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In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional
nonlinear sine-Gordon equations subject to appropriate initial conditions. Some lemmas which help us to solve the governing
problem using the proposed method are proved. This scheme has the advantage of generating an analytical approximate
solution or exact solution in a convergent power series form with conveniently determinable components. The method
considers the use of the appropriate initial conditions and finds the solution without any discretization, transformation, or
restrictive assumptions. The accuracy and efficiency of the proposed method are demonstrated by four of our test problems, and
solution behavior of the test problems is presented using tables and graphs. Further, the numerical results are found to be in a
good agreement with the exact solutions and the numerical solutions that are available in literature. We have showed the
convergence of the proposed method. Also, the obtained results reveal that the introduced method is promising for solving
other types of nonlinear partial differential equations (NLPDEs) in the fields of science and engineering.

1. Introduction

Nonlinear phenomena, which appear in many areas of scien-
tific fields such as solid-state physics, plasma physics, fluid
dynamics, mathematical biology, and chemical kinetics, can
be modeled by partial differential equations. A broad class
of analytical and numerical solution methods were used to
handle these problems. Recently, several research on the
physical phenomena of the diverse fields of engineering and
science was carried out, see for example [1–9] and the refer-
ences therein.

The nonlinear sine-Gordon equation (SGE), a type of
hyperbolic partial differential equation, is often used to
describe and simulate the physical phenomena in a variety
of fields of engineering and science, such as nonlinear waves,
propagation of fluxions, and dislocation of metals, for details
see [10] and the references therein. Because the sine-Gordon
equation has many kinds of soliton solutions, it has attracted
wide spread attention [11]. The sine-Gordon equation was
first discovered in the nineteenth century in the course of
study of various problems of differential geometry [12]. In

the early 1970s, it was first realized that the sine-Gordon
equation led to kink and antikink (so-called solitons) [13].
As one of the crucial equations in nonlinear science, the
sine-Gordon equation has been constantly investigated and
solved numerically and analytically in recent years [10, 14–
18]. Different scholars employed different methods to solve
the one-dimensional sine-Gordon equation, for example,
the Adomian decomposition method (ADM) [19–23], the
EXP function method [24], the homotopy perturbation
method (HPM) [25–27], the homotopy analysis method
(HAM) [28], the variable separated ODE method [29, 30],
and the variational iteration method (VIM) [31, 32]. Further,
Shukla et al. [33] obtained numerical solution of the two-
dimensional nonlinear sine-Gordon equation using a local-
ized method of approximate particular solutions. Baccouch
[34] developed and analyzed an energy-conserving local
discontinuous Galerkin method for the two-dimensional
SGE on Cartesian grids. Duan et al. [35] proposed a
numerical model based on the lattice Boltzmann method
to obtain the numerical solutions of the two-dimensional
generalized sine-Gordon equation, and the method was
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extended to solve the nonlinear hyperbolic telegraph equa-
tion as indicated in [36].

The main aim of this study is to obtain the approximate
analytical solutions for the two-dimensional nonlinear sine-
Gordon equation (TDNLSGE), since most of the research
focused on the numerical solutions for this problem. The
reduced differential transform method is used for this pur-
pose for several reasons. The first reason is that the method
has not previously been studied to solve this problem. Sec-
ondly, the present method is easy to apply for multidimen-
sional problems and the corresponding algebraic equation
is simple and easy to implement. Thirdly, this method can
reduce the size of the calculations and can provide an analytic
approximation, in many cases exact solutions, in rapidly con-
vergent power series form with elegantly computed terms
([37] and see the references therein). Moreover, the reduced
differential transform method (RDTM) has an alternative
approach of solving problems to overcome the demerit of
discretization, linearization, or perturbations of well-known
numerical and analytical methods such as Adomian decom-
position, differential transform, homotopy perturbation,
and variational iteration [37–39].

In this paper, we investigate the solution of the two-
dimensional nonlinear sine-Gordon equation [40]:

∂2u
∂t2

+ β
∂u
∂t

= α
∂2u
∂x2

+ ∂2u
∂y2

 !
− ϕ x, yð Þ sin u + h x, y, tð Þ, x, yð Þ ∈Ω, t ≥ 0,

ð1Þ

subject to the initial conditions:

u x, y, 0ð Þ = φ1 x, yð Þ, x, y ∈Ω, ð2Þ

∂
∂t

u x, y, 0ð Þ = φ2 x, yð Þ, x, y ∈Ω, ð3Þ

by using RDTM, where Ω = fðx, yÞ: a ≤ x ≤ b, c ≤ y ≤ dg.
The function ϕðx, yÞ can be interpreted as a Josephson

current density, and φ1ðx, yÞ and φ2ðx, yÞare wave modes or
kinks and velocity, respectively. The parameter β is the so-
called dissipative term, which is assumed to be a real number
with β ≥ 0. When β = 0, Equation (1) reduces to the
undamped SGE equation in two space variables, while when
β > 0, to the damped one, and α is a nonnegative real
number.

The paper is organized as follows. In Section 2, we begin
with some basic definitions and operations of the proposed
method, and we introduce some lemmas that will be used
later in this paper. The implementation of the method is pre-
sented in Section 3. The convergence analysis of the method
is presented in Section 4. In Section 5, we apply RDTM to
solve four test problems to show the applicability, efficiency,
and accuracy of the method. Section 6 presents graphical rep-
resentation and physical interpretations of the solutions
behavior of the considered examples. Conclusions are given
in Section 7.

2. Preliminaries and Notations

In this section, we give the basic definitions and operations of
the two-dimensional reduced differential transform method
[37, 41–43].

Definition 1. If a function uðx, y, tÞ is analytic and differenti-
ated continuously with respect to space variables x, y and
time variable t in the domain of interest, then

Uk x, yð Þ = 1
k!

∂k

∂tk
u x, y, tð Þ

" #
t=t0

, ð4Þ

where Ukðx, yÞ is the t-dimensional spectrum function or the
transformed function.

Definition 2. The inverse reduced differential transform of a
sequence fUkðx, yÞg∞k=0 is given by

u x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þ t − t0ð Þk: ð5Þ

Then, combining Equations (4) and (5), we write

u x, y, tð Þ = 〠
∞

k=0

1
k!

∂k

∂tk
u x, y, tð Þ

" #
t=t0

t − t0ð Þk: ð6Þ

Remark 3. The function uðx, y, tÞ is represented by a finite
series (5) around t0 = 0 and can be written as ~unðx, y, tÞ =
∑n

k=0Ukðx, yÞtk + Rnðx, y, tÞ where the tail function Rnðx, y, t
Þ =∑∞

k=n+1Ukðx, yÞtk is negligibly small.

Furthermore, the inverse reduced differential transform
of the set of fUkðx, yÞgnk=0 gives an approximate solution as

~un x, y, tð Þ = 〠
n

k=0
Uk x, yð Þtk, ð7Þ

where n is the order of the approximate solution. Therefore,
by Definition 2, the exact solution of the problem is given by

u x, y, tð Þ = lim
n→∞

~un x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk: ð8Þ

From Equation (8), it can be found that the concept of the
reduced differential transform method is derived from the
power series expansion.

The fundamental mathematical operations performed by
RDTM are listed in Table 1.

In addition to the properties of RDTM given in Table 1,
we introduce the lemmas which provide us with a simple
way to apply the RDTM to the two-dimensional nonlinear
sine-Gordon Equations (1)–(3).
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Lemma 4. Assume that Fkðx, yÞ,Gkðx, yÞ andUkðx, yÞ are the
reduced differential transform of the functions f ðx, y, tÞ, gðx
, y, tÞ and uðx, y, tÞ, respectively, then, we have the following
RDTM results:

(i) If f ðx, y, tÞ = sin uðx, y, tÞ, then

Fk x, yð Þ =
sin U0, if k = 0,

〠
k−1

k1=0
1 −

k1
k

� �
Gk1

x, yð ÞUk−k1 x, yð Þ, if k ≥ 1

8>><
>>:

ð9Þ

(ii) If gðx, y, tÞ = cos uðx, y, tÞ, then

Gk x, yð Þ =
cos U0, if k = 0,

− 〠
k−1

k1=0
1 −

k1
k

� �
Fk1

x, yð ÞUk−k1 x, yð Þ, if k ≥ 1

8>><
>>:

ð10Þ

Proof.

(i) Applying properties of RDTM on both sides of f ðx,
y, tÞ = sin uðx, y, tÞ,, we obtain

F0 x, yð Þ = sin U0 x, yð Þ: ð11Þ

Then, by Leibnitz rule for higher order derivatives of the
products and properties of RDTMon f ðx, y, tÞ = sin uðx, y, tÞ,

we obtain,

Fk x, yð Þ = 1
k!

∂k

∂tk
f x, y, tð Þ

" #
t=0

= 1
k!

∂k

∂tk
sin u x, y, tð Þ

" #
t=0

:

ð12Þ

But ð∂k/∂tkÞf ðx, y, tÞ = ð∂k−1/∂tk−1Þðcos uðx, y, tÞð∂/∂tÞu

ðx, y, tÞÞ =∑k−1
k1=0

k − 1
k1

 !
ð∂k1gðx, y, tÞ/∂tk1Þð∂k−k1uðx, y, tÞ/

∂tk−k1Þ.
Therefore,

∂k

∂tk
f x, y, tð Þ

" #
t=0

= 〠
k−1

k1=0

k − 1

k1

 !
k1! k − k1ð Þ!Gk1

x, yð ÞUk−k1 x, yð Þ,

= 〠
k−1

k1=0
k − 1ð Þ! k − k1ð ÞGk1

x, yð ÞUk−k1 x, yð Þ:

ð13Þ

Hence, by using Definition 1, for k = 1, 2, 3,⋯, we get

Fk x, yð Þ = 1
k!

∂k

∂tk
f x, y, tð Þ

" #
t=0

= 〠
k−1

k1=0

1
k!

k − 1ð Þ! k − k1ð ÞGk1
x, yð ÞUk−k1 x, yð Þ

= 〠
k−1

k1=0
1 − k1

k

� �
Gk1

x, yð ÞUk−k1 x, yð Þ

ð14Þ

(ii) Applying properties of RDTM on both sides of gðx
, y, tÞ = cos uðx, y, tÞ, we get

Table 1: The fundamental mathematical operations of RDTM [37, 41, 44].

Original function Transformed function

u x, y, tð Þ Uk x, yð Þ = 1/k! ∂k/∂tk
� �

u x, y, tð Þ
h i

t=0

w x, y, tð Þ = α u x, y, tð Þ ± βv x, y, tð Þ Wk x, yð Þ = αUk x, yð Þ ± βVk x, yð Þ, where α and β are constants

w x, y, tð Þ = xmyntp Wk x, yð Þ = xmynδ k − pð Þ, where δ k − pð Þ =
1, if k = p,
0, if k ≠ p

(

w x, y, tð Þ = xmyntpu x, y, tð Þ Wk x, yð Þ = xmynU k−pð Þ x, yð Þ
w x, y, tð Þ = u x, y, tð Þv x, y, tð Þ Wk x, yð Þ =〠k

r=0Uk x, yð ÞVk−r x, yð Þ =〠k

r=0Vk x, yð ÞUk−r x, yð Þ
w x, y, tð Þ = ∂r/∂trð Þu x, y, tð Þ Wk x, yð Þ = k + rð Þ!/k!ð ÞUk+r x, yð Þ = k + 1ð Þ k + 2ð Þ⋯ k + rð ÞUk+r x, yð Þ
w x, y, tð Þ = ∂n/∂xnð Þu x, y, tð Þ Wk x, yð Þ = ∂n/∂xnð ÞUk x, yð Þ
w x, y, tð Þ = ∂n/∂ynð Þu x, y, tð Þ Wk x, yð Þ = ∂n/∂ynð ÞUk x, yð Þ
w x, y, tð Þ = sin αx + βy + ωtð Þ Wk x, yð Þ = ωk/k!

� �
sin kπ/2!ð Þ + αx + βyð Þ, where α, β, and ω are constants

w x, y, tð Þ = cos αx + βy + ωtð Þ Wk x, yð Þ = ωk/k!
� �

cos kπ/2!ð Þ + αx + βyð Þ, where α, β, and ω are constants
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G0 x, yð Þ = cos U0 x, yð Þ: ð15Þ

Using Leibnitz rule of higher order derivatives of the
products on gðx, y, tÞ = cos uðx, y, tÞ, we get

Gk x, yð Þ = 1
k!

∂k

∂tk
g x, y, tð Þ

" #
t=0

= 1
k!

∂k

∂tk
cos u x, y, tð Þ

" #
t=0

,

∂k

∂tk
g x, y, tð Þ = −

∂k−1

∂tk−1
sin u x, y, tð Þ ∂∂t u x, y, tð Þ
� �

= − 〠
k−1

k1=0

k − 1

k1

 !
∂k1 f x, y, tð Þ

∂tk1
∂k−k1u x, y, tð Þ

∂tk−k1
:

ð16Þ

Therefore,

∂k

∂tk
g x, y, tð Þ

" #
t=0

= − 〠
k−1

k1=0

k − 1

k1

 !
k1! k − k1ð Þ!Fk1

x, yð ÞUk−k1 x, yð Þ,

= − 〠
k−1

k1=0
k − 1ð Þ! k − k1ð ÞFk1

x, yð ÞUk−k1 x, yð Þ,

ð17Þ

and then using Definition 1, for k = 1, 2, 3,⋯, we get

Gk x, yð Þ = 1
k!

∂k

∂tk
g x, y, tð Þ

" #
t=0

= 〠
k−1

k1=0

1
k!

k − 1ð Þ! k − k1ð ÞFk1
x, yð ÞUk−k1 x, yð Þ,

= − 〠
k−1

k1=0
1 − k1

k

� �
Fk1

x, yð ÞUk−k1 x, yð Þ:

ð18Þ

Lemma 5. If ð∂kuðx, y, tÞÞ/ð∂tkÞ = φðx, yÞ, then

Uk x, yð Þ = φ x, yð Þ
k!

: ð19Þ

Proof. By Definition 1, Ukðx, yÞ = 1/k!½ð∂kuðx, y, tÞÞ/ð∂tkÞ�t=0,
and so, when k is replaced by n, we have,

Un x, yð Þ = 1
n!

∂nu x, y, tð Þ
∂tn

� 	
t=0

, ð20Þ

and from the initial condition we get ð∂nuðx, y, tÞÞ/ð∂tnÞ =
= φðx, yÞ.

Thus, Unðx, yÞ = 1/n!½ð∂nuðx, y, tÞÞ/ð∂tnÞ�t=0 = 1/n!½φðx,
yÞ�t=0 = φðx, yÞ/n!.

Therefore, Ukðx, yÞ = φðx, yÞ/k!
Furthermore, by convention, if uðx, y, 0Þ = φ1 ðx, yÞ, then

U0ðx, yÞ = φ1ðx, yÞ/0! = φ1ðx, yÞ and if ∂/∂t uðx, y, 0Þ = φ2ðx,
yÞ, then U1ðx, yÞ = φ2ðx, yÞ/1! = φ2ðx, yÞ.

3. Implementation of the Method

To illustrate the basic concepts of the RDTM, we consider the
NLSGE (1) with initial conditions (2) and (3).

According to the RDTM given in Table 1 and Lemma 4,
we can construct the following iteration formula:

k + 2ð Þ k + 1ð ÞUk+2 x, yð Þ + β k + 1ð ÞUk+1 x, yð Þ

= α
∂2

∂x2
Uk x, yð Þ + ∂2

∂y2
Uk x, yð Þ

 !
− ϕ x, yð ÞFk x, yð Þ +Hk x, yð Þ,

ð21Þ

where Fkðx, yÞ is the reduced differential transform of the
nonlinear term sin uðx, y, tÞ and Hkðx, yÞ is the reduced dif-
ferential transform of the inhomogeneous term hðx, y, tÞ.

Thus,

F0 x, yð Þ = sin U0,

F1 x, yð Þ =G0 x, yð ÞU1 x, yð Þ,

F2 x, yð Þ =G0 x, yð ÞU2 x, yð Þ − 1
2 F0 x, yð ÞU2

1 x, yð Þ,

F3 x, yð Þ = G0 x, yð ÞU3 x, yð Þ − F0 x, yð ÞU1 x, yð ÞU2 x, yð Þ
−
1
6G0 x, yð ÞU3

1 x, yð Þ,

F4 x, yð Þ =G0 x, yð ÞU4 x, yð Þ − F0 x, yð ÞU1 x, yð ÞU3 x, yð Þ
−
1
2 F0 x, yð ÞU2

2 x, yð Þ − 1
2G0 x, yð ÞU2

1 x, yð ÞU2 x, yð Þ

+ 1
24 F0 x, yð ÞU4

1 x, yð Þ,
ð22Þ

and so on.

Table 2: Eighth-order approximate solution by RDTM of Example
1 for different values of t and comparison with the exact solution.

x y t u8 Exact ∣ u8 − Exact ∣

1 1

0.1 0.9950 0.9950 1:1102 × 10−16

0.2 0.9801 0.9801 2:8200 × 10−14

0.3 0.9553 0.9553 1:6261 × 10−12

0.4 0.9211 0.9211 2:8861 × 10−11

0.5 0.8776 0.8776 2:6861 × 10−10

0.6 0.8253 0.8253 1:6618 × 10−09

0.7 0.7648 0.7648 7:7554 × 10−09

0.8 0.6967 0.6967 2:9446 × 10−08

0.9 0.6216 0.6216 9:5499 × 10−08

1 0.5403 0.5403 2:7350 × 10−07
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Figure 1: Plots of the solution behavior of Example 1: (a) approximated solutions at time t = 0:1; (b) absolute errors at time t = 0:1; (c)
comparison of exact and approximated solutions at times t = 0:1, 0.5, 1; (d) comparison of absolute errors for different values of times t =
0:5, 0.52, 0.54, 0.56, 0.58; (e) the periodic nature of the solution; and (f) the soliton at t = 0:1.
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Using Lemma 5 on initial conditions (2) and (3), we get

U0 x, yð Þ = φ1 x, yð Þ, ð23Þ

U1 x, yð Þ = φ2 x, yð Þ: ð24Þ

Substituting (24) and (23) into (22) and by straightfor-
ward iterative calculations, we get the following successive
values of Ukðx, yÞ, i.e., U2ðx, yÞ,U3ðx, yÞ,U4ðx, yÞ,⋯. Then,
the inverse reduced differential transform of the set of values
fUkðx, yÞgnk=0 gives the n -term approximate solution:

~un x, y, tð Þ = 〠
n

k=0
Uk x, yð Þtk: ð25Þ

Therefore, the exact solution of problem (1) is given by

u x, y, tð Þ = lim
n→∞

~un x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk: ð26Þ

4. Convergence Analysis

In this section, we present the convergence analysis of the
approximate analytical solutions which are computed from
the application of RDTM [41].

Consider the SGE (1) in the following functional equa-
tion form:

u x, y, tð Þ =F u x, y, tð Þð Þ, ð27Þ

whereF is a general nonlinear operator involving both linear
and nonlinear terms.

According to RDTM, the two-dimensional NLSGE given
in Equation (1) has a solution of the form:

u x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk = 〠

∞

k=0
βk: ð28Þ

It is noted that the solutions by RDTM is equivalent to
determining the sequences

S0 =U0 x, yð Þ = β0,
S1 =U0 x, yð Þ +U1 x, yð Þt = β0 + β1,

S2 =U0 x, yð Þ +U1 x, yð Þt +U2 x, yð Þt2 = β0 + β1 + β2,
⋯

Sn = 〠
n

k=0
Uk x, yð Þtk = 〠

n

k=0
βk,

ð29Þ

by using the iterative scheme

Sn+1 =F Snð Þ, ð30Þ

associated with the functional equation

S =F Sð Þ: ð31Þ

Hence, the solution obtained by RDTM, uðx, y, tÞ =
∑∞

k=0Ukðx, yÞtk =∑∞
k=0βk is equivalent to

u x, y, tð Þ =U0 x, yð Þ +U1 x, yð Þt +U2 x, yð Þt2 +U3 x, yð Þt3 +U4 x, yð Þt4+⋯
= Snf g∞n=0:

ð32Þ

The sufficient condition for convergence of the series
solution fSng∞n=0 is given in the following theorems.

Theorem 6. Let F be an operator from a from Hilbert space
H in toH . Then, the series solution fSng∞n=0 converges when-
ever there is α such that 0 < α < 1, and kβk+1k ≤ αkβkk.

See [41] for the proof.

Theorem 7. Let F be a nonlinear operator that satisfies the
Lipschitz condition from Hilbert space H in to H and uðx, y
, tÞ be the exact solution of the given SGE. If the series solution
fSng∞n=0 converges, then it converges to uðx, y, tÞ.

For proof see Ref. [41].

Definition 8. For k ∈Ν ∪ f0g, we define

βk+1k k
βkk k = Uk+1 x, yð Þtk+1

 



Uk x, yð Þtk

 

 , if βkk k = Uk x, yð Þtk



 


 ≠ 0,

0, if βkk k = Uk x, yð Þtk



 


 = 0:

8>>><
>>>:

ð33Þ

Then, we can say that the series approximate solution
fSng∞n=0 converges to the exact solution uðx, y, tÞ when 0 ≤
αk < 1 for k = 0, 1, 2,⋯.

Table 3: Eighth-order approximate solution by RDTM of Example
2 for different values of t and comparison with the exact solution.

x y t u8 Exact solution ∣u8 – Exact ∣

1 1

0.1 3.6193 3.6193 1:1546 × 10−14

0.2 3.2749 3.2749 5:5334 × 10−12

0.3 2.9633 2.9633 2:1063 × 10−10

0.4 2.6813 2.6813 2:7781 × 10−09

0.5 2.4261 2.4261 2:0500 × 10−08

0.6 2.1952 2.1952 1:0477 × 10−07

0.7 1.9863 1.9863 4:1555 × 10−07

0.8 1.7973 1.7973 1:3692 × 10−06

0.9 1.6263 1.6263 3:9154 × 10−06

1 1.4715 1.4715 1:0013 × 10−05
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Figure 2: Plots of the solution behavior of Example 2: (a) approximated solutions at t = 0:1; (b) absolute errors at time at t = 0:1; (c)
comparison of exact and approximated solutions for times t = 0:1, 0.5, 1; (d) comparison of absolute errors for different values of times t
= 0:5, 0.52, 0.54, 0.56, 0.58; (e) the periodic nature of the solution; and (f) the soliton at t = 0:1.
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5. Numerical Results

In this section, we apply the reduced differential transform
method (RDTM) for finding the approximate analytic solu-
tions of four test examples associated with the nonlinear
sine-Gordon equations (NLSGEs) in a two-dimensional
space. To demonstrate the applicability of the method and
accuracy of the solutions, the results obtained by the pro-
posed method is compared with the exact solution existing
in the literature, and the numerical results and the absolute
errors are given using tables and figures.

Example 1. Consider the sine-Gordon equation [40]

∂2u
∂t2

= 1
2π2

∂2u
∂x2

+ ∂2u
∂y2

" #
− sin u + sin cos πxð Þ cos πyð Þ cos tð Þð Þ, x, yð Þ ∈ −1

2 , 12

� 	2
, t

≥ 0,

ð34Þ

with initial conditions

u x, y, 0ð Þ = cos πxð Þ cos πyð Þ, ð35Þ

∂
∂t

u x, y, 0ð Þ = 0: ð36Þ

Applying properties of RDTM to Equation (34), we con-
struct the following recursive formula:

k + 2ð Þ k + 1ð ÞUk+2 x, yð Þ = 1
2π2

∂2

∂x2
Uk x, yð Þ + ∂2

∂y2
Uk x, yð Þ

" #

− Fk x, yð Þ +Hk x, yð Þ,
ð37Þ

where Fkðx, yÞ and Hkðx, yÞ are the reduced differential
transform of the nonlinear term sin ðuðx, y, tÞÞ and the inho-
mogeneous term sin ðcos ðπxÞ cos ðπyÞ cos ðtÞÞ, respectively.

Using RDTM to the initial conditions (35) and (36), we get

U0 x, yð Þ = cos πxð Þ cos πyð Þ, ð38Þ

U1 x, yð Þ = 0: ð39Þ
Now taking the values of kðk = 0, 1, 2,⋯Þ, and applying

Lemma 4 and using Equations (38) and (39) into Equation
(37), we obtain the following successive iterated values:

U2 = −
1
2! cos πxð Þ cos πyð Þ½ �,

U3 = 0,

U4 =
1
4! cos πxð Þ cos πyð Þ½ �,

U5 = 0,

U6 =
1
6! cos πxð Þ cos πyð Þ½ �,

ð40Þ

and so on.
Then, by (8), we get

u x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk = cos πxð Þ cos πyð Þ 1 − t2

2! +
t4

4! −
t6

6!+⋯
� �

:

ð41Þ

Hence, the exact solution of Example 1 is uðx, y, tÞ = cos
ðπxÞ cos ðπyÞ cos ðtÞ as in Kang et al. [40].

For the convergence of the approximate analytic solution
given in Equation (41), we calculate αk using

αk =
βk+1k k
βkk k , if βkk k ≠ 0,

0, if βkk k = 0:

8><
>: ð42Þ

Hence, for x, y ∈ ½−1/2, 1/2� and t ≥ 0, we obtain α0 = 0 < 1
, α1 = 0 < 1, α2 = 0 < 1, α3 = 0 < 1, α4 = 0 < 1,⋯, and by induc-
tion αk < 1 for all k ∈Ν ∪ f0g. Therefore, using Definition 8,
the solution of Equation (34) converges to the exact solution.

Numerical results corresponding to the two-dimensional
nonlinear sine-Gordon equation given in Example 1 are
depicted in Table 2 and Figure 1.

Example 2. Consider the two dimensional sine-Gordon equa-
tion [36, 45]

∂2u
∂t2

+ ∂u
∂t

= ∂2u
∂x2

+ ∂2u
∂y2

− 2 sin u + 2 sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �
,

−π2e−t cos πxð Þ + cos πyð Þ − 2 cos πxð Þ cos πyð Þ½ �, x, yð Þ
= 0, 2½ �2, t ≥ 0,

ð43Þ

with initial conditions

u x, y, 0ð Þ = 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ, ð44Þ

Table 4: Eighth-order approximate numerical solution by RDTM
of Example 3 for different values of t and comparison with the
exact solution.

x y t u8 Exact solution ∣u8 – Exact ∣

1 1

0.1 0.8632 0.8632 1:1102 × 10−16

0.2 0.8085 0.8085 2:5535 × 10−14

0.3 0.7457 0.7457 1:4601 × 10−12

0.4 0.6755 0.6755 2:5806 × 10−11

0.5 0.5985 0.5985 2:3916 × 10−10

0.6 0.5155 0.5155 1:4733 × 10−09

0.7 0.4274 0.4274 6:8465 × 10−09

0.8 0.3350 0.3350 2:5884 × 10−08

0.9 0.2392 0.2392 8:3583 × 10−08

1 0.1411 0.1411 2:3833 × 10−07
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Figure 3: Plots of the solutions behavior of Example 3: (a) approximated solutions at t = 0:1; (b) absolute errors t = 0:1; (c) comparison of
exact and approximated solutions for t = 0:1, 0.5, 1; (d) comparison of absolute errors for different values of times t = 0:5, 0.52, 0.54, 0.56,
0.58; (e) the periodic nature of the solution, and (f) the soliton at t = 0:1.
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∂
∂t

u x, y, 0ð Þ = − 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ: ð45Þ

By taking the reduced differential transform of Equation
(43), we obtain

k + 2ð Þ k + 1ð ÞUk+2 x, yð Þ + k + 1ð ÞUk+1 x, yð Þ

= ∂2

∂x2
Uk x, yð Þ + ∂2

∂y2
Uk x, yð Þ − 2Fk x, yð Þ +Hk x, yð Þ,

ð46Þ

where Fkðx, yÞ and Hkðx, yÞ are the reduced differential
transform of the nonlinear term sin ðuðx, y, tÞÞ and the inho-
mogeneous term

2 sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þð Þ� �
− πe−t cos πxð Þ + cos πyð Þ − 2 cos πxð Þ cos πyð Þ½ �,

ð47Þ

respectively.
Using RDTM to the initial conditions (44) and (45), we get

U0 x, yð Þ = 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ, ð48Þ

U1 x, yð Þ = − 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ: ð49Þ
Substituting Equations (48) and (49) into Equation (46),

and applying Lemma 4, Definition 1, and properties of
RDTM, we obtain the following successive iterated values for
kðk = 0, 1, 2,⋯Þ:

U2 =
1
2! 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ½ �,

U3 = −
1
3! 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ½ �,

U4 =
1
4! 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ½ �,

U5 = −
1
5! 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ½ �,

ð50Þ

and so on.
Then by (8), we obtain the approximate analytic solution

of Example 2 as follows:

u x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk = 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ

� 1 − t + 1
2! t

2 −
1
3! t

3 + 1
4! t

4 −
1
5! t

5+⋯
� 	

:

ð51Þ

The exact solution of the problem is uðx, y, tÞ = e−tð1 −
cos ðπxÞÞð1 − cos ðπyÞÞ, as indicated in [36, 45].

To test the convergence of the approximate solution, we
calculate αk. Let us take x = y = 1 and t = 0:5 in the domain
of interest, then using definition 8, we obtain, α0 = 0:5 < 1, α1

= 0:25 < 1,α2 = 0:1666666667 < 1, α3 = 0:125 < 1, α4 = 0:1 < 1
, …., and by induction αk < 1 for all k ∈Ν ∪ f0g. Therefore,
the solution of Equation (43) converges to the exact solution.

Numerical results corresponding to the two-dimensional
nonlinear sine-Gordon equation given in Example 2 are
depicted in Table 3 and Figure 2.

Example 3. Consider the two-dimensional inhomogeneous
sine-Gordon equation [34],

∂2u
∂t2

= ∂2u
∂x2

+ ∂2u
∂y2

− sin u + sin sin x + y + tð Þð Þ
+ sin x + y + tð Þ x, yð Þ ∈ 0, 2π½ �2, t ≥ 0,

ð52Þ

with initial conditions

u x, y, 0ð Þ = sin x + yð Þ, ð53Þ

∂u x, y, 0ð Þ
∂t

= cos x + yð Þ: ð54Þ

Applying the RDTM to Equation (52), we obtain the fol-
lowing recurrence relation

k + 2ð Þ k + 1ð ÞUk+2 x, yð Þ = ∂2

∂x2
Uk x, yð Þ + ∂2

∂y2
Uk x, yð Þ

− Fk x, yð Þ +Hk x, yð Þ,
ð55Þ

where Fkðx, yÞ is the reduced differential transform of
nonlinear term sin uðx, y, tÞ and Hkðx, yÞ is the reduced
differential transform of inhomogeneous term ½sin ðsin ðx
+ y + tÞÞ + sin ðx + y + tÞ�.

Using RDTM to the initial conditions (53) and (54), we
have

U0 x, yð Þ = sin x + yð Þ,
U1 x, yð Þ = cos x + yð Þ:

ð56Þ

Table 5: Seventh-order approximate solution by RDTM of Example
4 for different values of t and comparison with the exact solution.

x y t u7 Exact solution ∣u7 – Exact ∣

1 1

0.1 5.6893 5.6893 2:3634 × 10−12

0.2 5.6279 5.6279 6:1136 × 10−10

0.3 5.5604 5.5604 1:5797 × 10−08

0.4 5.4863 5.4863 1:5875 × 10−07

0.5 5.4050 5.4050 9:4946 × 10−07

0.6 5.3161 5.3161 4:0838 × 10−06

0.7 5.2189 5.2189 1:3970 × 10−05

0.8 5.1129 5.1130 4:0343 × 10−05

0.9 4.9977 4.9978 1:0218 × 10−04

1 4.8729 4.8731 2:3289 × 10−04
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Now taking the values of kðk = 0, 1, 2,⋯Þ and applying
Lemma 4, Definition 1, and properties of RDTM in Equation
(55), we obtain the following successive iterative values:

U2 = −
1
2! sin x + yð Þ,

U3 = −
1
3! cos x + yð Þ,

U4 =
1
4! sin x + yð Þ,

U5 =
1
5! cos x + yð Þ,

U6 = −
1
6! sin x + yð Þ,

U7 = −
1
7! cos x + yð Þ,

ð57Þ

and so on.
Then, using Equation (8), we get

u x, y, tð Þ = 〠
∞

k=0
Uk x, yð Þtk = sin x + yð Þ 1 − t2

2! +
t4

4! −
t6

6!+⋯
� �

+ cos x + yð Þ t −
t3

3! +
t5

5! −
t7

7!+⋯
� �

:

ð58Þ

Equation (58) represents the approximate analytic solu-
tion of Example 3, whose exact solution is uðx, y, tÞ = sin ðx
+ y + tÞ, as in [34].

For the convergence of the approximate solution given in
(58), we calculate αk by taking any values of x, y, and t in the
domain of interest. Let us takex = y = π/8 and t = 0:25, we
obtain α0 = 0:25 < 1, α1 = 0:125 < 1, α2 = 0:083334 < 1, α3 =
0:0625 < 1, α4 = 0:05 < 1,⋯, and by induction αk < 1 for all
k ∈Ν ∪ f0g. Therefore, by Definition 8, the solution of Equa-
tion (52) converges to the exact solution.

Numerical results corresponding to the two-dimensional
nonlinear sine-Gordon equation given in Example 3 are
depicted in Table 4 and Figure 3.

Example 4. Consider the following two dimensional sine-
Gordon equation [33]

∂2u
∂t2

= ∂2u
∂x2

+ ∂2u
∂y2

− sin u, x, yð Þ ∈ −7, 7½ �2, t ≥ 0, ð59Þ

subject to the initial conditions

u x, y, 0ð Þ = 4 tan−1 ex+yð Þ, ð60Þ

∂
∂t

u x, y, 0ð Þ = −
4ex+y

1 + e2x+2y
: ð61Þ

Applying RDTM technique to Equation (59), we obtain
the following iterative formula:

k + 2ð Þ k + 1ð ÞUk+2 x, yð Þ = ∂2

∂x2
Uk x, yð Þ + ∂2

∂y2
Uk x, yð Þ − Fk x, yð Þ,

ð62Þ

where Fkðx, yÞ is the reduced differential transform of non-
linear term sin uðx, y, tÞ.

Using RDTM to initial condition (60) and (61), we get

U0 x, yð Þ = 4 tan−1 ex+yð Þ, ð63Þ

U1 x, yð Þ = −
4ex+y

1 + e2x+2y
: ð64Þ

Applying Lemma 4 and using Equations (63) and (64) in
Equation (62), we get the following successive values of Ukð
x, yÞ forkðk = 0, 1, 2,⋯Þ.

U2 = 2 ex+y − e3x+3y

1 + e2x+2yð Þ2
" #

,

U3 = −
2
3

ex+y − 6e3x+3y + e5x+5y

1 + e2x+2yð Þ3
" #

,

U4 =
1
6

ex+y − 23e3x+3y + 23e5x+5y − e7x+7y

1 + e2x+2yð Þ4
" #

,

U5 = −
1
30

ex+y − 76e3x+3y + 230e5x+5y − 76e7x+7y + e9x+9y

1 + e2x+2yð Þ5
" #

,

U6 =
1
180

ex+y − 237e3x+3y + 1682e5x+5y − 1682e7x+7y + 237e9x+9y − e11x+11y

1 + e2x+2yð Þ6
 !" #

,

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

, ð65Þ
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Figure 4: Plots of the solution behavior of Example 4: (a) approximate solution at t = 0:1; (b) absolute error t = 0:1; (c) comparison of exact
and approximate solutions for times t = 0:1, 0.5, 1; (d) comparison of absolute errors for different values of times t = 0:5, 0.52, 0.54, 0.56, 0.58;
and (e) the soliton at t = 0:1.
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and so on.
Then, the inverse reduced differential transform of Ukð

x, yÞ gives the n-term approximate analytic solution in the
form ~unðx, y, tÞ =∑n

k=0Ukðx, yÞtk.
Hence, the exact solution is uðx, y, tÞ = lim

n→∞
~unðx, y, tÞ =

4 tan−1ðex+y−tÞ as in Shukla et al. [33] and Baccouch [34]:
To check the convergence of the approximate analytic

solutions, we calculate αk for values x = y = t = 1, and we
obtain α0 = 0:00161498087 < 1, α1 = 0:48201379002 < 1, α2
= 0:29691347980 < 1, α3 = 0:16168993395 < 1 … and by
induction αk < 1 for all k ∈Ν ∪ f0g. Therefore, by Definition
8, the solution of Example 4 converges to the exact solution.

Numerical results corresponding to the two-dimensional
nonlinear sine-Gordon equation given in Example 4 are
depicted in Table 5 and Figure 4.

Tables 2–5 illustrate the approximate analytical solutions
of Examples 1–4 obtained by RDTM and the corresponding
absolute errors for different values of time t. It can be
observed from Tables 2–5 that for smaller values of t the cor-
responding absolute errors are small compared to others.
This is to mean that better approximation can be achieved
for small values of time t whatever the values of x and y are
within the domain of interest.

6. Graphical Representation and
Physical Interpretations

A graph is a crucial tool to depict the physical structures of
the phenomena in the sense of real-world applications. In
this section, we have discussed about the obtained solution
of the simplified two dimensional sine-Gordon equation
using the RDTM method, and we get the travelling wave
solutions assembled from Examples 1–4 to the simplified
equation. The solutions of examples (1)–(3) and Example 4
are general solitary wave solutions which are periodic wave
solution and singular kink shape soliton, respectively. From
the above solutions, it has been noted that the solutions
(41), (51), and (58) provides periodic wave solution where
the solution (65) gives singular kink shape wave solution.
Periodic traveling waves play an important role in numerous
physical phenomena, including reaction-diffusion-advection
systems, self-reinforcing systems, and impulsive systems.
Mathematical modeling of many intricate physical events,
for instance, physics, mathematical physics, engineering,
and many more phenomena resemble periodic traveling
wave solutions [46].

Furthermore, Figures 1–4 depict surface plots that show
the physical behavior of the RDTM solutions uðx, y, tÞ and
absolute errors of Examples 1–4 for different values of time
t in the domain of interest. Specially, in Figures 1(c), 2(c),
3(c), and 4(c), comparisons of exact and approximated ana-
lytical solutions are compared for different values of times t
= 0:1, 0.5, 1. As it can be seen from the figures that all the
graphs of the approximated analytical solutions for the
assigned values of time t resembles to their corresponding
graphs of the exact solutions. The comparison of absolute
error graphs shown in Figures 1(d), 2(d), 3(d), and 4(d) for
different values of times t = 0:50, 0.52, 0.54, 0.56, 0.58 and

also the results assert that better approximation for uðx, y, t
Þ can be obtained when time t is small for any values of x
and y in the domain of interest.

7. Conclusions

The reduced differential transform method (RDTM) is suc-
cessfully implemented to find approximate analytical solu-
tions or exact solutions of the two-dimensional nonlinear
sine-Gordon equations subject to the appropriate initial con-
ditions. The convergence analysis of the proposed method is
also studied, and the results we obtained in Examples 1, 2, 3,
and 4 are in excellent agreement with the exact solutions
obtained by different methods available in the literature, see
Refs. [33, 34, 36, 40, 45]. Furthermore, RDTM is much easier,
more convenient, and efficient and this work illustrates the
validity and great potential of the reduced differential trans-
form method for solving nonlinear partial differential equa-
tions. As a result, the basic ideas of this approach are
expected to be further employed to solve other nonlinear
problems arising in sciences and engineering.
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