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We study the relativistic quantum of scalar particles in the cosmic string space-time with a screw dislocation (torsion) subject to a
uniformmagnetic field including the magnetic quantum flux in the presence of potential. We solve the Klein-Gordon equation with
a Cornell-type scalar potential in the considered framework and obtain the energy eigenvalues and eigenfunctions and analyze a
relativistic analogue of the Aharonov-Bohm effect for bound states.

1. Introduction

In relativistic quantum mechanics, the study of spin-0 scalar
particles via the Klein-Gordon equation on curved the back-
ground with the cosmic string has been of current research
interest. Several authors have investigated the physical prop-
erties of a series of background with Gödel-type geometries,
such as the relativistic quantum dynamics of a scalar particle
[1, 2], spin-0 massive charged particles in the presence of a
uniform magnetic field with the cosmic string [3], quantum
influence of topological defects [4], linear confinement of a
scalar particle with the cosmic string [5–7]. Furthermore,
the relativistic quantum dynamics of spin-0 scalar particles
was investigated in [8, 9] and observed the similarity of the
energy eigenvalues with the Landau levels [10]. The relativ-
istic quantum dynamics of a scalar particle in the presence
of a homogeneous magnetic field within the Kaluza-Klein
theory was investigated in [11]. The relativistic quantum
dynamics of spin-0 massive charged particles in a four-
dimensional curved space-time with the cosmic string was
studied in [12]. Survey on the Klein-Gordon equation in
the Gödeltype space-times was studied in [13]. Further-
more, spin-0 scalar particle [14], Klein-Gordon oscillator
[15], generalized Klein-Gordon oscillator subject to a

Coulomb-type scalar potential [16], linear confinement of
scalar particle [17], quantum effects on spin-0 charged par-
ticles with a Coulomb-type scalar, and vector potentials
[18] in ð1 + 2Þ − dimensional rotational symmetry space-
time backgrounds have been investigated. In addition, the
relativistic quantum dynamics of spin-half particles have
also been investigated (e.g., [1, 19–22]). The Dirac equation
in ð1 + 2Þ − dimensional rotational symmetry space-time
was investigated in [23].

The cosmic string space-time in the polar coordi-
nates ðt, r, φ, zÞ is described by the following line element
[19, 24–29]:

ds2 = −dt2 + dr2 + α2r2dφ2 + dz2, ð1Þ

where α = 1 − 4μ is the topological parameter with μ being
the linear mass density of the cosmic string. In cosmic string
space-time, the parameter μ assumes values in the interval
0 < μ < 1 within the general relativity [30, 31]. Furthermore,
in the cylindrical symmetry, we have that 0 < r <∞, 0 ≤
φ ≤ 2π, and −∞ < z <∞. Cosmic string may have been
produced by phase transitions in the early universe [32]
as it is predicted in the extensions of the standard model
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of particle physics [24, 25]. Several authors have studied
the relativistic quantum mechanics in the cosmic string
space-time (e.g., [19, 33–48]).

Various potentials have been used to investigate the
bound state solutions to the relativistic wave-equations.
Among them, much attention has given on the Cornell
potential. The Cornell potential, which consists of a linear
potential plus a Coulomb potential, is a particular case of
the quark-antiquark interaction, one more harmonic type
term [49]. The Coulomb potential is responsible for the inter-
action at small distances and linear potential leads to the con-
finement. Recently, the Cornell potential has studied in the
ground state of three quarks [50]. However, this type of
potential is worked on spherical symmetry; in cylindrical
symmetry, which is our case, this type of potential is known
as Cornell-type potential [3]. Investigation of the relativistic
wave-equations with this type of potential is the Klein-
Gordon scalar field in spinning cosmic string space-time
[48], relativistic quantum dynamics of scalar particle subject
to a uniform magnetic field in cosmic string spacetime [19],
spin-0 scalar particle in ð1 + 2Þ − dimensional rotational
symmetry space-time [51], Aharonov-Bohm effect for bound
states [52], quantum effects of confining potential on the
Klein-Gordon oscillator [53], effects of potential on a
position-dependent mass system [54], etc. Other investiga-
tions with this type of interaction are in [55–58]. The
Cornell-type potential is given by

S = ηc
r
+ ηLr, ð2Þ

where ηc, ηL are the potential parameters.
In [19], authors studied the relativistic quantum

dynamics of bosonic charged particles in the presence of
external fields in a cosmic string space-time. They solved
the Klein-Gordon equation and obtained the relativistic
energy eigenvalues and wave-function. In addition, they
introduced a Cornell-type scalar potential by modifying
the mass term in the Klein-Gordon equation and obtained
the bound state solution of the relativistic quantum sys-
tem. In [59], authors studied a spin-0 scalar massive
charged particle in the presence of external fields including
a magnetic quantum flux in the space-time with a space-
like dislocation under the influence of linear potential.
They solved the Klein-Gordon equation and evaluated
the energy eigenvalues and analyze a relativistic analogue
of the Aharonov-Bohm effect for bound states. In addi-
tion, they introduced a linear scalar potential by modifying
the mass term in the Klein-Gordon equation and obtained
the bound state solution of the relativistic quantum sys-
tem. In [60], authors investigated a spin-0 scalar charged
particles in the presence of external fields including a mag-
netic quantum flux in the space-time with a spacelike dis-
location subject to a Coulomb-type potential. They solved
the Klein-Gordon equation and evaluated the bound state
solution of the relativistic quantum system and analyze a
relativistic analogue of the Aharonov-Bohm effect for
bound states.

Our main motivation in this work is to investigate a rela-
tivistic analogue of the Aharonov-Bohm effect [61, 62] for
bound states of a relativistic scalar charged particle subject
to a homogeneous magnetic field including a magnetic quan-
tum flux in the presence of a Cornell-type potential in the
cosmic string space-time with a spacelike dislocation. We
solve the Klein-Gordon equation in the considered frame-
work and obtain the relativistic energy eigenvalues and
eigenfunctions and analyze the effects on the eigenvalues.
In addition, we check the role play by the torsion parameter
in this relativistic system and see that the presence of the tor-
sion parameter modifies the energy levels and breaks their
degeneracy in comparison to the result obtained in the cos-
mic string space-time case.

2. Bosonic Charged Particles: The KG-Equation

In [63, 64], examples of topological defects in the space-time
associated with torsion are given. We start this section by
considering the cosmic string space-time with a spacelike
dislocation, whose line element is given by ðx0 = t, x1 = r,
x2 = φ, x3 = zÞ

ds2 = −dt2 + dr2 + α2r2dφ2 + dz + χdφð Þ2, ð3Þ

where α > 0 is the cosmic string, and χ is the dislocation
(torsion) parameter. For zero torsion parameter, χ⟶ 0,
the metric (3) reduces to the cosmic string space-time.
Furthermore, for χ⟶ 0 and α⟶ 1, the study space-
time reduces to Minkowski flat space metric in cylindrical
coordinates. Topological defects associated with torsion
have investigated in solid state [30, 65–68], quantum scat-
tering [69], bound states solutions [52, 59, 70], and in rel-
ativistic quantum mechanics [71, 72].

The metric tensor for the space-time (3) to be

gμν xð Þ =

−1 0 0 0
0 1 0 0
0 0 α2 r2 + χ2 χ

0 0 χ 1

0
BBBBB@

1
CCCCCA ð4Þ

with its inverse

gμν xð Þ =

−1 0 0 0
0 1 0 0

0 0 1
α2 r2

−
χ

α2 r2

0 0 −
χ

α2 r2
1 + χ2

α2 r2

0
BBBBBBB@

1
CCCCCCCA

ð5Þ

The metric has a signature ð−, + , + , + Þ, and the deter-
minant of the corresponding metric tensor gμν is

det g = −α2 r2: ð6Þ
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The relativistic quantum dynamics of spin-0 charged sca-
lar particles of mass m is described by the Klein-Gordon
(KG) equation [19, 73].

1ffiffiffiffiffiffi−gp Dμ
ffiffiffiffiffiffi
−g

p
gμν Dνð Þ −m2

� �
Ψ = 0, ð7Þ

where the minimal substitution is defined by

Dμ ≡ ∂μ − i e Aμ, ð8Þ

where e is the electric charge, and Aμ is the electromagnetic
four-vector potential by

Aμ = 0, A
!� �

, A
!
= 0, Aϕ, 0
� �

: ð9Þ

We choose the angular component of electromagnetic
four-vector potential [52, 55, 57–60, 71, 74].

Aϕ = −
1
2 αB0 r

2 + ΦB

2π , B
!
= ∇

!
× A

!
= −B0 k̂: ð10Þ

Here, ΦB = const: is the internal quantum magnetic
flux [75, 76] through the core of the topological defects
[77]. It is noteworthy that the Aharonov-Bohm effect
[61, 62] has been investigated in several branches of phys-
ics, such as in, graphene [78], Newtonian theory [79],
bound states of massive fermions [80], scattering of dislo-
cated wave fronts [81], torsion effects on a relativistic
position-dependent mass system [52, 59], Kaluza-Klein
theory [11, 54, 82–86], and nonminimal Lorentz-violating
coupling [87].

If one introduces a scalar potential by modifying the mass
term in the form m⟶m + SðrÞ [88] into the above equa-
tion, then we have

1ffiffiffiffiffiffi−gp Dμ
ffiffiffiffiffiffi
−g

p
gμν Dνð Þ − m + Sð Þ2

� �
Ψ = 0, ð11Þ

Several authors have studied the relativistic wave-
equations with various kinds of potentials such as linear,
Coulomb-type, and Cornell-type (e.g., [3, 5, 7, 19, 51–53,
56, 57, 59, 60]).

Using the equation (3), Eq. (11) becomes

−
∂2

∂t2
+ 1
r

∂
∂r

r
∂
∂r

	 

+ 1
α2r2

∂
∂ϕ

− i e Aϕ − χ
∂
∂z

	 
2
"

+ ∂2

∂z2
− m + Sð Þ2

#
Ψ = 0:

ð12Þ

Since the line-element (3) is independent of t, ϕ, z, it
is appropriate to choose the following ansatz for the
function Ψ

Ψ t, r, ϕ, zð Þ = ei −E t+l ϕ+k zð Þψ rð Þ, ð13Þ

where E is the energy of charged particle, l = 0, ±1, ±2:
⋯∈ Z is the eigenvalues of z-component of the angular
momentum operator, and k is a constant.

Substituting Eq. (13) into the Eq. (12), we obtain the fol-
lowing radial wave-equation for ψðrÞ:

d2

dr2
+ 1
r

d
dr

+ E2 −
1

α2 r2
l − e Aϕ − kχ
� �2"

− k2 − m + Sð Þ2
#
ψ rð Þ = 0:

ð14Þ

Substituting the Eq. (10) and scalar potential (2) into the
Eq. (14), we obtain

d2

dr2
+ 1
r

d
dr

+ λ − ω2 r2 −
j2

r2
−
a
r
− b r

" #
ψ rð Þ = 0, ð15Þ

where

λ = E2 −m2 − k2 − 2 ηc ηL −
2mωc

α
l − kχ −Φð Þ,

ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ω2

c + η2L

q
,

j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − k χ −Φð Þ2

α2
+ η2c

r
,

a = 2m ηc,
b = 2m ηL,

ωc =
e B0
2m

ð16Þ

is called the cyclotron frequency of the particle moving in the
magnetic field.

Transforming x = ffiffiffiffi
ω

p
r into the Eq. (15), we obtain the

following equation:

ψ′′ xð Þ + 1
x
ψ′ xð Þ + ζ − x2 −

j2

x2
−
η

x
− θ x

� �
ψ xð Þ = 0, ð17Þ

where we have defined

ζ = λ

ω
, η = affiffiffiffi

ω
p , θ = b

ω3/2 : ð18Þ

We now use appropriate boundary conditions to inves-
tigate the bound state solutions in this problem. It is
required that the wave-functions must be regular both at
x⟶ 0 and x⟶∞. Suppose the possible solution to
the Eq. (17) is

ψ xð Þ = xj e−
1
2 θ+xð Þ x H xð Þ, ð19Þ
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where HðxÞ is an unknown function. Substituting the solu-
tion (19) into the Eq. (17), we obtain

H ′′ xð Þ + γ

x
− θ − 2 x

h i
H ′ xð Þ + −

β

x
+Θ

� �
H xð Þ = 0, ð20Þ

where

γ = 1 + 2 j,

Θ = ζ + θ2

4 − 2 1 + jð Þ,

β = η + θ

2 1 + 2 jð Þ:

ð21Þ

Equation (20) is the biconfluent Heun’s differential
equation [3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85,
86, 89, 90] with HðxÞ is the Heun polynomial function.

The above equation (20) can be solved by the Frobenius
method. Writing the solution as a power series expansion
around the origin [91]:

H xð Þ = 〠
∞

i=0
ci x

i: ð22Þ

Substituting the power series solution (22) into the
Eq. (20), we get the following recurrence relation for
the coefficients:

cn+2 =
1

n + 2ð Þ n + 2 + 2 jð Þ β + θ n + 1ð Þf g cn+1 − Θ − 2 nð Þ cn½ �:

ð23Þ

And the various coefficients are

c1 =
η

1 + 2 j +
θ

2

	 

c0,

c2 =
1

4 1 + jð Þ β + θð Þ c1 −Θ c0½ �:
ð24Þ

As the function HðxÞ has a power series expansion
around the origin in Eq. (22), then, the relativistic bound
states solution can be achieved by imposing that the
power series expansion becomes a polynomial of degree
n. Through the recurrence relation Eq. (23), we can see
that the power series expansion HðxÞ becomes a polyno-
mial of degree n by imposing the following two condi-
tions [3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86,
92, 93].

Θ = 2 n,  n = 1, 2,⋯:ð Þ
cn+1 = 0:

ð25Þ

By analyzing the first condition Θ = 2 n, we get the
second-degree equation of the energy eigenvalues En,l:

E2
n,l =

2mωc

α
l − kχ −Φð Þ + 2ω n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r !

−
m2 η2L
ω2 +m2 + k2 + 2 ηc ηL:

ð26Þ

The wave-functions are given by

ψn,l xð Þ = x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−Φ−kχð Þ2

α2 +η2c
p

e−
1
2

2m ηL
ω3/2

+xð Þ x H xð Þ: ð27Þ

Note that the Eq. (26) does not represent the general
expression for eigenvalues problem. One can obtain the
individual energy eigenvalues one by one, that is, E1, E2, E3
by imposing the additional recurrence condition cn+1 = 0 on
the eigenvalue. The solution with Heun’s Equation makes it
possible to obtain the eigenvalues one by one as done in [3,
5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 92, 93] but not
explicitly in the general form by all eigenvalues n. With the
aim of obtaining the energy levels of the stationary states, let
us discuss a particular case of n = 1. This means that we want
to construct a polynomial of the first degree to HðxÞ. With
n = 1, we have Θ = 2 and c2 = 0 which implies from Eq. (24)

c1 =
2

β + θð Þ c0 ⇒
η

1 + 2 j +
θ

2 = 2
β + θð Þ ⇒ ω3

1,l

−
a2

2 1 + 2 jð Þ ω
2
1,l − a b

1 + j
1 + 2 j

	 

ω1,l −

b2

8 3 + 2 jð Þ = 0:

ð28Þ

a constraint on the physical parameter ω1,l. The relation given
in Eq. (28) gives the possible values of the parameter ω1,l that
permit us to construct first degree polynomial to HðxÞ for
n = 1. Note that its values change for each quantum num-
ber n and l, so we have labeled ω→ ωn,l. Besides, since this
parameter is determined by the frequency or the magnetic
field B0, hence, the magnetic field B1,l

0 is so adjusted that
the Eq. (28) can be satisfied and the first degree polynomial
to HðxÞ can be achieved, where we have simplified our
notation by labeling:

ωc 1,l =
1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1,l − η2L

q
↔ B1,l

0 = 2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1,l − η2L

q
: ð29Þ

It is noteworthy that a third-degree algebraic equation
(28) has at least one real solution, and it is exactly this
solution that gives us the allowed values of the magnetic
field for the lowest state of the system, which we do not
write because its expression is very long. We can note, from
Eq. (29) that the possible values of the magnetic field
depend on the quantum numbers and the potential param-
eter. In addition, for each relativistic energy level, we have
different relation of the magnetic field associated to the
Cornell-type potential and quantum numbers of the system
fl, ng. For this reason, we have labeled the parameters ω,
ωc, and B0 in Eqs. (28) and (29).
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Therefore, the ground state energy levels for n = 1 is
given by

E1,l = ± 2mωc 1,l
α

l − kχ −Φð Þ + 2mω1,l 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r !(

−
m2 η2L
ω2
1,l

+m2 + k2 + 2 ηc ηL

)1
2

,

ð30Þ

Then, by substituting the real solution ω1,l from Eq. (28)
into the Eq. (30), it is possible to obtain the allowed values of
the relativistic energy levels for the radial mode n = 1 of a posi-
tion dependent mass system. We can see that the lowest
energy state is defined by the real solution of the algebraic
equation Eq. (28) plus the expression given in Eq. (30) for
the radial mode n = 1, instead of n = 0. This effect arises due
to the presence of Cornell-type potential in the system. Note
that it is necessary physically that the lowest energy state
is n = 1 and not n = 0; otherwise, the opposite would imply
that c1 = 0, which requires that the rest mass of the scalar
particle be zero that is contrary to the proposal of this
investigation.

For ΦB ≠ 0 and χ ≠ 0, we can observe in Eq. (30) there
exists an effective angular momentum l⟶ l′ = ð1/αÞ ðl −Φ
− k χÞ. Thus, the relativistic energy levels depend on the geo-
metric phase [75, 76] as well as the torsion parameter. This
dependence of the energy levels on the geometric quantum
phase gives rise to the well-known effect called as the
Aharonov-Bohm effect for bound states [11, 52, 54, 59, 61,
62, 82–86]. Besides, we have that En,lðΦB +Φ0Þ = En,l∓τðΦBÞ
where Φ0 = ±ð2π/eÞ τ with τ = 0, 1, 2⋯ , which means the
relativistic energy eigenvalues (30) is a periodic function of
the Aharonov-Bohm geometric quantum phase.

The ground state wave function for n = 1 is given by

ψ1,l = x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−Φ−kχð Þ2

α2 +η2c
p

e
−1
2

2m ηL
ω3/21,l

+x

	 

x

× c0 + c1 xð Þ, ð31Þ

where

c1 =
1ffiffiffiffiffiffiffi
ω1,l

p 2m ηc
1 + 2 j +

m ηL
ω1,l

� �
c0: ð32Þ

2.1. Interactions with Linear Scalar Potential. We discuss a
case corresponds to ηc ⟶ 0, that is, only a linear scalar
potential in the considered relativistic quantum systems.
Therefore, the radial wave-equation (15) becomes we obtain

ψ′′ rð Þ + 1
r
ψ′ rð Þ + ~λ − ω2 r2 −

j2

r2
− b r

� �
ψ rð Þ = 0, ð33Þ

where ~λ = E2 −m2 − k2 − ð2mωc/αÞ ðl − kχ −ΦÞ.

By changing the variable x = ffiffiffiffi
ω

p
r, Eq. (33) becomes

ψ′′ xð Þ + 1
x
ψ′ xð Þ +

~λ

ω
− x2 −

j2

x2
− θ r

" #
ψ xð Þ = 0, ð34Þ

Substituting the solution Eq. (19) into the Eq. (34), we
obtain

H ′′ xð Þ + γ

x
− θ − 2 x

h i
H ′ xð Þ + −

~β

x
+ ~Θ

" #
H xð Þ = 0, ð35Þ

where

γ = 1 + 2 j,

~Θ =
~λ

ω
+ θ2

4 − 2 1 + jð Þ,

~β = θ

2 1 + 2 jð Þ:

ð36Þ

Equation (35) is the biconfluent Heun’s differential equa-
tion [3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 89, 90]
with HðxÞ is the Heun polynomials function.

Substituting the power series solution (22) into the Eq.
(35), we get the following recurrence relation for the coef-
ficients:

cn+2 =
1

n + 2ð Þ n + 2 + 2 jð Þ
~β + θ n + 1ð Þ
n o

cn+1
h

− ~Θ − 2 n
� �

cn
i
:

ð37Þ

And the various coefficients are

c1 =
θ

2 c0,

c2 =
1

4 1 + jð Þ
~β + θ
� �

c1 − ~Θ c0
h i

:

ð38Þ

The power series expansion HðxÞ becomes a polyno-
mial of degree n by imposing the following two conditions
[3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 92, 93].

~Θ = 2 n,  n = 1, 2,:⋯ð Þ
cn+1 = 0:

ð39Þ

By analyzing the first condition, we obtain the follow-
ing energy eigenvalues expression En,l:

E2
n,l =m2 + k2 + 2mωc

α
l − kχ −Φð Þ

+ 2ω n + 1 + l − kχ −Φj j
α

	 

−
m2 η2L
ω2 ,

ð40Þ

where n = 1, 2,⋯.

5Advances in High Energy Physics



The ground state energy levels associated with the radial
mode n = 1 is given by

E2
1,l =m2 + k2 + 2mωc 1,l

α
l − k χ −Φð Þ

+ 2ω1,l n + 1 + l − kχ −Φj j
α

	 

−
m2 η2L
ω2
1,l

,
ð41Þ

where by using Eq. (39) for n = 1, we obtain the following
constraint

ω1,l = m2 η2L 3 + 2 jð Þ� �1
3,

ωc 1,l =
1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 η2L 3 + 2 jð Þ� �2

3 − η2L

q
,

j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r
:

ð42Þ

Equation (41) is the ground state energy levels associated
with the radial mode n = 1 of a relativistic scalar charged par-
ticle in the presence of an external uniform magnetic field
including a magnetic quantum flux in the cosmic string
space-time with a spacelike dislocation. For α⟶ 1, the
energy eigenvalues Eq. (40) reduce to the result obtained in
[59]. We can see that the presence of cosmic string parameter
(α) shifts the energy levels in comparison to those in [59].
Thus, by comparing the energy eigenvalues Eq. (30) with
Eq. (41), we have the presence of an extra linear potential that
modifies the relativistic spectrum of energy.

2.2. Interactions with Coulomb-Type Potential. We discuss
another case corresponds to ηL ⟶ 0, that is, only
Coulomb-type scalar potential in the considered relativistic
quantum systems. Therefore, the radial wave-equation (15)
becomes we obtain

ψ′′ rð Þ + 1
r
ψ′ rð Þ + ~λ −m2 ω2

c r
2 −

j2

r2
−
a
r

� �
ψ rð Þ = 0, ð43Þ

where ~λ is given earlier.
Let us define x = ffiffiffiffiffiffiffiffiffiffi

mωc
p

r, then Eq. (43) becomes

ψ′′ xð Þ + 1
x
ψ′ xð Þ + ~λ − x2 −

j2

x2
−
δ

r

� �
ψ xð Þ = 0, ð44Þ

where δ = a/ ffiffiffiffiffiffiffiffiffiffi
mωc

p
. By imposing that ψðxÞ⟶ 0 when

x⟶ 0 and x⟶∞, we have

ψ xð Þ = xj e−
x2
2 H xð Þ: ð45Þ

By substituting Eq. (45) into the Eq. (44), we obtain
the following equation for HðxÞ:

H ′′ xð Þ + 1 + 2 j
x

− 2 x
� �

H ′ xð Þ +
~λ

mωc
− 2 − 2 j − δ

x

" #
H xð Þ = 0:

ð46Þ

Equation (46) is the biconfluent Heun’s differential
equation [3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85,
86, 89, 90] with HðxÞ is the Heun polynomials function.

Substituting the power series solution (22) into the Eq.
(46), we get the following recurrence relation for the coeffi-
cients:

cn+2 =
1

n + 2ð Þ n + 2 + 2 jð Þ δ cn+1 −
~λ

mωc
− 2 − 2 j − 2 n

 !
cn

" #
:

ð47Þ

And the various coefficients are

c1 =
δ

1 + 2 j c0,

c2 =
1

4 1 + jð Þ δ c1 −
~λ

mωc
− 2 − 2 j

 !
c0

" #
:

ð48Þ

The power series expansion HðxÞ becomes a polynomial
of degree n by imposing the following two conditions [3, 5, 7,
12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 92, 93].

~λ

mωc
− 2 − 2 j = 2 n,  n = 1, 2,⋯:ð Þ

cn+1 = 0:
ð49Þ

By analyzing the first condition, we obtain the following
equation of eigenvalues En,l:

En,l = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + k2 + 2mωc n + 1 + j + 1

α
l − kχ −Φð Þ

� �s
n = 1, 2,:⋯ð Þ:

ð50Þ

For n = 1, the ground state energy levels are given by

E1,l = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + k2 + 2mωc 1,l 2 + j + 1

α
l − kχ −Φð Þ

� �s
, ð51Þ

where by using Eq. (49) for n = 1, we obtain the following
constraint

ωc 1,l =
2m η2c
1 + 2 j ↔ B1,l

0 = 4m2 η2c
e 1 + 2 jð Þ : ð52Þ

Here, the magnetic field B1,l
0 is so adjusted that the Eq.

(52) can be satisfied, and a polynomial of first degree to
HðxÞ can be achieved.

Equation (51) is the energy levels associated with the
radial mode n = 1 of a relativistic scalar charged particle in
the presence of an external uniform magnetic field including
a magnetic quantum flux in the cosmic string space-time
with a spacelike dislocation. For α⟶ 1, the energy levels
Eq. (51) reduces to the result obtained in [60]. Thus, we
can see that the presence of the cosmic string parameter (α)
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shifts the energy levels in comparison to those in [60]. Thus,
by comparing the energy eigenvalue expression Eq. (30) with
Eq. (51), we can see that the presence of an extra Coulomb-
type potential modifies the relativistic energy spectrum of
the system.

2.3. Without Torsion Parameter. We discuss here zero tor-
sion parameter, χ⟶ 0, in the considered relativistic quan-
tum systems.

Therefore, the radial wave-equation (15) becomes

d2

dr2
+ 1
r

d
dr

+ λ0 − ω2 r2 −
j20
r2

−
a
r
− b r

" #
ψ rð Þ = 0, ð53Þ

where

λ0 = E2 − k2 −m2 −
2mωc

α
l −Φð Þ − 2 ηc ηL,

j0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −Φð Þ2
α2

+ η2c

r
:

ð54Þ

Transforming a new variable x = ffiffiffiffi
ω

p
r into the Eq. (53),

we obtain

d2

dx2
+ 1
x

d
dx

+ λ0
ω

− x2 −
j20
x2

−
η

x
− θ x

" #
ψ rð Þ = 0, ð55Þ

Suppose the possible solution to the Eq. (55) is

ψ xð Þ = xj0 e−
1
2 θ+xð Þ x H xð Þ: ð56Þ

Substituting the solution (19) into the Eq. (17), we obtain

H ′′ xð Þ + 1 + 2 j0
x

− θ − 2 x
� �

H ′ xð Þ

+ −
β0
x

+ λ0
ω

+ θ2

4 − 2 − 2 j0

" #
H xð Þ = 0,

ð57Þ

where β0 = η + ðθ/2Þ ð1 + 2 j0Þ.
Equation (57) is the biconfluent Heun’s differential equa-

tion [3, 5, 7, 12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 89, 90]
with HðxÞ is the Heun polynomial function.

Substituting the power series solution (22) into the Eq.
(57), we get the following recurrence relation for the coeffi-
cients:

cn+2 =
1

n + 2ð Þ n + 2 + 2 j0ð Þ η + θ n + j0 +
3
2

	 

 �
cn+1

�

−
λ0
ω

+ θ2

4 − 2 − 2 j0 − 2 n
 !

cn

�
:

ð58Þ

And the various coefficients are

c1 =
η

1 + 2 j0
+ θ

2

	 

c0,

c2 =
1

4 1 + jð Þ η + θ j0 +
3
2

	 

 �
c1 −

λ0
ω

+ θ2

4 − 2 − 2 j0

 !
c0

" #
:

ð59Þ

The power series expansion HðxÞ becomes a polynomial
of degree n by imposing the following two conditions [3, 5, 7,
12, 19, 48, 51–54, 57, 59, 71, 74, 85, 86, 92, 93].

λ0
ω

+ θ2

4 − 2 − 2 j0 = 2n n = 1, 2,⋯ð Þ
cn+1 = 0:

ð60Þ

By analyzing the first condition. we obtain the following
second-degree energy eigenvalues expression En,l:

E2
n,l =m2 + k2 + 2mωc l −Φð Þ

α

+ 2mω n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −Φð Þ2
α2

+ η2c

r !

+ 2 ηc ηL −
m2 η2L
ω2 :

ð61Þ

Equation (61) is the energy eigenvalues of a relativistic
scalar particle with an external uniform magnetic field
including a magnetic quantum flux in the cosmic string
space-time subject to Cornell-type scalar potential. For zero
magnetic quantum flux, ΦB ⟶ 0, the energy eigenvalues
(61) is consistent with the result in [19]. Thus, we can see that
the energy eigenvalue expression Eq. (26) get modify in com-
parison to those in [19] due to the presence of the magnetic
quantum fluxΦB as well the torsion parameter χwhich break
the degeneracy of the energy spectrum.

To obtain the individual energy levels, we impose the
additional recurrence condition cn+1 = 0. For example, n = 1,
we have from (59)

ω3
1,l −

a2

2 1 + 2 j0ð Þ ω
2
1,l − a b

1 + j0
1 + 2 j0

	 

ω1,l −

b2

8 3 + 2 j0ð Þ = 0,

ð62Þ

a constraint on the physical parameter ω1,l. The relation given
in Eq. (62) gives the possible values of the parameter ω1,l that
permit us to construct first degree polynomial to HðxÞ for
n = 1. Note that its values change for each quantum num-
ber n and l, so we have labeled ω⟶ ωn,l. Besides, since
this parameter is determined by the frequency or the mag-
netic field B0, hence, the magnetic field B1,l

0 is so adjusted
that the Eq. (62) can be satisfied and the first degree poly-
nomial to HðxÞ can be achieved, where we have simplified
our notation by labeling:
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ωc 1,l =
1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1,l − η2L

q
↔ B1,l

0 = 2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1,l − η2L

q
: ð63Þ

Note that the equation (62) has at least one real solu-
tion, and it is exactly this solution that gives us the allowed
values of the magnetic field for the lowest state of the sys-
tem, which we do not write because its expression is very
long. We can note, from Eq. (63), that the possible values
of the magnetic field depend on the quantum numbers
and the potential parameter.

The ground state energy levels for n = 1 is

E1,l = ± m2 + k2 + 2 ηc ηL +
2mωc 1,l

α
l −Φð Þ




+ 2mω1,l 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −Φð Þ2
α2

+ η2c

r !
−
m2 η2L
ω2
1,l

�1
2

,
ð64Þ

Then, by substituting the real solution ω1,l from Eq. (62)
into the Eq. (64), it is possible to obtain the allowed values of
the relativistic energy levels for the radial mode n = 1 of a
position dependent mass system. We can see that the lowest
energy state is defined by the real solution of the algebraic
equation Eq. (62) plus the expression given in Eq. (64) for
the radial mode n = 1, instead of n = 0. This effect arises due
to the presence of Cornell-type potential in the system.

The ground state wave function is

ψ1,l = x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l−Φð Þ2
α2 +η2c

p
e
−1
2

2m ηL
ω3/21,l

+x

	 

x

c0 + c1 xð Þ, ð65Þ

where

c1 =
1

ω1/2
1,l

2m ηc
1 + 2 j0

+ m ηL
ω1,l

� �
c0: ð66Þ

In subsection 2.1–2.3, we can see that the relativistic
energy eigenvalues depend on the geometric quantum
phase [75, 76]. This dependence of the energy eigenvalues
on the geometric quantum phase gives rise to a relativistic
analogue of the Aharonov-Bohm effect for bound states
[11, 52, 54, 59, 61, 62, 82–86]. Besides, we have that En,l
ðΦB +Φ0Þ = En,l∓τðΦBÞ where Φ0 = ±ð2π/eÞ τ with τ = 0,
1, 2⋯ .

3. Conclusions

In [19], authors studied the relativistic quantum dynamics of
bosonic charged particle in the presence of external fields in
the cosmic string space-time subject to a Cornell-type poten-
tial. In [59], authors studied a scalar field in the presence of
external fields including a magnetic quantum flux in the
space-time with a spacelike dislocation subject to a linear
potential. In [60], authors investigated a spin-0 massive
charged particle in the presence of external fields including
a magnetic quantum flux in the space-time with a spacelike
dislocation subject to a Coulomb-type potential.

In this paper, we have investigated quantum effects of
torsion and topological defects that stem from a space-
time with a spacelike dislocation under the influence of a
Cornell-type potential in the relativistic quantum system.
By solving the Klein-Gordon equation subject to a uni-
form magnetic field including a magnetic flux in the pres-
ence of a Cornell-type potential, we have obtained the
energy eigenvalues Eq. (26) and corresponding eigenfunc-
tions Eq. (27). By imposing the additional recurrence con-
dition cn+1 = 0, we have obtained the individual energy
levels and corresponding wave-function, as for example,
n = 1 and others are in the same way. The presence of
the torsion parameter modifies the energy levels and
breaks their degeneracy. We have discussed three cases
(subsection 2.1) for zero Coulomb potential, ηc ⟶ 0,
(subsection 2.2) zero linear potential, ηL ⟶ 0, and (sub-
section 2.3) zero torsion parameter χ⟶ 0 in the consid-
ered relativistic quantum system. In subsection 2.1–2.2, we
have seen that for α⟶ 1, the energy eigenvalues Eq. (40)
and Eq. (51) are consistent with those results obtained in
[59, 60], respectively. Thus, the presence of the cosmic
string parameter shifts the energy levels in comparison to
those obtained in [59, 60]. Furthermore, by comparing
the energy eigenvalues Eq. (26) with those results obtained
in [59, 60], we have seen that the presence of an extra
potential term as well the cosmic string parameter mod-
ifies the energy eigenvalues. In sub-section 2.3, for zero-
zero magnetic quantum flux, ΦB ⟶ 0, we have seen that
the energy eigenvalues Eq. (61) is consistent with those
results obtained in [19]. Hence, the relativistic energy
eigenvalues Eq. (61) is the extended result in comparison
to those in [19] due to the presence of a magnetic quan-
tum flux ΦB. In addition, by comparing the energy eigen-
values Eq. (26) with the result obtained in [19], we have
seen that the presence of the torsion parameter χ as well
as the magnetic quantum flux ΦB modify the energy
eigenvalues where the degeneracy of the energy levels is
broken by the torsion parameter.

We have seen in each case that the angular quantum
number l is shifted, l⟶ lef f = ð1/αÞ ðl −Φ − kχÞ, an effec-
tive angular quantum number. Thus, the relativistic energy
eigenvalues obtained in subsection 2.1–2.2 depends on the
geometric quantum phase [75, 76] as well as the torsion
parameter and only the geometric quantum phase in sub-
section 2.3. This dependence of the relativistic energy
eigenvalues on the geometric quantum phase gives rise to
a relativistic analogue of the Aharonov-Bohm effect for
bound states [11, 52, 54, 59, 61, 62, 82–86]. Besides, we
have that En,lðΦB +Φ0Þ = En,l∓τðΦBÞ where Φ0 = ±ð2π/eÞ τ
with τ = 0, 1, 2⋯ .

It is well known in nonrelativistic quantum mechanics
that the Landau quantization is the simplest system that
would work with the studies of quantum Hall effect. There-
fore, the relativistic quantum systems analyzed in this work
would be used for investigating the influence of torsion, the
cosmic string as well as the Cornell-type potential on the
thermodynamic properties of quantum systems [94–97],
searching a relativistic analogue of the quantum Hall effect
[98, 99], and the displaced Fock states [100] in a topological
defects space-time with a spacelike dislocation.
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