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The modified short-wave equation is considered under periodic boundary condition.We prove the global existence of solution with
finite energy. We also find traveling wave solutions which is the form of elliptic function.

1. Introduction

The nonlinear propagation of waves of short wavelength in
dispersive systems was discussed in [1, 2]. They proposed
the simple nonlinear short-wave equation that is likely to
describe the asymptotic behaviour of the Benjamin-Bona-
Mahony-Peregrine equation [3, 4]. The short-wave equation
was studied in [1] numerically for periodic and nonperiodic
boundary conditions. The following characteristic initial
value problem for the periodic short-wave equation was dis-
cussed in [5]:

utx = u − 3u2, ð1Þ

with initial data

u x, 0ð Þ = f xð Þ, ð2Þ

where the real valued function u satisfies the periodic bound-
ary uð0, tÞ = uðL, tÞ and describes a small amplitude wave
depending on space variable x and time variable t.

The solution of the Fourier series was considered in [5]:

u x, tð Þ = 〠
n∈Z

un tð Þei2πnx/L, ð3Þ

where u−n = �un for all n ∈ Z. Integrating (1) on ½0, L�, they
obtained

ðL
0

u − 3u2
� �

x, tð Þdx = 0, ð4Þ

which implies, combined with (3),

u0 = 3u20 + 3 〠
n∈Z,n≠0

unj j2: ð5Þ

Then, they obtained

u0 =
1
6 1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 36 〠

n∈Z,n≠0
n2 unj j2

r !
, ð6Þ

from which a restriction on the initial data is imposed to
guarantee∑n∈Z,n≠0 n2junj2 < 1/36. Let us consider a homoge-
neous solution uðx, tÞ = uðtÞ. To satisfy (4), possible homoge-
neous solutions are uðtÞ = 0 and uðtÞ = 1/3 which gives a
serious constraint on the initial data.

The present work ismotivated by the question of whether the
restriction of the initial data can be removed. In order for the ini-
tial value problem tomake sense for a large range of initial data, it
seems to be essential to modify the differential equation (1). We
consider the following modified short-wave equation:

utx = u − 3u2 − 1
L

ðL
0

u − 3u2
� �

y, tð Þdy, ð7Þ
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with initial and boundary conditions

u x, 0ð Þ = f xð Þ,
u 0, tð Þ = u L, tð Þ = g tð Þ,

ð8Þ

where we assume compatibility condition f ð0Þ = f ðLÞ = gð0Þ.
We impose the second condition in (8) to guarantee uniqueness.
Note that the initial data (2) only is not sufficient for the unique-
ness of solution to the initial value problem [6–11]. Even for the
linear equation

vtx = 0, v x, 0ð Þ = f xð Þ, ð9Þ

we have solutions vðx, tÞ = f ðxÞ + hðtÞ, where h is any C1 func-
tion with hð0Þ = 0. For the solution to (7) satisfying (8), we have
a compatibility condition, considering uð0, tÞ =∑n∈Z unðtÞ,

u0 tð Þ = g tð Þ − 〠
n∈Z,n≠0

un tð Þ: ð10Þ

We refer to Section 2 for more information of (7) and (8).
We consider the solution of Fourier series (3). Let us

denote by H the space of complex sequences v = fvngn∈Z :

H = v = vnf gn∈Z∣∥v∥2<∞,v−n = �vn
� �

, ð11Þ

where the norm is defined by

∥v∥2 = v0j j2 + 〠
n∈Z,n≠0

n2 vnj j2: ð12Þ

The first result is concerned with the global existence of
solution.

Theorem 1. For data g ∈ C1½0,∞Þ and f ∈H satisfying f ð0Þ
= gð0Þ, problems (7) and (8) have a unique solution u ∈ Cð½
0,∞Þ,HÞ of the form (3).

Remark 2.

(1) Let u ∈ Cð½0, T�,HÞ be a solution of equation (7).
Then, we can show several regularity properties by
applying the same argument as Proposition 2.3 in
[5]. In fact, for all t ≥ 0, Fourier series solution (3)
converges uniformly in x. Its sum is differentiable in
x for almost all x ∈ ½0, L�. The derivative satisfies the
condition uxð·, tÞ ∈ L2½0, L� and uxðx, ·Þ ∈ C½0,∞Þ.
Moreover, ux is differentiable in t, and (7) holds for
almost all x ∈ ½0, L�

(2) It is an interesting problem to consider an initial
value problem of (1) on the whole line x ∈ R. We refer
to [7, 10, 11] for more information

Our next result is concerned with the existence of the
traveling wave solutions of the form

u x, tð Þ = u x + ctð Þ: ð13Þ

Note that any constant function u = C is a steady solution
of (7). We know, for L periodic function u,

ðL
0
u x + ctð Þ − 3u2 x + ctð Þ dx =

ðL
0
u xð Þ − 3u2 xð Þ dx =m,

ð14Þ

where m is a constant. Substituting the ansatz (13) in (7), we
obtain

c
d2u

dξ2
= u − 3u2 − m

L
, ð15Þ

where ξ = x + ct.

Theorem 3. There are nontrivial traveling wave solutions uð
x, tÞ = uðx + ctÞ to (7) for m < 0 or 0 <m/L < 1/16. In fact,
we have solutions of the elliptic function

u x + ctð Þ = a − bsn2 λ x + ctð Þ, kð Þ: ð16Þ

We refer to Section 3 for precise values of a, b, c, λ, and k.
With the change of variable t = 1/2ðT + XÞ and x = 1/2ð

T − XÞ, equation (1) becomes a semilinear wave equation

uTT − uXX = u − 3u2, ð17Þ

and initial condition (2) becomes data on characteristic line
T + X = 0. The Cauchy problem on the torus Tn for the semi-
linear wave equation vtt − Δv + f ðvÞ = 0 with initial data vðx
, 0Þ = v0ðxÞ, vtðx, 0Þ = v1ðxÞ was studied in [12, 13]. Stability
of periodic waves of KdV, Schrödinger, Klein-Gordon equa-
tions was studied in [14–16]. It is a quite interesting problem
to study the stability or instability of the above traveling wave
solution to (7).

In Section 2, Theorem 1 is proved. In Section 3, we find
traveling wave solutions of (7) to prove Theorem 3. We will
use A ≲ B to denote an estimate of the form A ≤ CB, where
C is a positive constant.

2. Proof of Theorem 1

Let us introduce the following main result of [5].

Theorem 4. If f ∈H satisfies

〠
n∈Z,n≠0

n2 f nj j2 < 1
72

,

ðL
0
f xð Þ − 3f 2 xð Þ dx = 0,

ð18Þ

then problems (1) and (2) have one and only one solution of
the form (3). For all t ≥ 0, Fourier series (3) converges uni-
formly in x. Its sum is differentiable in x for almost all x ∈ ½0
, L�. The derivative satisfies the condition uxð·, tÞ ∈ L2ð0, L�
and uxðx, ·Þ ∈ C½0,∞Þ. Moreover, ux is differentiable in t,
and (1) holds for almost all x ∈ ½0, L�.
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Two restrictions on the initial data are imposed in Theo-
rem 4. Let us review the derivation of equation (1). The Ben-
jamin-Bona-Mahony-Peregrine equation reads as

Vt + Vx − Vxxt = 3 V2� �
x
: ð19Þ

Taking change of variables Vðx, tÞ =Uðξ, τÞ with ξ = x/ε
and τ = εt, equation (19) becomes

εUτ +
1
ε

Uξ −Uξξτ − 3 U2� �
ξ

� �
= 0: ð20Þ

Considering small ε, an asymptotic equation Uξ −Uξξτ

− 3ðU2Þξ = 0 is obtained which can be integrated in ξ to give

Uξτ =U − 3U2 +H τð Þ, ð21Þ

where HðτÞ is integration constant with respect to variable ξ.
The zero condition HðτÞ = 0 was considered in [1].

To remove restrictions on the initial data in Theorem 4
and allow more solutions like traveling wave solutions, we
consider the following modified short-wave equation:

utx = u − 3u2 − 1
L

ðL
0
u − 3u2 dx, ð22Þ

with conditions

u x, 0ð Þ = f xð Þ, ð23Þ

u 0, tð Þ = u L, tð Þ = g tð Þ, ð24Þ

where we assume f ∈H, g ∈ C1½0,∞Þ and compatibility con-
dition f ð0Þ = f ðLÞ = gð0Þ. We can check that

Ð L
0 utx dx = 0 in

(22). Note that the initial data (23) only is not sufficient for
the uniqueness, and additional condition (24) is needed for
the characteristic initial value problem [6, 7, 17].

Substituting (3) into (22), we obtain a system of ordinary
differential equations

d
dt

un = −
iL
2πn un − 3 〠

α+β=n
uαuβ

 !
for n ≠ 0: ð25Þ

For n = 0, the left side of (22) is zero. Let us calculate the
right-hand side of (22). Considering the solution of Fourier
series (3), we have

1
L

ðL
0
u − 3u2dx = u0 − 3u20 − 3 〠

n∈Z,n≠0
unj j2: ð26Þ

Then, the right-hand side of (22) becomes for n = 0

u0 − 3 〠
α+β=0

uαuβ −
1
L

ðL
0
u − 3u2dx = u0 − 3u20 − 3〠

α≠0
uαu−α

− u0 − 3u20 − 3 〠
n∈Z,n≠0

unj j2
 !

= 0,

ð27Þ

where u−α = �uα is used. Relation (24) implies

u0 tð Þ = g tð Þ − 〠
n∈Z,n≠0

un tð Þ: ð28Þ

Therefore, we arrive at the following system of ODEs:

d
dt

un = −
iL
2πn un − 3 〠

α+β=n
uαuβ

 !
for n ≠ 0,

u0 tð Þ = g tð Þ − 〠
n∈Z,n≠0

un tð Þ,

un 0ð Þ = f n,

ð29Þ

where f ðxÞ =∑n∈Z f ne
i2πnx/L.

We say that a function u ∈ Cð½0, T�,HÞ is a solution to
problem (22)–(24), if the Fourier coefficients un satisfy (29)
for all n. For v ∈ Cð½0, TÞ,HÞ, we define an operator Φ : Cð½
0, TÞ,HÞ→ Cð½0, TÞ,HÞ:

Φn vð Þ tð Þ = f n −
iL
2πn

ðt
0

vn − 3〠
α∈Z

vαvn−α

 !
for n ≠ 0,

Φ0 vð Þ tð Þ = g tð Þ − 〠
n∈Z,n≠0

Φn vð Þ tð Þ:

ð30Þ

We will prove a local existence part of Theorem 1 by
applying a standard contraction mapping theorem. Denote
by Fg ∈ Cð½0, T�,HÞ the function Fgðx, tÞ = f ðxÞ + gðtÞ and
consider a space

STM = v ∈ C 0, T½ �,Hð Þ: ∥v − Fg∥≤M
� �

, ð31Þ

where T > 0 and M > 0.

Proposition 5. Let f ∈H and g ∈ C1. Then, the mapping (30)
is a contraction mapping from STM to STM for a sufficiently
small T .

Proof.We follow the argument of Proposition 2.2 in [5] with
little modifications which come from the different definition
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of Φ0ðvÞ in (30) from (6). For v, ω ∈ STM , we have

〠
n≠0

n2 Φn vð Þ −Φn ωð Þj j2

≲ 〠
n≠0

ðt
0
∣ vn − ωn∣+ 〠

∞

k=−∞
vk − ωkj j vn−kj j + ωkj j vn−k − ωn−kj jds

 !2

≲ t〠
n≠0

ðt
0
vn − ωnj j2 + 〠

∞

k=−∞
∣ vk − ωk ∣ ∣vn−k∣+∣ωn−k ∣ð Þ

 !2

ds

≲ t〠
n≠0

ðt
0
vn − ωnj j2 + v0 − ω0j j2 vnj j2 + ωnj j2� �

+ 〠
k≠0

1
k2

 !
〠
k≠0

k2 vk − ωkj j2 vn−kj j2 + ωn−kj j2� �
ds

≲ t
ðt
0
1 + 〠

n≠0
vnj j2 + ωnj j2 ds

 !
∥v − ω∥2

≲ T2 1+∥v∥2+∥ω∥2
� �

∥v − ω∥2:

ð32Þ

We also have

Φ0 vð Þ −Φ0 ωð Þj j2 ≤ 〠
k≠0

Φk vð Þ −Φk ωð Þ
					

					
2

≤ 〠
k≠0

1
k2

 !
〠
k≠0

k2 Φk vð Þ −Φk ωð Þj j2
 !

≤ CT2 1+∥v∥2+∥ω∥2
� �

∥v − ω∥2,
ð33Þ

where (32) is used. Combining (32) and (33) and considering
v, ω ∈ STM , we have

∥Φ vð Þ −Φ ωð Þ∥2 ≤ CT2 1+∥Fg∥
2 +M2� �

∥v − ω∥2, ð34Þ

which is contraction mapping for sufficiently small T > 0.

Let u ∈ Cð½0, T�,HÞ be a solution of the equation u =Φð
uÞ. Then, we can show several regularity properties in
Remark 2 by applying the same argument as Proposition
2.3 in [5]. We skip the proof. We will prove the conservation
of H norm.

Proposition 6. Let u ∈ Cð½0, T�,HÞ be a solution of (22).
Then, we have

〠
n∈Z

n2 un tð Þj j2 = 〠
n∈Z

n2 f nj j2: ð35Þ

Proof. Multiplying ∂xu on both sides of (22) and integrating
on ½0, L�, we have

d
dt

ðL
0

1
2 ∂xuj j2dx =

ðL
0

1
2 ∂x u2
� �

− ∂x u3
� �

dx −
1
L

ðL
0
u

− 3u2 dx
ðL
0
∂xu dx = 0,

ð36Þ

which implies

ðL
0

∂xu x, tð Þj j2dx =
ðL
0

∂xu x, 0ð Þj j2dx: ð37Þ

Moreover, a direct calculation implies that

ðL
0

∂xu x, tð Þj j2dx = 〠
n∈Z

4π2

L
n2 un tð Þj j2, ð38Þ

from which we can derive (35).
From Proposition 5, we have a local solution u ∈ Cð½0, T

Þ,HÞ of (22)–(24) for a sufficiently small T > 0. By Proposi-
tion 6, we can extend a local solution to a global one which
completes the proof of Theorem 1.

3. Traveling Waves

Here, we consider a traveling wave solution to (7) of the form

u x, tð Þ = u x + ctð Þ, ð39Þ

where a positive constant cwill be determined later. Note that
we have, for L periodic function u,

ðL
0
u x + ctð Þ − 3u2 x + ctð Þ dx =

ðL
0
u xð Þ − 3u2 xð Þ dx =m,

ð40Þ

where m is a constant. Substituting the ansatz (39) in (7), we
obtain

c
d2u

dξ2
= u − 3u2 − A, ð41Þ

where ξ = x + ct and A =m/L. We integrate (41) to obtain

c
2

du
dξ


 �2
= −u3 + 1

2 u
2 − Au≔ h uð Þ: ð42Þ

We will consider the cases of 0 < A < 1/16 or A < 0.

(1) For 0 < A < 1/16, h has three distinct real roots 0 < α
< β, where

α = 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

4 ,

β = 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

4 :

ð43Þ

Applying change of variable u = β − ðβ − αÞz2, we derive
an equation for z

dz
dξ


 �2
= λ2 1 − z2

� �
1 − k2z2
� �

, ð44Þ
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where λ2 = β/2c and k2 = ðβ − αÞ/β. It is well known in [18]
that the solution of (44) is given by the elliptic function zðξ
Þ = sn ðλξ, kÞ. Therefore, we have

u ξð Þ = β − β − αð Þ sn2 λξ, kð Þ: ð45Þ

Since the period of sn2ðx, kÞ is 2Ð π/20 dy/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2y

p
,

we impose the following condition from which the period
of (45) becomes L:

2n
ðπ/2
0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2y

p = λL for some n ∈N , ð46Þ

which can be rewritten as

2n
ðπ/2
0

1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p sin2y
 !−1/2

dy

= Lffiffi
c

p 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

8

 !1/2

:

ð47Þ

For a given 0 < A < 1/16, the constant c is determined by
(47).

(2) For A < 0, h has three distinct real roots α1 < 0 < α2,
where

α1 =
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

4 ,

α2 =
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

4 :

ð48Þ

Applying change of variable u = α2 − α2z
2, we have an

equation for z

dz
dξ


 �2
= λ2 1 − z2

� �
1 − k2z2
� �

, ð49Þ

where λ2 = ðα2 − α1Þ/2c and k2 = α2/ðα2 − α1Þ. Then, we have

u ξð Þ = α2 − α2 sn
2 λξ, kð Þ: ð50Þ

To make the solution (50) L periodic, we impose

2n
ðπ/2
0

1 − 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16A

p sin2y
 !−1/2

dy

= L

2 ffiffi
c

p 1 − 16Að Þ1/4 for some n ∈N:

ð51Þ

For a given A < 0, the constant c is determined by (51).

Remark 7. For A = 0, we have cðdu/dξÞ2 = u2ð1 − 2uÞ which
can be integrated as

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2u
p

+ 1

					
					 = eξ+a/

ffiffi
c

p
, ð52Þ

where a is an integration constant. We know that u ≤ 1/2. If
uðξ0Þ = 0 for some ξ0, we have 0 = eðξ0+aÞ/

ffiffi
c

p
which is a contra-

diction. So, we have 0 < u ≤ 1/2 or u < 0. For a periodic func-
tion u, we have uð0Þ = uðLÞ. Then, we obtain eðL+aÞ/

ffiffi
c

p
= ea/

ffiffi
c

p

which is a contradiction. The similar argument can be
applied for the case of A = 1/16 to show that there is not a
nontrivial periodic solution u.
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