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The current work is a review, dedicated to the study of semiclassical aspects of black holes. We begin by briefly looking at the main
statements of general relativity. We then consider the Schwarzschild, Kerr, and Reissner-Nordstrom black hole solutions and
discuss their geometrical properties. Later, the thermodynamic nature of black holes is established. In light of this, we formulate the
information loss problem and present the most promising approaches for addressing it with emphasis on introducing low-energy
quantum corrections to the classical general relativity picture. Finally, in the context of multimessenger astronomy, we look at naked
singularities as possible gravitational collapse endstates and their role in the unitarity of quantum mechanics and discuss their

observational prospects.

1. Introduction

Black holes are the most exotic objects in the universe.
Despite their apparent simplicity, motivated by the handful
of parameters required to describe them, namely, mass M,
angular momentum J, and charge Q, to this day, black holes
continue to have a central role in theoretical physics. Our
understanding of black holes has greatly improved over the
last decades. They were initially viewed as entirely black
objects out of which nothing can escape and were thus
thought to have neither entropy nor temperature. Today,
we know that black holes are not really black. They have
entropy, and in fact, we have a strong reason to believe that
they are the most entropic objects in the universe. Although
the microscopic origin of the black hole microstates remains
a matter of debate, Bekenstein and Hawking identified it with
a geometrical quantity, the horizon area, through the
Bekenstein-Hawking entropy bound. (In 2019, the Event
Horizon Telescope Collaboration took the first image of a
black hole, demonstrating the robustness of general relativity.)

Assigning entropy to black holes led to the important
realization that they should have some nonzero temperature
and hence radiate particles to asymptotic infinity. Associat-
ing temperature to black holes is what took us from the clas-
sical to the semiclassical realm. Black hole radiation emerges
in the semiclassical regime, where we consider classical
geometry, immersed in quantum fields. We now know that
the temperature is inversely proportional to the black hole’s
mass. This inverse proportionality is assumed to play a major
role in the late-time evolution of the system. The derivation
of Hawking radiation presented a great challenge to quantum
mechanics as it suggested that the evolution of quantum
states is nonunitary. Lack of unitarity would mean initially
that pure quantum states evolve into mixed ones, which
would lead to loss of information. The question of whether
quantum mechanics is unitary gave rise to the well-known
information loss paradox which has been one of the main
driving forces behind much of the progress in the field.

The paper is organized as follows. In Section 2, we put
forward the basic concepts of general relativity and show
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how they lead to the formulation of the Einstein equations.
Later, in Section 3, we show the most widely used black hole
solutions to the Einstein equations and discuss their basic
properties. Section 4 is devoted to the transition from the
classical to the semiclassical regime as we present the laws
of black hole thermodynamics. Then, in Section 5, we put
forward an intuitive formulation of the information loss par-
adox. Later, in Section 6, we review the candidate models for
resolving the information paradox, where we point the main
shortcomings and open questions. We then emphasize a toy
model which makes use of quantum corrections to the classi-
cal general relativistic picture as a possible way out of the par-
adox and argue that it is the most efficient in terms of both
deviations from the standard prescription and possible detec-
tion. Finally, in Section 7, we discuss naked singularities as a
possible endstate of generic collapse scenarios and examine
their observational distinguishability to classical black holes
in light of multimessenger astronomy.

2. Basic Ideas of General Relativity

General relativity is a dynamical theory which views gravity
in terms of spacetime curvature. The Einstein equations are
nonlinear second-order partial differential equations [1-4].
Two essential principles follow from that, namely, the equiv-
alence principle and general covariance.

The equivalence principle states that the motion of a test
particle in a gravitational field is independent of its mass.
Thus, there is equivalence between the gravitational mass
and the inertial mass of the test particle. That is to say, gravity
does not discriminate and treats all masses equally.

General covariance, on the other hand, says that the laws
of physics should be identical to all observers, meaning the
theory is coordinate invariant. The principle of general
covariance suggests that the field equations are tensorial
and relate the spacetime curvature to the matter content,
i.e., the Ricci tensor R, to the stress-energy tensor T,

In particular, suppose we have a (3 + 1)-dimensional Rie-
mannian geometry with Minkowskian signature (-,+,+,+).
For some general coordinates x*, where y € 0, 1, 2, 3, the met-
ric admits a line element

ds* = Gy dxt @ dx”, (1)

where for each spatial point we can define a symmetric met-
ric tensor

0X%(x 6Xf x
g‘uv(x) = P]ocﬁ axi ) aXE' ) > (2)

where g, allows us to determine the length between a pair of
points on a manifold and 77,5 denotes the Minkowski metric.

The metric tensor thus brings a notion of causality. Equation
(1) gives the infinitesimal distance between a pair of neigh-
boring spatial coordinates. Note that in this case, the coeffi-
cients vary smoothly from point to point.

Here, the metric tensor, despite the smooth geometry, is
nontrivially related to the spatial coordinates, and so, the
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spacetime, spanned by it, has a much richer structure than
the Minkowski metric with its nonvarying connection terms
1,y Every manifold has a unique connection which makes

the covariant derivative with respect to that connection vanish:
v,g" =0. (3)

That unique connection is given in terms of the Christoftel
symbols which, to first order, read

1 o
Fﬁv = EgA (aygva + avgya - aag;w) ' (4)

Let us now define the Riemann tensor which plays an
important role in general relativity:

RY 1y =0, = 0, + T Ly = Ty Ty (5)

where by contracting an index, we obtain the so-called Ricci
tensor

Ry =Ry (6)

The trace of (6) and coordinate changes leave invariant a

quantity which is defined at every point on a manifold, called
the Ricci scalar

R=RE. (7)

The Ricci (curvature) scalar quantifies, at each point, the
metric deviation from flat spacetime.

Having defined the metric tensor for some curved space-
time region (2) and knowing the Christoffel symbols at each
point (4), we can now consider the distance between a pair of
points by the geodesic equation (Note that for Minkowski
spacetime, the Christoffel symbols vanish, and g,,,,_7,,, which

is also a valid solution.)

d2xr . . dx* dx B (8)
a2 e =0

Note that (8) describes the trajectory of a freely moving
particle.

Let us now turn our attention to the Einstein equa-
tions. As is well known, general relativity relates geometri-
cally the spacetime curvature to the matter (energy and
momentum) content, given by the stress tensor T, which

is conserved
u _
\Y T/W =0. 9)

The stress tensor T, obeys the following energy con-
ditions which are expected to hold for generic matter
fields (We should note that within quantum field theory,
both conditions can be violated.):
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(i) Null energy condition: Tﬂvk" k" > 0 for k' null vectors

(ii) Dominant energy condition: Twlyll;v >0fork time-
like vectors

The so-called Einstein tensor G,,, expressed in terms of

the Ricci tensor (6), scalar (7), and metric tensor (2), satisfies
(9) and reads

B 1
GMV_R/W_ ERg,w' (10)

Having defined G,,, we can now write the Einstein
equations:

1
R, - Eng =8nGT,,, (11)

where R, is calculated from the connection coefficients. In
case R,, =0, the Weyl curvature remains nonzero. The
Lh.s. of (11) gives the metric curvature, more intuitively, the
deviation from Minkowski geometry, while the r.h.s. is the
matter content. Not surprisingly, (11), in the weak-field limit,
reduces to the Newton equation:

V2O = 4nGp. (12)

We can now summarize the basic principles underlying
general relativity. Namely,

(i) the laws of physics are coordinate invariant, which is
to say, there is no preferred coordinate system

(ii) T, is the curvature source. That is due to the rela-
tion between inertial mass and energy, on the one

hand, and the equivalence between inertial and grav-
itational mass, on the other

(iii) in a vacuum, where the Christoffel symbols vanish,
there should also be a well-defined solution to the
field equations

One of the great predictions of general relativity is the
formation of black holes, and causal boundaries, i.e.,
horizons. This will motivate the use of semiclassical physics
(classical gravity coupled to quantum field theory) later in
Section 4.

3. Black Hole Solutions

In this section, we outline the most widely used black hole
solutions and discuss their basic geometric properties [5-7].

3.1. Schwarzschild Black Hole. The Schwarzschild solution
to the Einstein equations (11) describes a static spherically

symmetric black hole, which is fully characterized by just
one parameter, its mass M., Figure 1. The metric reads

2
ds’ =g dx'®@dx’=-(1- M dr* + _dr
wy r 1-2M/r) (13)

+ 17 (d6” sin*0dg”),

where =0 denotes the singularity.

By examining the metric, we see that it admits two path-
ological regions, where only one can be cured by suitable
coordinate change. In particular, notice that the (1 —2M/r)
term vanishes when r = 2M. This implies that the horizon is
singular. However, this has been shown to be only a coordi-
nate singularity which is easily treatable. The second singular
region is at r =0, and the singularity there is spacelike (i.e.,
physical), meaning the Kretschmann, Ry poeRP7 = 48G*M?
/7, diverges. Unlike the coordinate one, dealing with this
curvature singularity requires physics which still remains
beyond our reach.

The Schwarzschild coordinates are not “penetrating”
coordinates and are thus only meaningful in the region
r € (2M,00). Note that within the black hole interior, in the
region r € (0, 2M), all future-directed timelike geodesics will
eventually reach r = 0, while all the outgoing trajectories for
r > 2M will be moving away from r = 2M as t increases.

3.2. Kerr Black Hole. The Kerr solution describes a stationary
axisymmetric black hole, where (i) the Killing horizon and
the event horizon need not coincide and (ii) is characterized,
in addition to its mass M, by angular momentum J. The Kerr
metric, in Boyer-Lindquist coordinates, is the following:

2M 4Mra sin® =
FEN (1 - r) e - %medtchp— Sdr’ - 2de?,

>
(14)
where
J
a=—,
M
> =1+ a? cos6, (15)

A=1*-2Mr +ad?,

where a is the rotation parameter which gives the spin-to-
mass ratio.

The metric admits two horizons, respectively, at r, =
M+ M? - a2, where ri={r_=6F"} is the inner (Cauchy)
horizon and r:={r, = #*} is the outer (event) horizon, which
is generated by a null hypersurface. (The Cauchy horizon
plays an important role in terms of extendability and hyperbo-
licity properties of the geometry of rotating solutions to the
Einstein equations (11), and we will return to it in Section 7.)

The Boyer-Lindquist coordinates are a generalization of
the Schwarzschild and Kerr systems of coordinates. They
are very useful because (i) they reduce the number of off-
diagonal terms to just a single one, (ii) as a — 0, they reduce
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r=0

Ficure 1

to the usual Schwarzschild coordinates, and (iii) for M — 0,
the Boyer-Lindquist coordinates describe flat Minkowski
space. Therefore, one can intuitively think of the Kerr metric
as a perturbed (distorted) Minkowski space. If we are at the
equatorial plane, ® = /2, the metric (14) is ill-defined for
2 =0 as we encounter a ring singularity.

3.3. Reissner-Nordstrom Black Hole. The Reissner-Nordstrom
solution describes a charged nonrotating black hole. Its line
element is given as

) 2

Q)i+ (s

r 1=2M/r + rylr (16)
+ 17 (d6” sin’0dg’),

where r3,=Q*/4me denotes the characteristic length scale and
(1/4)me is the Coulomb force.

Evidently, this is a charged, Q >0, Schwarzschild black
hole in asymptotically flat spacetime. The metric (16) differs,
however, from the noncharged Q = 0 solution in one impor-
tant respect. Namely, unlike Schwarzschild (13) and similar
to Kerr (14), it admits two horizons, inner r_ and outer r,,

denoted by
\/ M =15,

Having once crossed the outer horizon, ingoing rays
become timelike and can no longer escape to asymptotic
infinity. Depending on the ratio between M and r{,, we can

+

r,=M=

(17)

face one of the three scenarios. That is, for M > 277, the met-
ric has two horizons which need not coincide. In this case, as
far as an asymptotic observer is concerned, infalling geode-
sics crossing 7, will be infinitely redshifted. For M < 2r¢,, a
naked singularity forms. Namely, the ring-like singularity is
no longer hidden behind the outer horizon and can be
probed by asymptotic observers. (The recent advancements
in multimessenger astronomy coming from the Event Hori-
zon Telescope (EHT) and LIGO/Virgo have made it possible
to probe the region close to the would-be horizon and distin-

guish the type of compact object. So far, the measurements
we have done match the general relativity predictions. We
look at naked singularities in more detail in Section 7). When
M =2rg, we have an extremal Reissner-Nordstrom black
hole. In this case, r_ = r, = M, and so, the black hole has only
one horizon. In this scenario, an observer who has crossed
the horizon does not need to approach the singularity at
r=0. This solution, however, is highly unstable since even
the slightest perturbation will break the equality and will take
us to one of the two other possible ratios.

4. Semiclassical Black Holes

The classical laws of black hole mechanics were long appreci-
ated for being reminiscent of the laws of thermodynamics,
and one was thus tempted to make a parallel between them.
A step in this direction was motivated by the apparent ease
of violating the second law of thermodynamics which led
Bekenstein to formulate the generalized second law and
hence assign entropy to black holes, which was assumed to
be proportional to the horizon area. Later, a big step towards
facilitating the thermodynamic properties of black holes was
made by Hawking when he considered the semiclassical case
of a black hole surrounded by quantum fields. After his der-
ivation of the thermal flux, which was found to be related to
the surface gravity, the interpretation of black holes as ther-
modynamical systems was established.

4.1. Generalized Second Law. In the early 1970s, the robust-
ness of the second law of thermodynamics was not yet real-
ized. It seemed trivial to be violated in any spacetime region
which included a black hole. In particular, an outside
observer could simply throw matter into the black hole, and
from her perspective, the entropy of the outside region (i.e.,
the rest of the universe) would decrease. This motivated
Bekenstein to assign nonzero entropy to black holes, propor-
tional to their horizon area [8-10]:

S A
BH = 4Gh"

(18)

Bekenstein then formulated the generalized second law of
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thermodynamics which states that the total entropy, black
hole entropy plus the entropy of the matter field outside the
black hole, never decreases:

A(Sgy + Sout) 2 0. (19)

This way, the entropy of matter thrown into a black hole
is no longer unaccounted for. Although simple at first sight,
this entropy relation is very fundamental and has deep roots
in both gravity and quantum field theory.

4.2. Hawking Radiation. Assuming the validity of the gener-
alized second law, black holes must have some nonzero tem-
perature, and thus, they must radiate particles to asymptotic
infinity. Following those nonclassical assumptions, in [11],
Hawking used a quantum field theory in a curved spacetime
framework and considered a static black hole with a scalar
field in the background. The scalar field, considered to be in
a vacuum state at early times, was decomposed into positive
and negative frequency modes which he then traced to the
asymptotic past. As a result, he discovered that, due to the
strong gravitational field in the black hole background, parti-
cle pairs were created. (We are not going to repeat the deriva-
tion of Hawking radiation as it is outside the scope of this
paper. For a detailed discussion, see [12-14].) Imagine an
observer, carrying a measuring apparatus, approaches a black
hole from asymptotic infinity. Far away from the black hole,
the apparatus will not measure any particles. Suppose now
that the observer passes closely by the black hole and acceler-
ates to infinity again. If she now checks her measuring appa-
ratus, it will have recorded some particles, created in the
vicinity of the black hole, which are emitted to asymptotic
infinity. Hence, the black hole emits blackbody radiation with
a number operator expectation value:

1
Ny=———7—7—7—-, 20
)= (20
where w is the mode frequency at temperature
K
T=_—— 21
> (21)

and « is the surface gravity. In the Schwarzschild metric,
K=1/4M.

4.3. Black Hole Thermodynamics. Hints about the thermody-
namic properties of black holes came prior to the discovery of
Hawking radiation with the formulation of the area theorem.
The area theorem says that the horizon area should increase
in any general physical situation. Of course, it was developed
entirely on a classical gravity basis.

4.3.1. The Zeroth Law. The zeroth law of black hole thermo-
dynamics states that the surface gravity « of a stationary solu-

tion is uniform throughout the horizon. The statement can
be proven without using the field equations. Consider the
Killing field which can be interpreted as a generator of the
horizon [10, 15]

Xo=6&i+ QHEW (22)

where Qy; is the angular velocity of the horizon, which van-
ishes for static solutions.

In Schwarzschild coordinates, the Killing field y,, is time-
like for r > 2M, null for r=2M, and spacelike for r <2M.
Since the Killing field on the horizon is null

XX =0, (23)

we can write

XbXa;b =KX (24)

where « is the surface gravity. Taking the Lie derivative of
(24) yields

K, ak’ = 0. (25)

Evidently, « is constant along the generated null Killing
horizon. It is straightforward to see the similarity with the
zeroth law of thermodynamics which states that the temper-
ature of a system in thermal equilibrium is constant.

4.3.2. The First Law. The first law of black hole thermody-
namics makes a statement about the constancy of the stress
tensor, where for the case of a rotating charged black hole it
reads

dA
dM = K% +Qd] + ©dQ, (26)

where all the terms are defined locally on the horizon and x
plays the role of temperature.

This is a dynamical equation which shows how the mac-
roscopic black hole parameters react to perturbations. In its
simplest form, where @ = J =0, (26) can be written as

AM = J T, 8K dAdA, (27)
where we can expand (27) as

am= (=) J R KK AdNA= () J %Adm

- (ﬁ) J (~p)dAdA = (&)AA

(28)

Here, A is the horizon area, A is the affine connection
term, and k" is a tangent vector to the horizon generators.
Moreover, the stress tensor is given in terms of the Riemann
tensor and the tangent and Killing vectors.



4.3.3. The Second Law. The second law of black hole thermo-
dynamics is related to the well-known Hawking area theo-
rem. It states that, assuming the validity of the cosmic
censorship conjecture and the positive energy condition,
the horizon area of a black hole can never decrease classically.
It is generally stated as

dA >0. (29)

Quantum mechanically, of course, black holes do decay
via Hawking radiation. As it was shown in the generalized sec-
ond law, this thermal spectrum radiation has some nonzero
entropy; thus, the total entropy never decreases. Apparently,
this is reminiscent of the second law of thermodynamics.

4.3.4. The Third Law. The third law of black hole thermody-
namics says one cannot reduce the horizon surface gravity «
to zero in a fine number of steps. At first sight, one is tempted
to conclude that given « = 1/4M, in order for « to vanish, infi-
nite mass has to be added to the black hole. Or said otherwise,
the surface gravity can only be reduced to zero in an infinite
number of steps. Let us look at the case of a Reissner-
Nordstrom metric. Its surface gravity is defined as

4t
=", 30

where y is the mass-to-charge ratio, where for an extremal
black hole, y = 0.
When p = 0, the horizon area is given as

A=4m(2M* - Q). (31)

Clearly, the above equation is ill-defined since it implies
vanishing temperature but a nonzero area. So if M? < Q?, this
would mean that there is a naked singularity which violates
the censorship conjecture.

5. The Information Paradox

With the derivation of Hawking radiation, it was clear that
there was a clash of principles. On the one hand, traditional
general relativistic description suggests that when a star col-
lapses to a black hole, a singularity forms which, by the cen-
sorship conjecture, is hidden from the rest of the universe by
an event horizon. The event horizon is a causal boundary
which prevents outside observers from probing the black
hole interior as well as particles from the inside to escape.
Restricting ourselves to the general relativistic picture, matter
falls inside a black hole and reaches the singularity in some
finite proper time, and thus, the information about its quan-
tum state is lost. Quantum mechanically, however, the evolu-
tion of quantum states is unitary. Hence, once matter enters
the black hole, and later the system evaporates, radiating
quanta to asymptotic infinity, the information about the
quantum state of the perturbed matter should be preserved.
An eventual loss of information would imply, given the emit-
ted Hawking quanta are in a maximally mixed state, that a
black hole turns a pure state into a density matrix (36). Fol-
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lowing quantum mechanics, the combined state of the black
hole and the emitted Hawking radiation is given by the ten-
sor product of their Hilbert spaces

x = %BH ® %rad’ (32)
where
¥, € Hpu» (33)
Ve e ua-

Hence, the general pure state ¥ takes the following form

¥)=1#),8[¥)p- (34)

Alice, an outside observer, only having access to the emit-
ted Hawking radiation, sees it as being in a thermal state,
described by a reduced density matrix

Pp=Trapag: (35)

That is, as far as she is concerned, a pure state has evolved
into a density matrix

|¥) — p. (36)

The basic framework suggests that pairs of entangled par-
ticles are created in the near-horizon region. The positive
energy one is radiated to asymptotic infinity I*, while the
negative energy partner falls inside, causing the black hole
to lose mass. This process continues until the black hole radi-
ates away all of its mass. Alice, collecting the emitted Haw-
king particles, sees them in a thermal state (35). That is
because as far as she is concerned, the part of the density
matrix, describing the remaining black hole degrees of free-
dom, is traced out (hidden behind the horizon), and so, the
emitted quanta are described by a reduced density matrix.
By the no-hair conjecture, nothing about the black hole, apart
from M, J, and Q, can be known by an outside observer.
Therefore, information is effectively lost.

6. Approaches to the Paradox

Through the years, there have been many different proposals
for addressing the information loss problem [16, 17]. Some
models advocate for more radical modifications to the stan-
dard black hole description, while others suggest that small
corrections to the Hawking emission may be enough to safe
unitarity of quantum theory. In the current section, we
briefly review some of the more prominent proposals.

6.1. Fuzzballs. The fuzzball proposal [18-21] motivated by
superstring theory models suggests that black holes are in fact
giant fuzzball objects. The general framework proposes that
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there is a membrane (fuzzball surface) just outside the
would-be horizon

rp=2M+5, (37)

where ¢ is a small positive constant.

Since this surface is physical, and cannot be omitted by
suitable coordinate change, the fuzzball has no interior
region. Effectively, the whole black hole is replaced by a
horizon-area-sized fuzzball via extremely unlikely quantum
tunneling effects which in this case are associated with gross
violations of energy/momentum conservation. So, the infall-
ing matter would hit the fuzzball surface and be absorbed.
Even though nothing prevents infalling particles from being
reflected back to asymptotic infinity, the large microscopic
entropy of the system makes reflection nontrivial, meaning
not every degree of freedom is reflected in a mirror-like fashion.

Unlike classical black holes, here, the microstate of the
system is not given by the generic semiclassical state, up to
a constant, but rather by the fuzzballs forming the object.
Similar to any hot object, the black-hole-sized fuzzball radi-
ates. There is an important difference to regular black holes,
however. In this case, the emitted radiation does not come
from particle creation in the vicinity of the fuzzball. But
rather, since there is no causal boundary, the emitted parti-
cles are reflected off the fuzzball surface. Because the region
just outside the fuzzball is not in a vacuum state but has a
physical surface, the region close to the would-be horizon
can be probed by outside observers. Similar to generic col-
lapsing models within classical general relativity, the outside
region of neutrally charged fuzzball is given by the Schwarzs-
child metric. Thus, if one probes the near-fuzzball region
using massless particles, the dynamics should be well defined.

The conjectured fuzzball model may seem appealing
because of the way it deals with singularities. Simply put,
since there is no interior spacetime, no singularity forms.

6.2. Black Hole Remnants. One way of addressing the infor-
mation paradox is redefining the late-time Hawking evapora-
tion process [22, 23]. In the classical picture, a massive star
collapses to form a black hole, which then evaporates mono-
tonically through emitting Hawking particles to asymptotic
infinity until it has radiated all of its initial entropy. The black
hole remnant scenarios suggest that black hole evaporation
comes to a halt when either My — m, or My, — M,,
where My > M, > mp.

We may generally define a remnant as a late-time black
hole stage, localized with respect to outside observers, which
could be either eternal or long-lived (i.e., metastable). Note
that the long-lived remnants have a lifespan which is very
long even compared to the age of the universe. For instance,
a nonrotating uncharged black hole of mass M has a lifetime
O(M?), while a remnant of the same mass has a lifetime,
exponential in n for n>4. So, even though the metastable
remnants are, strictly speaking, not eternal, they could be eas-
ily taken as such for all practical purposes.

The metastable remnants emit radiation through a
strictly non-Hawking-like mechanism, where the emission
is associated with their nonzero temperature. The remnant

is assumed to remain maximally entangled with its environ-
ment, resulting in a pure state. Similar to black holes, when
they radiate away their initial entropy, they disappear.
Because remnants were developed to save unitarity of quan-
tum mechanics, they have to be able to contain all the informa-
tion of the black hole. Emitting that information, however,
requires energy, and remnants are considered to be low-
energy objects. Releasing all of the initial black hole informa-
tion would take an exponentially long time, hence motivating
their long life spans. The eternal remnants, however, may still
radiate some particles, but they do so extremely slowly. Gener-
ally, the eternal remnants are assumed to store the initial black
hole information forever.

The general argument in favor of remnants suggests that
if a black hole evaporates completely, a large number of its
microstates would be lost. So, an outside observer, collecting
the Hawking particles, will not be able to reconstruct the
complete wave function

|lehole> = Z 06?
i

l/I;’ad > ® ’ gDi'nterior > , (38)

where a* is a complex amplitude.

Although remnants may seem appealing as an elegant
and somewhat less exotic solution to the information prob-
lem, as of now, there are obvious shortcomings with that pro-
posal that need to be addressed. For instance, the model
suggests that it shields the singularity from outside observers,
but it is not immediately clear how this would work out for
Planck mass remnants. Another obvious setback comes from
AdS/CFT. Namely, how can a Planck mass remnant store all
of the initial black hole entropy without violating the Beken-
stein entropy bound? These are some of the open questions
which we expect will be addressed in the future.

6.3. Corrections to Classicality

6.3.1. Why We Need Them. Following the equivalence princi-
ple of general relativity, an infalling observer crossing the
horizon of a black hole with mass My > m, should not feel
anything out of the ordinary (the no-drama principle). In
fact, the low-energy semiclassical black hole picture is based
on the following statements:

(i) Quantum mechanics is unitary

(ii) There is no drama at the horizon for an infalling
observer (the equivalence principle holds)

(iii) Local quantum field theory is valid in the near-
horizon region

The validity of that semiclassical description is expected
to hold through most of a black hole’s lifetime. That is, the
low-energy picture should be accurate for as long as pertur-
bation theory is correct.

As it is well understood, static spherically symmetric
black holes in asymptotically flat spacetimes exhibit inverse
proportionality between their mass and their temperature,
as Mpy — 0, T — oo (21). In this case, divergences occur.
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FIGURE 2

Hence, as the black hole adiabatically loses mass, the pertur-
bative analysis breaks down at some energy scale. This line of
reasoning partially motivated the recently described remnant
scenarios and also the possibility of late-time black hole
explosions [24].

Usually, modifications to semiclassical physics are not
associated with changes in macroscopic dynamics at low
temperatures. Deviations from the classical general relativity
regime are expected to manifest when the mass of a black
hole reaches the Planck scale.

Recently, however, AMPS [25] suggested that the equiva-
lence principle may be violated even when the black hole is
massive. They conjectured that violations to the traditional
general relativistic picture do not depend on the mass of
the black hole but rather on cross-horizon entanglement.
The AMPS argument, in a nutshell, goes as follows. Consider
a classical collapse of a pure state, and suppose the black hole
is let to freely evaporate to asymptotic infinity. As it evapo-
rates, the entanglement entropy between the black hole and
the emitted Hawking cloud increases. That is, the entangle-
ment entropy is initially low and monotonically increases
until it reaches its maximum value at Page time

tpage ~ O(M?). (39)

At Page time, the black hole has radiated away half of its
initial entropy, so it can still be fairly massive. After fp,,,
dim (%radiation) > dim (%BH)'

Imagine now an infalling observer after Page time,
Figure 2. Following the basic principles of semiclassical black
holes above, an infalling observer should measure that the
early Hawking radiation C is purified by the late-time radia-
tion B, as it is demanded by unitarity of quantum theory. By
the monogamy of entanglement, however, if B and C are
maximally entangled, then there cannot be entanglement
between B and the interior degrees of freedom A. The lack
of entanglement between A and B yields a highly nontrivial
state at the horizon, as far as an infalling observer is con-
cerned, ie., firewall. To protect the equivalence principle,
we need to have maximum cross-horizon entanglement.
And this cannot be the case if unitarity is to be preserved.

Suppose we have a Schwarzschild black hole (13) whose met-
ric is factorized as in ((32)-34). Here, strong subadditivity

reads
Spc + Sap = Sapc + Sps (40)
where C and B are early and late Hawking radiation, respec-
tively, and A denotes the remaining modes inside the black
hole. The no-drama statement above implies that S,z =0,
which would make S, - = S.. Then, (40) would become
Sc=Sc+ S (41)

which is evidently false.

We can furthermore suppose that A, B, and C are individ-
ual qubits and state the monogamy of entanglement as
E(C| AB) = E(B| C) + E(C| A), (42)
where E is bipartite entanglement. As we commented earlier,
assuming AB are maximally entangled, as it is required by
the equivalence principle, then no entanglement can exist
between BC as is required by unitarity of quantum mechanics.
As we can see, according to AMPS, deviations from tradi-
tional general relativity can, and even should, manifest even
for massive black holes. The main takeaway from the firewall
paradox is that the stated above 3 principles cannot simulta-
neously be true. So, we have to give up on either unitarity, as
predicted by quantum theory, or the equivalence principle of
general relativity. This apparent contradiction is, namely,

where the fundamental importance of the firewall paradox
stems from.

6.3.2. Low-Curvature General Relativity Corrections. The fire-
wall paradox demonstrates that corrections to general rela-
tivity not only are justified but also should manifest in low-
curvature regimes when the black hole is still massive com-
pared to the Planck scale. Studying quantum field theory in
curved spacetimes is a more conservative way for addressing
the connection between gravity and quantum theory.
Consider the following toy model [26-28]. Suppose we
have a pure state collapse |¥ in the metric (13). Following
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the Hilbert space decomposition of the system, its complete
pure state is given as the tensor product of its corresponding
subsystems, where each subsystem is given by a reduced den-
sity matrix.

In this setting, one can consider the Minkowski vacuum
in the near-horizon region. The vacuum state, up to a con-
stant, is given in terms of the eigenstates associated with the
corresponding wedges

|vacuum), = Z}E?> ®|E}), (43)

1

where the entanglement of the closest wedge modes normal-
izes the stress tensor at the horizon. However, the stress
tensor still fluctuates. We are interested in the metric back-
reaction to the stress tensor fluctuations. One may assume
that those fluctuations can alter the emitted Hawking spec-
trum or modify the near-horizon metric. We will now briefly
look at the backreaction of the background metric (in the
horizon vicinity) to linear perturbations of the gravity field,
i.e., graviton h,,. We believe that this is the most fruitful
approach since it does not introduce gross violations of gen-
eral relativity but rather tightly confined ones which can
potentially be probed by the EHT and LIGO.

Suppose the matter fields in the near-horizon region
coupled universally to /. Those nonvanishing interactions
will contribute to the stress tensor which fluctuates and hence
perturbs the metric. Of course, away from the black hole r
> 1, the overall effect of those metric fluctuations is weak.
Keep in mind, however, that still hfw #0. As the graviton

fluctuates, it perturbs the neighboring metric
ds* = (gw + hw)dx” ®dx". (44)

If we concentrate on a small part of the black hole hori-
zon, the backreaction will be negligible since h,,, is sourced
by the local energy density. When evaluated on O(rg), how-
ever, the effects of the metric backreaction accumulate and
become nontrivial. As the 2-point function, the strength of

hzw can be expressed as [29, 30]

()= o [ G o ))

(45)

As a result, the radial distance between a pair of close

nearby points x and x' varies stochastically, sourced by the
fluctuating graviton

() (') ) = 29(x) ("), (46)

where ¢(x') denotes the fluctuating at a given point graviton.

Considering the accumulated effect may result in O(1)
deviations from general relativity which, importantly,
could have important implications for the information
loss problem.

In addition, any such metric fluctuations should affect
test particles by producing nontrivial deviations from the
classical geodesic equation. As a result, the geodesic equation
(8) receives a linear metric correction VZ/& and becomes the

Langevin equation

dxH
d_)fr = —I“Zﬁx"‘xﬁ - yZﬁx“xﬁ, (47)

where x' is a 4-vector.

Using Langevin, we can, in principle, calculate some devi-
ations from the classical trajectories that test particles follow.
That quantum correction accumulates over the black hole’s
lifetime and eventually becomes O(1). For instance, one can
assume that the fluctuations produce nonlocal effects which
carry the information out of the black hole. (It should be
noted, however, that the question of the validity of the pro-
posed “soft” quantum corrections to the black hole geometry
is very much open as some have suggested [31, 32] that the
proposed corrections are not strong enough to restore unitar-
ity to black hole evaporation. Moreover, some have criticized
the model due to the apparent lack of testable predictions in
the context of AdS/CFT (see [33] and the references
therein).)

The conjectured fluctuations of the stress tensor in the
vicinity of the horizon may be considered to lead to a form
of stimulated Hawking emission. In some models [34],
restoring unitary evolution necessitates the emission of extra
particles beyond the traditional Hawking spectrum. An
important condition that has to be met in this scenario is that
the additional Hawking particles need to respect the equiva-
lence principle. Hence, the quanta should be low temperature
with wavelength of order the Schwarzschild radius and
should only appear as a small correction to the overall spec-
trum. For this criteria to be met, one can assume that the
extra radiation begins early, i.e., much before Page time.

7. Naked Singularities

The discussion in Section 6 was focused on different
approaches to the information loss problem, assuming, of
course, that a black hole is the endstate of a gravitational col-
lapse. In parallel, however, there has been an interesting line
of research exploring different possible scenarios for gravita-
tional collapse endstates, the most promising of which are the
so-called naked singularities, namely, singularities which are
not cloaked behind a horizon.

The Penrose-Hawking singularity theorems [35] dictate
that, following the Einstein equations (11), at the end of a
gravitational collapse of a physically reasonable matter, a
spacelike singularity forms (For comprehensive reviews, see
[36-38].). Although we may not be completely sure about
the nature of singularities, it is well established that they
lead to breakdown of classical physics, and any eventual
treatment of the pathologies should be within the realm
of quantum gravity. The weak and strong cosmic censor-
ship conjectures are very useful tools for dealing with
singularities. Let us take a brief look at them before return-
ing to the main part of the section.
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The weak cosmic censorship [39, 40] is a statement about
naked singularities and suggests that a spacelike singularity,
formed in gravitational collapse, is hidden behind a horizon.
Simply put, given generic conditions (the details of which are
beyond the scope of the current paper) applying to both, the
matter fields, and the asymptotic flatness of spacetime, a far-
away observer cannot probe a singularity. Let us be more pre-
cise. Imagine (.#, g,,) is an asymptotically flat spacetime,
and & is a black hole region within that spacetime. More
formally,

B=M-T (T, (48)

where I (") denotes the region in the past of future null
infinity, and the black hole horizon is the boundary of %:

H=0R. (49)

Given this spacetime region, the weak cosmic censorship

can be defined as follows.
7.1. Weak Cosmic Censorship. Suppose (h,,, K,,,y) (Note
that the stress tensor of y should satisfy generic energy con-
ditions.) is nonsingular asymptotically flat initial data defined
on a hypersurface . Then, the maximal Cauchy develop-
ment of this initial data is complete and thus yields an
asymptotically flat spacetime.

To put it vaguely, an asymptotic observer at future null
infinity will never encounter a singularity.

The strong cosmic censorship [41-43] is roughly the
statement that infalling observers in spacetimes which admit
Cauchy horizons (e.g, Kerr (14) or Reissner-Nordstrom
(16)) cannot probe the timelike singularity. That is, infalling
observers cannot cross the Cauchy horizon. The conjecture
generally suggests that.

7.2. Strong Cosmic Censorship. Given smooth asymptotically
flat vacuum initial data (i.e., globally hyperbolic solutions to
(11)), defined on a codimension-1 submanifold X within
the black hole interior, the maximal Cauchy evolution is
inextendable beyond the Cauchy horizon. (The precise for-
mulation is very subtle and is outside the objective of the
paper. For a detailed take on the matter, the reader is referred
to [41-44] and the references therein.)

That is, the spacetime is globally hyperbolic, meaning
there is intrinsic predictability, given some initial data. Inter-
estingly, the validity of the strong cosmic censorship was
recently put into question. It was demonstrated by Dafermos
and Luk [44] for the case of a subextremal Kerr black hole
that when perturbing the initial data, the metric is continu-
ously extendable across the Cauchy horizon. Without going
into much details, in [44], Dafermos and Luk proved the fol-
lowing theorem.

Theorem 1 (see [44]) (Moreover, their results have also been
considered for Einstein-Maxwell-real-scalar-field [45, 46]
and Einstein-Maxwell-Klein-Gordon systems [47].). Con-
sider general vacuum initial data corresponding to the
expected induced geometry of a dynamical black hole settling
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down to Kerr (with parameters 0< |a| < M) on a suitable
spacelike hypersurface X within the black hole. Then, the max-
imal evolution of the spacetime (M, gw), corresponding to X,

is globally covered by a double null foliation and has a non-
trivial Cauchy horizon across which the metric is continuously
extendable.

We should note that the two conjectures are not directly
related and need not hold simultaneously. Below, we focus
on the weak censorship and, in particular, on the observational
distinguishability between naked singularities and black holes.

Broadly speaking, naked singularities can be either locally
or globally naked. A singularity is locally naked if there are
null or timelike geodesics which can reach an outside
observer. For example, an observer who has crossed the hori-
zon of a massive Reisner-Nordstrom black hole. As far as
such observer is concerned, she is timelike separated from
the singularity. At the same time, no rays from the singularity
can reach spacelike separated (i.e., outside) observers. Glob-
ally naked singularities are those which could be probed by
observers at future null infinity. Here, no horizons are pres-
ent, and null or light rays can reach asymptotic observers.
Since the globally naked singularities can, in principle, be
probed by asymptotic observers, one naturally asks whether
those singularities are point-like or are extended. Of course,
that cannot be accurately addressed and depends on the mat-
ter fields in the given collapse model and on the equation of
state. Basically, we assume that if a timelike singularity forms,
it will typically be extended, and thus, light rays will be emit-
ted. However, it has been argued [48-52] that it is possible
even for point-like singularities to have outgoing geodesics
at some time slice.

In addition, an observer may be interested in measuring
the mass of a naked singularity. Although one may be tempted
to consider an exotic case where the mass is negative, usually,
certain generality conditions apply which put tight constraints
on such scenarios. Those constraints, like positive mass/e-
nergy density, and nonsingular initial conditions, for instance,
render negative-mass cases physically unreasonable (unless
one is willing to employ very complicated and fine-tuned sce-
narios which rely on ad hoc considerations).

Another interesting possibility to consider is the relation
between naked singularities and causality. Generally, causal-
ity violations in general relativity are associated with the
presence of closed timelike curves. In fact, the presence of a
singularity necessitates closed curves in the near future
geometry. The Penrose-Hawking singularity theorems, how-
ever, dictate that if there is a singularity, then causality should
be safely clocked behind a horizon, given the semiclassical
metric. Usually, establishing any relation between naked sin-
gularities and causality violation is highly nontrivial. This is
partly because of the different naked singularity configura-
tions one may consider.

In light of the recent advancements in multimessenger
astronomy, we naturally ask questions such as the following:
what are the observational signatures of such exotic objects,
will the neighboring geometry be affected, and can we distin-
guish astrophysical black holes from naked singularities? We
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have so far seen that naked singularities come in different
forms, according to classical general relativity. Hence, their
observational signatures, if present at all, should also differ.
Intuitively, we assume that either the stress tensor blows up
at the naked singularity or some nontrivial quantum gravity
effects become relevant in the immediate vicinity of the
naked singularity. However, this line of reasoning does not
exclude the possibility of observing traditional general rela-
tivity in the neighboring geometry. For instance, suppose
we have a collapse in its endstate. In such scenarios, one
might expect energetic photons to escape the highly dense
region at small scales (where quantum gravity effects may
be present) and hence produce observable effects which
would differ from the standard black hole collapse models.
On the other hand, we can employ ray tracing and look for
deviations from the classical geodesic equation in the vicinity
of the object or for certain particle collision patterns yielded
from the singularity which deviate from the general relativity
prescriptions.

One possible place to look for observational discrepan-
cies is the accretion disk. Usually, accretion disks are studied
in terms of their luminosity and energy flux. For astrophysi-
cal black holes, streams of quanta are emitted from the polar
regions due to the strong electromagnetic field. As it has been
argued in [53, 54], for naked singularities, there should be
particular observational differences. Moreover, the lack of
horizon leads to repulsive forces which yield high energy
quanta emission not only from the poles but also from the
equatorial plane ®=m/2. Such characteristic emission
should have distinguishable spectrum differences to the usual
black hole one.

Another possibility for finding observational differences
comes from studying the photon sphere. Due to the conjec-
tured irregular geometry in the vicinity of the naked singular-
ity, the photon ring should have different bending angles for
the closest outgoing trajectories [55]. And finally, another
possible source of discrepancy is again related to the irregular
horizonless of the naked singularity metric. As a result, fam-
ilies of infalling particles may be ejected to asymptotic infin-
ity or outgoing ones may be deviated towards the singularity.
That mixing of trajectories will, inevitably, lead to particle
collisions which should not be observed in classical black
hole solutions. Of course, a similar argument could be made
for the waveform of the emitted gravitational radiation, too.
Namely, the difference in the near-singularity geometry
should, in principle, lead to deviations from the general rela-
tivistic predictions, especially for the higher frequency early-
emitted gravitational waves.

8. Conclusions

We examined the main black hole solutions and outlined
their geometrical properties. We then showed that the deri-
vation of the thermal Hawking emission spectrum and the
relation of the black hole entropy to the area of its horizon
solidified the thermodynamic nature of the system. Later,
we demonstrated how the interplay between gravity and
quantum field theory in a black hole background has lead
to a profound puzzle. The fundamental relation between

11

geometry and quantum information, on the one hand, and
the robustness of quantum theory, on the other, have demon-
strated the deep roots of the information loss paradox. We
commented on the more popular proposals for addressing
it in Section 6. Interestingly, what they show is that the para-
dox cannot be trivially addressed, and any potential attempt
at resolving it must rely on radically new physical principles.
Moreover, the proposals over the years have unambiguously
shown that we cannot continue relying on our good old cher-
ished principles, namely, effective field theory, unitarity, and
the equivalence principle, and that at least one of them has to
be modified. In the paper, we focused our attention on a toy
model, which introduces quantum corrections to the horizon
geometry. It was argued the conjectured quantum correc-
tions, although soft, are sufficiently strong to accumulate over
the lifetime of the black hole and ultimately lead to ©(1)
effects. Finally, we touched upon an alternative collapse end-
state which has recently gained popularity with the advances
in multimessenger astronomy, namely, naked singularities.
We first discussed the properties of the different kinds of
naked singularities and then the observational prospects,
where we concentrated on the possible observational discrep-
ancies between naked singularities and black holes.
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