals deficient

in aex-5 and eat-2 (Fig 2D, S2C Fig). We did not observe any difference in the pathogen avoid-

ance of glp-1 animals compared to that of glp-1 animals deficient in aex-5 and eat-2 (Fig 2E),

even at times when they were similarly colonized by P. aeruginosa (Fig 2D, S2C Fig).

To further confirm the relationship between bloating-mediated avoidance behavior and

H4K8ac, we measured acetylation levels in animals deficient in the nol-6 gene. Previous studies

have shown that the RNAi of nol-6, a nucleolar RNA-associated protein-encoding gene,

reduces bloating of the intestinal lumen caused by bacterial infection [30]. This reduction in

nol-6 expression results in delayed pathogen avoidance [17]. We found that nol-6 RNAi sup-

pressed the enhanced H4K8ac in the germline of P. aeruginosa-infected animals (S2D and S2E

Fig). Taken together, these results indicate that intestinal distension caused by P. aeruginosa
infection enhances H4K8ac in the germline that is required for pathogen avoidance.

PAR-5 is required for H4K8ac in the germline

To identify potential interacting partners that may affect H4K8ac in response to P. aeruginosa
colonization, we performed ChIP-MS. A total of 25 H4K8 acetylated-interacting candidate

proteins that were up-regulated more than 3-fold in infected animals were identified (S1

Table). We decided to further study PAR-5 because out of all the H4K8 acetylated-interacting

candidate proteins that are up-regulated more than 3-fold by P. aeruginosa infection, it is the

only one that is expressed in the germline and in neurons, from where it could also be involved

in the control of pathogen avoidance. Another reason why we focused on PAR-5 is that it

belongs to a 14-3-3 family of chaperones [31,32] that, through interactions with different pro-

teins, can regulate PTM such as H4K8ac.

We confirmed the direct binding of PAR-5 and H4 using coimmunoprecipitation (S3A

Fig). We also confirmed the protein–protein interaction in vivo using bimolecular fluores-

cence complementation (BiFC), which allows for the determination of physical interactions of

proteins in living cells through direct visualization [33]. The BiFC constructs were engineered

to individually express, under the control of the heat shock promoter Phsp-16.41, green fluo-

rescent protein (GFP) fragments translationally fused with PAR-5 and H4, which is a C. ele-
gans ortholog of human H4. The interaction between the two proteins would bring the

nonfluorescent fragments into close proximity for reconstitution and fluorescence. Twelve

hours after heat shock, we observed fluorescence, indicating a physical interaction between

PAR-5 and H4 in vivo (Fig 3A). Animals carrying BiFC constructs without H4 did not exhibit

fluorescence. Knockdown of par-5 by RNAi resulted in a significant reduction of fluorescence

(Fig 3B and 3C), further confirming that the presence of the two proteins is required for the

GFP reconstitution. As shown in Fig 3A and 3D, the protein interaction occurs in the nuclei of
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Fig 3. PAR-5 is required for P. aeruginosa H4K8ac in the germline. (A) Representative microscopic images of vector

control or par-5 RNAi animals expressing BiFC constructs 12 hours after heat shock at 33˚C. Control animals without the

H4::VC155 construct were used to establish the background fluorescence. (B) Dot-plot representation of green fluorescence

intensity versus TOF of vector or par-5 RNAi BiFC animals. (C) Frequency distribution of green fluorescence-AUC of

vector and par-5 RNAi transgenic BiFC animals. Three independent experiments were performed. “�” indicates significant

difference; ���� P� 0.0001. (D) High-magnification fluorescent micrograph of nuclear localization of PAR-5 protein, post

12 hours heat shock recovery. (E) Western blot of extracts from fer-1(b232) animals exposed to E. coli (E. c) or P. aeruginosa
(P. a) for 24 hours at 25˚C following par-5 RNAi at 25˚C (n� 1,000; representative of 3 independent experiments). The fer-
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hsp-16.41-expressing cells. Even though PAR-5 is required for development and its inhibition

may have wide effects on the germline that might indirectly affect H4 acetylation, our results

indicate that PAR-5 directly interacts with histone.

Consistent with this idea that PAR-5 regulates H4K8ac, we found that par-5 RNAi inhibited

the induction of H4K8ac caused by P. aeruginosa infection (Fig 3E and S3B Fig). We also

found that par-5 RNAi inhibited H4K8ac in the germline (Fig 3F and S3C Fig). To further con-

firm the relationship between H4K8ac and pathogen avoidance, we asked whether animals fail

to avoid P. aeruginosa when par-5 is inhibited. As shown in Fig 3G, animals did not avoid P.

aeruginosa when par-5 was inhibited by RNAi. Because par-5 and the homolog gene ftt-2 share

approximately 78.2% sequence identity at the nucleotide level and approximately 85.9%

sequence identity at the amino acid level [34], we studied the specificity of par-5 RNAi. First,

we investigated the pathogen avoidance of ftt-2 mutants and found that unlike par-5 RNAi ani-

mals, ftt-2 animals were capable of avoiding P. aeruginosa (S4A Fig). We also investigated the

expression of the two proteins using anti-FTT-2 and anti-PAR-5 antibodies and found that

PAR-5 but not FTT-2 diminished upon par-5 RNAi (S4B and S4C Fig). Our results indicate

that enhanced H4K8ac in the germline is required for pathogen avoidance. Thus, we employed

strains capable of tissue-specific RNAi to evaluate the tissue-specific contributions of par-5
RNAi responsible for the inhibition of pathogen avoidance. As shown in Fig 3H, par-5 RNAi

in the germline significantly reduced pathogen avoidance, which is consistent with our previ-

ous results and suggests that H4K8ac occurs in the germline in response to infection. Consis-

tent with this idea, par-5 RNAi in the germline, but not in the intestine or in neurons,

significantly suppressed the P. aeruginosa-induced H4K8ac (S5 Fig). Whole animal fluorescent

immunohistochemistry confirmed that P. aeruginosa-induced H4K8ac is inhibited by par-5
RNAi in the germline (S6 Fig).

Enhanced H4K8ac in the germline induces an intergenerational pathogen

avoidance behavior

We hypothesized that if the intestinal distension caused by bacterial colonization or inhibition

of DMP genes induces H4K8ac in the germline, the signal may be transmitted to the progeny.

Thus, we asked whether the offspring of animals exposed to P. aeruginosa could also exhibit

increased H4K8ac in the germline. Because the effect of RNAi is transgenerationally transmit-

ted, we cannot investigate whether H4K8ac induced by inhibition of DMP genes is also passed

to the progeny. Therefore, we used heat-killed E. coli that induces intestinal distension, similar

to that of DMP-defective animals, and also elicits a similar pathogen avoidance behavior [16].

We exposed L4 animals to P. aeruginosa or heat-killed E. coli for 24 hours, two conditions

which can induce bloating in the intestinal lumen and result in bacterial aversion [16]. As

shown in Fig 4A and S7 Fig, the F1 offspring from infected P0 animals exhibited higher

1(b232) and glp-1(e2141) animals were maintained at 15˚C. To induce sterility, L1-stage animals were transferred to 25˚C

and allowed to develop into L4s. L4 animals were transferred to RNAi plates and allowed to grow for 24 hours at 25˚C. (F)

Whole-mount immunofluorescence profile of wild-type animals stained with anti-H4K8ac, post exposure to E. coli (E. c) or

P. aeruginosa (P. a) for 24 hours at 25˚C following par-5 RNAi for 24 hours at 25˚C. (G) Lawn occupancy of wild-type N2

animals at 24 hours of exposure to P. aeruginosa following par-5 RNAi at 25˚C (n = 20). Three independent experiments

were performed. “n” represents the number of animals for each experiment. “�” asterisk indicates significant difference; ����

P� 0.0001. (H) Lawn occupancy of tissue-specific RNAi animals at 24 hours of exposure to P. aeruginosa following par-5
RNAi in the germline, neurons, or the intestine at 25˚C (n = 20). Four independent experiments were performed. “n”

represents the number of animals for each experiment. “�” asterisk indicates significant difference; “ns” indicates

nonsignificant; �� P� 0.005. See S1 Raw Images for uncropped immunoblot images and S1 Data for the corresponding

data. AUC, area under the curve; BiFC, bimolecular fluorescence complementation; H4K8ac, histone H4 Lys8 acetylation;

RNAi, RNA interference; TOF, time of flight.

https://doi.org/10.1371/journal.pbio.3001169.g003
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H4K8ac in the germline than control animals, indicating that bloating of the intestine induces

H4K8ac in the germline that is intergenerationally transmitted.

Intestinal distension caused by bacterial colonization or inhibition of DMP genes induces

pathogen avoidance [16,17] and H4K8ac in the germline (Fig 1D). Moreover, the enhanced

H4K8ac is transmitted to the F1 offspring (Fig 4A and S7 Fig). Thus, we investigated whether

the F1 offspring also exhibits higher pathogen avoidance. The progeny of animals infected

with P. aeruginosa or fed heat-killed E. coli to induce intestinal distension exhibited signifi-

cantly higher pathogen avoidance than the progeny of animals fed control live E. coli, which

does not cause intestinal distension (Fig 4B). Taken together, these results demonstrate that

enhanced H4K8ac in the germline is required for the intergenerational pathogen avoidance

induced by bloating caused by bacterial colonization of the intestine.

Conclusions

The gut-neural axis plays a critical role in transmitting signals from the microbiome to the ner-

vous system to respond to environmental changes. We have shown that histone H4K8ac

increased in the germline upon exposure to P. aeruginosa, suggesting that the intestinal

Fig 4. Enhanced H4K8ac in the germline is required for the intergenerational pathogen avoidance. (A) Whole-

mount immunofluorescence using an anti-H4K8ac antibody to strain F1 wild-type N2 young adults from P0 animals

exposed to E. coli (E. c), P. aeruginosa (P. a), or heat-killed E. coli (HK E. c) starting at the L4 stage for 24 hours. (B)

Lawn occupancy of F1 wild-type N2 animals at 12 hours from P0 animals exposed to E. coli (E. c), P. aeruginosa (P. a),

or heat-killed E. coli (HK E. c) starting at the L4 stage for 24 hours (n = 20). Three independent experiments were

performed. “n” represents the number of animals for each experiment. “�” asterisk indicates significant difference;
�P� 0.05. (C) C. elegans exposure to P. aeruginosa causes an intestinal colonization and distention that leads to

H4K8ac in the germline. Both H4K8ac in the germline and the germline itself are required for an intergenerational

pathogen avoidance. See S1 Data for the corresponding data. H4K8ac, histone H4 Lys8 acetylation.

https://doi.org/10.1371/journal.pbio.3001169.g004
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distension caused by microbial colonization induces histone H4K8ac in the germline. Indeed,

we observed that H4K8ac increases in animals that exhibit distended intestines due to aex-5 or

eat-2 inhibition. The rapid pathogen avoidance elicited by aex-5 or eat-2 inhibition is sup-

pressed by the absence of the germline. Furthermore, we found that PAR-5 regulates pathogen

avoidance induced by intestinal distension by stabilizing H4K8ac and that reduction of

H4K8ac in the germline by par-5 inhibition suppressed pathogen avoidance (Fig 4C). The

inheritance of avoidance elicited by small RNAs from P. aeruginosa requires the germline

[35,36]. We do not know whether H4K8ac plays a role in the avoidance mediated by small

RNAs, which accounts for a fraction of the avoidance elicited by P. aeruginosa. Our results

highlight a critical role for H4K8ac in the germline in the control of the gut-neural axis in

response to P. aeruginosa infection. Further studies will be required to identify the down-

stream signals involved in germline-neural communication.

Materials and methods

Bacterial strains

The following bacterial strains were used: Escherichia coli OP50, Pseudomonas aeruginosa
PA14, and P. aeruginosa PA14-GFP. Bacterial cultures were grown in Luria-Bertani (LB) broth

at 37˚C.

Nematode strains and growth conditions

C. elegans hermaphrodites were maintained on E. coli OP50 at 20˚C, except HH142 fer-1
(b232), CB4037 glp-1(e2141) strains that were maintained at 15˚C. Bristol N2 was used as the

wild-type control. Germline-specific RNAi strain DCL569 (mkcSi13 II;rde-1(mkc36) V), neu-

ron-specific RNAi strain TU3401 (sid-1(pk3321) V;uIs69 V), gut-specific RNAi strain

MGH171 (sid-1(qt9) V;alxIs9), HH142 fer-1(b232), CB4037 glp-1(e2141), and MT14355 ftt-2
(n4426) strains were obtained from the Caenorhabditis elegans Genetics Center (University of

Minnesota, Minneapolis).

Bacterial lawn avoidance assay

The bacterial lawns were prepared by picking individual P. aeruginosa PA14 colonies into 3

mL of the LB and growing them at 37˚C for 12 hours on a shaker. Then, a 20-μL culture was

seeded onto the center of a 3.5-cm modified NGM plate and incubated at 37˚C for 12 hours.

Twenty synchronized hermaphroditic animals grown on E. coli HT115(DE3) carrying a con-

trol vector or an RNAi clone targeting a gene were transferred into the bacterial lawns, and the

number of animals on and off the lawn were counted at the indicated times for each experi-

ment. Experiments were performed at 25˚C except for aex-5 and eat-2 RNAi animals, which

are hypersusceptible to P. aeruginosa at 25˚C [16]. The percent occupancy was calculated as

(Non lawn/Ntotal) ×100.

P. aeruginosa-GFP colonization assay

Bacterial lawns were prepared by inoculating individual bacterial colonies into 3 mL of LB

with 50 μg/mL kanamycin and growing them at 37˚C for 12 hours on a shaker. For the coloni-

zation assays, bacterial lawns of P. aeruginosa-GFP were prepared by spreading 200 μL of the

culture on the entire surface of 3.5 cm diameter-modified NGM plates. The plates were incu-

bated at 37˚C for 12 hours and then cooled to room temperature before the animals were

transferred. Synchronized L1-stage wild-type N2 and glp-1(e2141) were transferred to 25˚C.

L4-stage animals were then transferred to RNAi plates and allowed to grow for 24 hours at
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25˚C. Exposure to P. aeruginosa-GFP was conducted at 20˚C for 48 hours. The animals were

transferred from P. aeruginosa-GFP plates to fresh E. coli plates for 10 minutes to eliminate P.

aeruginosa-GFP adhered to their body. This procedure was repeated 3 times. Subsequently, 10

animals/condition were transferred into 50 μL of PBS containing 0.01% Triton X-100 and

grounded with pestle and glass beads. Ten-fold serial dilutions of the lysates (10−1, 10−2, 10−3,

10−4) were made and seeded onto LB plates containing 50 μg/mL of kanamycin to select for P.

aeruginosa-GFP cells and grown overnight at 37˚C. Single colonies were counted the next day,

the dilution factors were incorporated into the colony-counts, and the results were represented

as colony-forming units (CFU) per animal. Three independent experiments were performed.

RNA interference

The preparation of RNAi experiments has been explained in previous studies [37]. Briefly, E.

coli, with the appropriate vectors, was grown in LB broth containing ampicillin (100 μg/mL) at

37˚C overnight and plated onto NGM plates containing 100 μg/mL ampicillin and 3 mM iso-

propyl β-d-1-thiogalactopyranoside (IPTG) (RNAi plates). RNAi-expressing bacteria were

grown overnight at 37˚C. Synchronized L4-stage animals were transferred to RNAi plates and

grown for 24 hours at 25˚C, unless otherwise indicated, before the subsequent experiments.

All RNAi clones except eat-2 were from the Ahringer RNAi library.

Chromatin immunoprecipitation-mass spectrometry

Total protein extracts from fer-1(b232) animals were obtained by sonication in FA buffer after

crosslinking with formaldehyde for 30 minutes. Anti-H4K8ac antibody was used to precipitate

proteins bound to H4K8ac by incubation overnight followed with magnetic beads incubation

at 4˚C for 1 hour to pull down the proteins. Proteins were eluted with sample buffer and

resolved on a 4% to 12% NuPage Novex gel (Invitrogen, Waltham, Massachusetts, USA) and

stained with Imperial Protein Stain (Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Gel was run for 10 minutes. Cut bands were reduced, alkylated with iodoacetamide, and in-gel

digested with trypsin (Promega, Madison, Wisconsin, USA) prior to MS analysis.

Western blot assay

Synchronized fer-1(b232) or glp-1(e2141) animals were transferred to plates with P. aeruginosa
for 24 hours with E. coli as control. Worms were collected and washed 3 times with M9 to

remove the bacteria. The cell lysates were obtained by sonication. The samples were mixed

with sample loading buffer for gel electrophoresis. Proteins were transferred from the gel to

the membrane at 300 mA for 50 minutes. After 1 hour blocking at room temperature, the

membrane was incubated at 4˚C overnight with anti-H4K8ac (ab15823, Abcam, Cambridge,

Massachusetts, USA), anti-FTT-2, anti-β-actin (ab8227, Abcam, Cambridge, Massachusetts,

USA), and anti-PAR-5 antibodies followed with 1-hour anti-Rabbit antibody at room temper-

ature. β-actin serves as internal control. Anti-FTT-2 and anti-PAR-5 antibodies were gifts

from Dr. Andrew Golden. Chemiluminescence signal was detected using ImageQuant LAS

4000 (GE Healthcare, Chicago, Illinois, USA). The densities of the protein bands were quanti-

fied using Image J and represented as fold change. Fold change is the ratio of mean density of

test sample over control sample after normalization with β-actin.

Whole mount fluorescent immunohistochemistry

Bristol N2 wild-type animals were used for whole mount fluorescent immunohistochemistry,

unless otherwise indicated. Synchronized young adult animals were exposed to P. aeruginosa
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or E. coli for 24 hours at 25˚C. Worms were washed 3 times with M9 to remove the bacteria

and resuspended in fixing solution (160 mM KCl, 100 mM Tris-HCl (pH 7.4), 40 mM NaCl,

20 mM Na2EGTA, 1 mM EDTA, 10 mM spermidine HCl, 30 mM PIPES (pH 7.4), 1% Triton

X-100, 50% methanol, 2% formaldehyde) and subjected to snap freezing in liquid nitrogen.

The worms were fixed on ice for 4 hours and washed briefly in T buffer (100 mM Tris-HCl

(pH 7.4), 1 mM EDTA, 1% Triton X-100) before a 15-minute incubation in T buffer supple-

mented with 1% β-mercaptoethanol at 37˚C. The worms were washed with borate buffer (25

mM H3BO3, 12.5 mM NaOH (pH 9.5)) and then incubated in borate buffer containing 10 mM

DTT for 15 minutes, followed by H2O2 incubation for another 30 minutes. Worms were

blocked in PBST (PBS (pH 7.4), 0.5% Triton X-100, 1 mM EDTA) containing 1% BSA for 30

minutes and incubated overnight with anti-H4K8ac antibody (1:100; ab15823, Abcam) and

with Alexa Fluor 594 secondary antibody (1:300; ab150080, Abcam). 40,6-diamidino-2-pheny-

lindole (DAPI; 20 μg/mL) was added to visualize nuclei. The worms were mounted on a

microscope slide and visualized using stereofluorescence microscope (Leica M165 FC or

DM4-B, Leica, Wetzlar, Germany). The fluorescence intensity was quantified using Image J.

The whole animal fluorescence was calculated using the following equation: corrected whole

animal fluorescence = integrated density − (area of selected animal × mean fluorescence of

background readings).

Bimolecular fluorescence complementation (BiFC) and plasmid

construction

To construct plasmids for the BiFC assay for protein interaction, par-5 and his-1 cDNA were

subcloned into pCE-BiFC-VN173 and pCE-BiFC-VC155 plasmids (Addgene, Watertown,

Massachusetts, USA), which contain the heat shock promoter Phsp-16.41. Full-length par-5
cDNA was subcloned in-frame into pCE-BiFC-VN173 between BmtI and KpnI, and the

full length of the H4-encoding gene his-1was subcloned in-frame into pCE-BiFC-VC155

between BmtI and KpnI. The his-1 gene encodes for an ortholog of human histone H4, which

shares a similar epitope-target that is specific to the anti-H4K8ac antibody (ab15823, Abcam).

The BiFC plasmid constructs were injected into N2 worms at 15 ng/μL each, together with

coel::RFP at 100 ng/μL (coinjection marker) [33]. To detect the interaction, transgenic animals

carrying the BiFC plasmid constructs were raised to young adults at 20˚C, heat shocked for 3

hours at 33˚C, and allowed to recover for 12 hours at 20˚C. Direct visualization of fluorescent

signals of the induced expression of fusion proteins (PAR-5 and H4) were captured using a

Leica M165 FC fluorescence stereomicroscope. The BiFC assay involving RNAi of par-5 gene

transcript was performed and compared to vector control. Coelomocytes RFP-labelled trans-

genic animals were first gated using the red channel, and the green fluorescence intensity of

transgenic animals was measured using the Copas Biosort instrument (Union Biometrica,

Holliston, Massachusetts, USA).

Statistical analysis

Two-tailed Student t test for independent samples was used to analyze the data. For comparing

the means of more than two groups, one-way ANOVA with post hoc analysis was performed.

All the experiments were repeated at least 3 times and error bars represent the standard devia-

tion, unless otherwise indicated. The data were judged to be statistically significant when

P< 0.05. “n” represents the number of animals for each experiment. “ns” indicates nonsignifi-

cant “�” asterisk indicates significant difference; �P� 0.05; ��P� 0.005, ���P� 0.0005,
����P� 0.0001.
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Supporting information

S1 Fig. P. aeruginosa infection and intestinal distension induce H4K8ac in the germline.

(A) Quantification of band density of western blots assay performed on fer-1(b232) animals

exposed to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C (n� 1,000). (B) Quantifica-

tion of band density of western blots assay performed on fer-1(b232) animals exposed to E. coli
(E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C following aex-5 (n� 1,000) and (C) eat-2
RNAi (n� 1,000). Chemiluminescence signals from samples were detected, and the densities of

the protein bands were quantified and represented as fold change. Fold change is the ratio of

mean density of a given sample over the control E. coli sample or the control E. coli vector sam-

ple for the RNAi assays. The fer-1(b232) animals were maintained at 15˚C. To induce sterility,

L1-stage animals were transferred to 25˚C and allowed to develop. L4-stage animals were then

transferred to RNAi plates and allowed to grow for 24 hours at 25˚C. Pathogen exposure was

performed at 25˚C for 24 hours. (D) Quantification of immunofluorescence of wild-type N2

animals stained with anti-H4K8ac antibody post exposure to E. coli (E. c) or P. aeruginosa (P. a)

for 24 hours at 25˚C following aex-5 and eat-2 RNAi (n = 5). Three independent experiments

were performed for the above experiments (A–D, except for H3K4me3 immunoblot assay). “n”

represents the number of animals for each experiment. “�” asterisk indicates significant differ-

ence; �P� 0.05, ��P� 0.005, ���P� 0.0005, ����P� 0.0001. See S1 Data for the corresponding

data. H4K8ac, histone H4 Lys8 acetylation; H3K4me1, monomethylation of histone H3 Lys4;

H3K4me3, trimethylation of histone H3 Lys4; RNAi, RNA interference.

(TIF)

S2 Fig. Intact germline is required for pathogen or bloating induced H4K8ac. (A) Quantifica-

tion of band density of western blots assay from fer-1(b232) and glp-1(e2141) animals exposed to

E. coli or P. aeruginosa for 24 hours at 25˚C (n� 1,000). Four independent experiments were per-

formed. The densities of the protein bands were quantified and represented as fold change. Fold

change is the ratio of mean density of a given sample over the control fer-1 E. coli sample. (B)

Quantification of immunofluorescence of wild-type N2 and glp-1(e2141) animals stained with

anti-H4K8ac antibody after exposure to P. aeruginosa (P. a) for 24 hours at 25˚C (n = 5). (C) CFU

of wild-type N2 or glp-1(e2141) animals grown on vector control, aex-5 RNAi, or eat-2 RNAi

were exposed to P. aeruginosa-GFP for 48 hours at 20˚C. Bars represent mean log10 CFU ± SEM.

The fer-1(b232) and glp-1(e2141) animals were maintained at 15˚C. To induce sterility, L1 animals

were transferred to 25˚C and allowed to develop. L4 animals were then transferred to RNAi plates

and allowed to grow for 24 hours at 25˚C. Pathogen exposure was performed at 25˚C for 24

hours, unless otherwise indicated. (D) Representative microscopic images of wild-type N2 animals

treated with vector control or nol-6 RNAi and stained with anti-H4K8ac antibody following expo-

sure to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C. (E) Quantification of immunoflu-

orescence of wild-type N2 animals stained with anti-H4K8ac antibody post exposure to E. coli (E.

c) or P. aeruginosa (P. a) for 24 hours at 25˚C following nol-6 RNAi (n = 5). Three independent

experiments were performed for the above experiments (B–E). “n” represents the number of ani-

mals for each experiment. “ns” indicates nonsignificant; “�” asterisk indicates significant differ-

ence; �P� 0.05, ��P� 0.005, ���P� 0.0005, ����P� 0.0001. See S1 Data for the corresponding

data. CFU, colony-forming unit; GFP, green fluorescent protein; H4K8ac, histone H4 Lys8 acety-

lation; RNAi, RNA interference; WT, wild-type.

(TIF)

S3 Fig. PAR-5 is required for H4K8ac. (A) Coimmunoprecipitation of PAR-5 using anti-

H4K8ac antibody followed by western blot detection of PAR-5 on fer-1(b232) animals exposed

to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C following par-5 RNAi (n� 2,000).
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Error bar represents ±SEM. Three independent experiments were performed. (B) Quantifica-

tion of band density of western blots assay performed on fer-1(b232) animals exposed to E. coli
or P. aeruginosa for 24 hours at 25˚C following par-5 RNAi (n� 1,000). Three independent

experiments were performed. Chemiluminescence signals from samples were detected; the

densities of the protein bands were quantified and represented as fold change. Fold change is

the ratio of mean density of a given sample over the control E. coli vector sample. (C) Quantifi-

cation of the immunofluorescence of wild-type N2 animals stained with anti-H4K8ac antibody

after exposure to E. coli (E. c) or P. aeruginosa (P. a) following par-5 RNAi (n = 5). Three inde-

pendent experiments were performed. “n” represents the number of animals for each experi-

ment. “�” asterisk indicates significant difference; �P� 0.05, ���P� 0.0005, ����P� 0.0001.

See S1 Raw Images for uncropped immunoblot images and S1 Data for the corresponding

data. H4K8ac, histone H4 Lys8 acetylation; RNAi, RNA interference.

(TIF)

S4 Fig. PAR-5 is required for pathogen avoidance. (A) Lawn occupancy of wild-type N2 or

ftt-2(n4426) animals at 24 hours following par-5 RNAi at 25˚C (n = 20). Three independent

experiments were performed. (B) Western blot detection of FTT-2 or PAR-5 and (C) its quan-

tification on extracts of fer-1(b232) animals, exposed to E. coli (E.c) or P. aeruginosa (P.a) for

24 hours at 25˚C following par-5 RNAi (n� 1,000). Two independent experiments were per-

formed. Chemiluminescence signals from samples were detected, and the densities of the pro-

tein bands were quantified and represented as fold change. Fold change is the ratio of mean

density of a given sample over the control E. coli vector sample. The fer-1(b232) animals were

maintained at 15˚C. To induce sterility, L1-stage animals were transferred to 25˚C and allowed

to develop. L4-stage animals were then transferred to RNAi plates and allowed to grow for 24

hours at 25˚C. “n” represents the number of animals for each experiment. “�” asterisk indicates

significant difference; ����P� 0.0001. See S1 Raw Images for uncropped immunoblot images

and S1 Data for the corresponding data. RNAi, RNA interference; WT, wild-type.

(TIF)

S5 Fig. PAR-5 is required for P. aeruginosa-mediated H4K8ac in the germline. Western

blot detection and quantification of H4K8ac on different tissue-specific RNAi animals upon

par-5 RNAi and subsequent exposure to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at

25˚C (n� 1,000). Three independent experiments were performed. Chemiluminescence sig-

nals from samples were detected, and the densities of the protein bands were quantified and

represented as fold change. Fold change is the ratio of mean density of a given sample over the

control E. coli vector sample. “n” represents the number of animals for each experiment. “ns”

indicates nonsignificant; “�” asterisk indicates significant difference; ��P� 0.005. See S1 Raw

Images for uncropped immunoblot images and S1 Data for the corresponding data. H4K8ac,

histone H4 Lys8 acetylation; RNAi, RNA interference.

(TIF)

S6 Fig. PAR-5 is required for P. aeruginosa-induced H4K8ac in the germline. (A) Whole-

mount immunofluorescence profiles of tissue-specific RNAi animals stained with anti-

H4K8ac antibody. (B) Quantification of immunofluorescence of tissue-specific RNAi animals

exposed to E. coli (E. c) or P. aeruginosa (P. a) for 24 hours at 25˚C, following par-5 RNAi

induction for 24 hours (n = 5). Three independent experiments were performed. “n” repre-

sents the number of animals for each experiment. “ns” indicates nonsignificant; “�” asterisk

indicates significant difference; �P� 0.05, ��P� 0.005, ���P� 0.0005. See S1 Data for the cor-

responding data. H4K8ac, histone H4 Lys8 acetylation; RNAi, RNA interference.

(TIF)
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S7 Fig. Pathogen exposure and intestinal distension of P0 maternal animals increases

H4K8ac levels in the germline of F1 offspring. Quantification of immunofluorescence of

H4K8ac levels on F1 progeny from P0 maternal animals exposed to E. coli (E. c), P. aeruginosa
(P. a), or heat-killed E. coli (HK E. c) (n = 20). Three independent experiments were per-

formed. “n” represents the number of animals for each experiment. “ns” indicates nonsignifi-

cant; “�” asterisk indicates significant difference; ��P� 0.005, ���P� 0.0005. See S1 Data for

the corresponding data. H4K8ac, histone H4 Lys8 acetylation.

(TIF)

S1 Raw Images. Original uncropped blot images.

(PDF)

S1 Data. Raw data and quantitative observations for all main and supporting figures.

(XLSX)

S1 Table. List of histone H4 Lys8 acetylation interacting proteins.

(PDF)
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