Advances in Bioscience and Biotechnology, 2015, 6, 556-571 .0’0 Scientific

Published Online August 2015 in SciRes. http://www.scirp.org/journal/abb 0020‘ Egzﬁgﬁng
2

http://dx.doi.org/10.4236/abb.2015.68059

Obesity Effect on the Spine

Samir Zahaf?, Bensmaine Mansouri!, Abderrahmane Belarbil, Zitouni Azari?

1Department of Mechanical Engineering, University of Sciences and Technology, Oran, Algeria
2Laboratory of Biomechanics, Polymers and Structures, Ecole Nationale d’Ingénieurs de Metz, Metz, France
Email: zahafsamir1983@gmail.com, Smail_Mansouri@yahoo.fr, Belarbi_abd@yahoo.fr, azari@univ-metz.fr

Received 17 May 2015; accepted 21 August 2015; published 24 August 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

The objective of this work is to study the effect of obesity on the intervertebral discs and provide
system analysis of the spine between multiple configurations of people, and know the risks due to
this eccentric load (Big Belly). The results show that in all three previous loadings (obese people),
the distributions of stress and strain are high in both D1 and D10 intervertebral discs. This shows
that the distance between the point of load application and the spine axis has an important role in
solicitation increasing and therefore its deformation: as main conclusion is that the concentration
of the mass of stomach fat is a risk factor that leads to pain problems, deformation and herniated
disc.
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1. Introduction

The prediction of the mechanical behavior of the spine system is one of the major problems of biomechanics [1].
A better understanding of moving mechanisms of spine under different loads and stress distribution in this sys-
tem is of fundamental importance in the advancement of technologies in the areas of spinal restorations inter
vertebral prostheses, and osteopathic medicine bone [2].

The spine or rachis consists of a movable column of 24 free vertebrae and a fixed column formed of fused
vertebrae: the sacrum and coccyx (Figure 1); it is the fixing strut of many essential muscles in the posture and
locomotion and protects the spinal cord located in the vertebral canal; it supports the head and transmits the
weight of the body to the hip joints; with a length of about 70 cm in men (60 cm in women), its reduction may
reach 2 cm when standing [3].

The degeneration of the lumbar discs is definitely related to BMI; overweight and obesity are associated with
a higher risk of problems of the spine. The MRI study [4] published in the January 30 edition of Arthritis and
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Figure 1. Anatomy of the lumbar spine [5].

Rheumatism, the Journal of the American College of Rheumatology, alerts on this effect of overweight in the
development of degenerative disc disease and back pain and then herniated disc (Figure 3).

The term obesity is defined as an eccentric load (Figure 2); the load is represented by the mass of the belly
(P1). In this work, the simulations of the disc degeneration, based on a finite element model of the spine de-
pending on the mechanical properties were established; to define the boundary condition restriction on move-
ments of translation and rotation of the spine has been applied in the frontal plane. We propose in this work to
draw up a comprehensive study of stresses and deformations in the spinal discs distributions based on supported
loads. The results showed that the level of degeneration increased in all inters vertebral discs but concentrated in
the two disks D1 and D10.

Figure 3 shows two vertebrae of the spinal column with an intervertebral disc under the effect of a compound
loading (compression P + bending moment P1). The compressive load P creates an internal pressure in the nuc-
leus. This pressure will there after generate the disc degeneration or degenerative disc disease (Figure 4). As
regards the forward flexion P1, if the load of the stomach increases, automatically distance between the point of
load application and the axis of the spinal column increases, we see that the posterior portion of the annulus fi-
brosis is tensioned and the other front portion is compressed, that is to say the nucleus pulposus burst back
(posterior compression), and this compression produced by disc protrusion comes into contact with a nerve root
called herniated disc.

2. Material and Methods

The objective of this work is to provide an analysis between a geometric configuration of the spine system, to
find the effect of eccentric loads on the latter and mainly on the inter vertebral discs by analyzing the stress dis-
tribution in this system using a 3D numerical simulation, based on the principles of the finite element method.
The analysis of biomechanical problems includes several steps.
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Figure 2. Constitution spine (obese person) at the disc depending on its condition.
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Figure 3. The intervertebral disc with (a) compression (b) bending [6].
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Figure 4. Load distribution at the disc D1 according to his [7] state.
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The first is to study the form to define the geometrical configuration of the object, which allows the reconsti-
tution of the vertebra, the ligament and bone using CAD programs.

The result is a 3D geometric model including these three components will then be prepared for use in finite
element analyzes for the study of stresses and deformations distribution in the system.

The Steps to the execution of the 3D vertebra model (Figure 5).

a) Draw cortical bone that is the upper hinge and the lower hinge, and make the smoothing; this gives a solid
body called the vertebral body.

b) Secondly, draw the posterior arch (blade + the pedicle) with the spinousprocess.

c) Finally we draw the transverse process.

The simulation of the disc degeneration is based on a finite element model of the healthy spine. Figure 6
shows a spine model, this consists of five lumbar vertebrae (L1, L2, L3, L4 and L5) plus the sacrum, twelve
thoracic vertebrae (TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12) and 17 inter verte-
bral discs between (S1-L5, L5-L4, L4-L3, L3-L2, L2-L1, L1-TH12 TH12-TH11, TH11, TH10, TH10-TH9,
TH9-TH8, TH8-TH7, TH7-TH6, TH6-TH5, TH5-TH4, TH3-TH4, TH3-TH2 TH2-TH1) and various ligaments
thoracic lumbar spine (anterior longitudinal ligament, posterior longitudinal ligament, ligament interspinous li-
gament supraspinatus, yellow ligament and capsular ligament).

In static loading conditions, the model of the reconstructed spine is used in an analysis for studying the role of
the inter vertebral discs and the stress distribution in these disks as well as its supporting structures. The spine is
reconstructed in 3D to study the system dimensions (I'\VD-ligament-bone) (Figure 7).

Figure 5. Lumbar vertebras.

72 cm

Figure 6. Spine studied. (a) Lateral (left) view; (b) Dorsal
view; (c) Front view; (d) Lateral (right) view.



S. Zahaf et al.

150mm 42mm
«—>!

24mn'y‘:
1
1
1

Figure 7. Vertebra and sacrum dimensions.

In order to define the boundary conditions, restriction on movements of translation and rotation of the spine
has been applied in the lower plane, and defined as having zero displacements. Several charges in the anterior
direction were applied as follows:

* The application of the load on the upper side of the thoracic vertebra TH1.

* The fixed part applied to the body of the sacrum.

* The interfaces between the different components of the system of the spine, the cortical bone, the inter ver-
tebral disk and ligament are treated as perfectly bonded interfaces (Figure 8).

Figure 9 shows an isometric view of an exploded assembly of the spine and each component of the spine
system is denoted by letters.

The selection of constitutive equations of the vertebral bone is defined as the part of the bone which carries
the inter vertebral disc, composed of cortical bone, cancellous bone, the posterior arch, with a Young’s modulus
of about 12,000 MPa. It is recognized that cortical bone: has: better load capacity than the cancellous bone: cor-
tical bone is considered as an isotropic material, and homogeneous linear elastic.

Table 1 shows the tensile strength of the structure annulus fibrosis different authors. These materials are in
herently anisotropic and non-linear elastic.

The behavior of intertransverse ligament and inter-spinous ligament is nonlinear viscoelastic as in previous
studies [8]; a linear elastic model is chosen to represent this behavior.

ANSYS WORKBENCH software was used for analyzing this geometry and generate the most suitable mesh.
For the studied behavior, we used tetrahedral elements, type Solid187 conforming to defined parametric surfaces
(Figure 10). It is necessary to mesh the components of the spine with small and confused elements to ensure op-
timum accuracy of the results of stresses and strains in the inter vertebral discs.

The material properties of the spine components were selected after a careful review of the published litera-
ture (Table 2) it was considered appropriate to define the cortical and cancellous bone as homogeneous and iso-
tropic. The magnitudes of 12,000 MPa and 100 MPa (cortical and cancellous, respectively) were observed in all
studies by various researchers. Since physiologically the nucleus is fluid filled, the elements were assigned low
stiffness (1 MPa) values and near incompressibility properties (Poisson’s ratio of 0.499). Biologically, the an-
nulus fibrosus is comprised of layers of collagen fibers, which attributes to its non-homogenous characteristics.
However, due to limitations in modeling abilities, the annulus was defined as a homogenous structure with a
magnitude of 4.2 MPa. This was based on the modulus of the ground substance (4.2 MPa) and the collagen fi-
bers reported in the literature, taking into account the volume fraction of each component.

The complete model of the spine (Figure 10) was realized by the SOLIDWORKS SOFTWARE VERSION
2014 and was then transferred to the software Calculates each element ends ANSYS 14.5 WORKBENCHE gen-
erated the default mesh then generated linear global custom mesh tetrahedra 10 nodes conform to surface.

The result ends element models of the spine contain a condensed mesh (Figure 10).

Figure 10 shows a complete model that consists of 11,762,783 elements and 17,150,901 nodes. L’os cortical
contains (3,585,646 element and 5,132,199 nodes), cancellous bone in the cortical bone contains (2,496,448
element 3,471,929 nodes).

The posterior arch was modeled with tetrahedral elements to 10 nodes contains (2,377,091 element, 3,440,842
nodes), the nucleus pulposus in the annulus fibrosus were modeled with tetrahedral type elements 10 nodes
(504,657 element 717,205 nodes), the annulus fibrosus were modeled with elements of type tetrahedral to 10
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Figure 8. 3D modeling thoracic vertebra L3, D4 disc of the lumbar spine (SOLIDWORKS 2014 software).
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Figure 9. Assemblies in isometric perspective. Abbreviations: D,: intervertebral disk upstairs one; N;: nucleus in the inter-
vertebral disc upstairs one; Dy: intervertebral disk upstairs ten; Nyo: nucleus in the intervertebral disc upstairs ten; L,:
lumbar vertebra is on level four; D,: intervertebral disk upstairs four; N4: nucleus in the intervertebral disc upstairs four;

MRI: Magnetic resonance imaging; FEM: Finite Element Method; IVD: inter vertebral disc.

Figure 10. Spine 3D finite element modeling (Ansys14.5 software).

Table 1. Mechanical characteristics of disc tissue [9].

Authors
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Table 2. Material properties specified in the model.

Young modulus  Poisson

Material (MPa) e et References
Cortical bone 12,000 0.3 [10]-[21] [26] [35] [37]-[40] [42] [43]
Cancellous bone 100 0.2 [10] [13] [14] [16]-[18] [20] [21] [23]-[26] [35] [37]-[40] [42] [43]
Posterior bone 3500 0.25 [12]-[14] [17] [18] [20] [21] [23] [26] [27] [36]-[39]
Cartilage endplates 12,000 0.3 [20] [22] [24] [28]
Annulus ground substance 4.2 0.45 [10] [13] [16] [18]-[22] [24] [26] [30] [31] [34]-[39] [42] [43]
Nucleus pulposus 1 0.499 [11] [13]-[15] [17] [19] [20] [26] [29] [32]-[38] [42] [43]
Anterior longitudinal ligament 20 0.3 [13] [14] [16]-[18] [36] [37] [40] [41]
Posterior longitudinal ligament 20 0.3 [13] [14] [16] [17] [36] [37] [40] [41]
Ligamentum flavum 19.50 0.3 [13] [14] [16] [17] [36] [37] [40] [41]
Intertransverse ligament 58.7 0.3 [13] [14] [16] [17] [36] [37] [40] [41]
Inter-spinous ligament 11.6 0.3 [13] [14] [16] [17] [36] [37] [40] [41]
Supra-spinous ligament 15 0.3 [13] [14] [16] [17] [36] [37] [40] [41]
Capsular ligament 32.9 0.3 [13] [14] [16] [17] [36] [37] [40] [41]

nodes (1,434,546 element , 2,059,247 nodes). The gelatinous cartilage modeled with a tetrahedral element to 10
nodes (912,759 elements, 1,431,242 nodes). Finally the different types of ligaments generated by a tetrahedral
mesh to 10 nodes (Table 3).

The diagram in (Figure 11) shows a normal person standing with a specific weight of 80 kg, the total mass
(belly) is 13.25 kg representing the weight P1; the pressure load P is the mass of the top portion of the person’s
body (hands, forearms, arms, head) divided by the area of the thoracic vertebra TH1.

The length of the spine (thoracic + lumbar) is 72 cm and the distance between the specific weights of the belly
which is the point of application of the load and the axis of the vertebral column (20 cm). For boundary condi-
tions, the sacrum is fixed. (Embedding the sacrum (Figure 12).

We propose in this section to draw up a detailed study of Von Mises distributions constraints and deforma-
tions in the intervertebral discs as a function of supported loads.

Figure 12 shows three people in standing position, with respective specific bellies weight P1 (16.56 Kg,
19.88 kg, 24.85 kg).

The distance between the center of gravity of the belly and the axis of the vertebral column is between (30
¢m/50 cm), the pressure load P is applied on the thoracic vertebra TH1.

To define the boundary conditions, restriction on movements of translation and rotation of the spine has been
applied including frontal plane and defined as having zero displacements on the sacrum see Figure 12.

Consider the example of an anterior load (obese person), the colors represent the Von Mises stresses expe-
rienced by 17 intervertebral discs, blue represents the minimum stress and the red represents the maximum
stress.

3. Results

Figure 13 shows clearly that the anterior load affects the disk D1 and D10 is the two most sought discs com-
pared to other drives in the thoracic lumbar spine.

A load applied to the upper surface of the TH1 thoracic vertebra of the spinal column causes a high concen-
tration of maximum Von Mises stresses in the anterior portion of the two discs D1 and D10 (red section) this is
mentioned in Figure 14,

Moreover, the Von Mises stresses are minimal at the posterior part of the two intervertebral discs D1, D10
(blue contour) see Figure 14.

Figure 15 shows the Von Mises strain histogram in the inter vertebral discs for a normal person load 13.25 kg.
We note that the Von Mises deformation values are highest in the two discs D1, D10 (2784, 2377) outline in red;

this is mentioned in Figure 16.
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Figure 11. Mechanical model of the spine anterior load (normal person).

Table 3. Element and node numbers in the column vertebral system components.

Component Nodes Elements Thickness
Cortical bone 5,132,199 3,585,646 1 mm
Cancellous bone 3,471,929 2,496,448 1mm
Posterior bone 3,440,842 2,377,091 1 mm
Cartilage endplates 1,431,242 912,759 1 mm
Annulus ground substance 2,059,247 1,434,546 1 mm
Nucleus pulposus 717,205 504,657 1 mm
Anterior longitudinal ligament 227,078 128,365 1 mm
Posterior longitudinal ligament 158,748 92,426 1 mm
Ligamentum flavum 30,226 13,447 1 mm
Transverse ligament 285,328 131,648 1 mm
Inter-spinous ligament 28,968 13,158 1 mm
Supra-spinous ligament 17,833 8279 1 mm
Capsular ligament 51,816 24,072 1 mm
Total 17,150,901 11,762,783 1mm
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. Fixed support . Fixed support - Fixed support

. Pressure: P = 1.14 MPa . Pressure: P = 1.37MPa . Pressure: P =1.72 MPa

. Distant load: P;=165.6 N . Distant load: P;=198.8 N . Distant load: P; = 248.5 N
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Figure 12. Mechanical model of the spine [anterior load (fat person)].

Consider the example of an anterior load (obese person), the colors represent the Von Mises stresses expe-
rienced by 17 intervertebral discs, blue represents the minimum stress and the red represents the maximum stress.
Figure 17 shows the role of the intervertebral discs in the stress absorbing. Their distribution in the spine tends
to be concentrated in the disc D1 on both sides, for the front side, a tracted portion to a maximum value of
15.216 MPa and the other has a minimum value of 0.035 MPa (Figure 18).
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Figure 14. Von Mises stresses Distribution in the discs D1 and

D10 for a load of 13.25 kg.
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Figure 17. Histogram of the Von Mises stress and strains in the IVD for a Diffrent load. (a) 16.56 kg;

(b) 19.88 kg; (c) 24.85 kg.
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Figure 18. Histogram of the Von Mises stress and strains in the IVD for a Diffrent load. (a) 16.56 kg; (b) 19.88
kg; (c) 24.85 kg.

4. Discussion

We see in Figure 18 and Figure 19 Von Mises stresses reached a maximum value concentrated in the two discs
D1, D10 which are equal to 15.21 MPa, 13.96 MPa for the first person, 19.454 MPa, 18.217 MPa for the second
person and 29.595 MPa, 27.862 MPa for the third person who is located in the anterior portion of the disc (red
part).

Regarding the deformations VVon Mises, we notice that the values are greatest in the two intervertebral discs
D1, D10 of 3.86, 3.788 for a load of 16.55 kg obesity and 4.934, 4.393 for an obesity load 19.88 kg and 7.506,
6.718 for an obesity load 29.85 kg compared to other discs of the vertebral column (Figure 18). Finally a nor-
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mal person (without obesity), Von Mises stresses are concentrated in both discs D1 and D10 with values of
10.974 MPa, 9.858 MPa see Figure 14. In the case where the obesity of load augment that is to say the distance
between the load application point and the axis of the spine augment (the most risky cases). These loads will
cause according to the maximum distance of major constraints that will generated a phenomenon called disc de-
generation (herniated disc) posterior side of the disc from its side will overwrite the spinal nerve (spinal cord)
see Figure 20(a) and Figure 20(b).

5. Conclusions

In sum, we concluded for the three cases of anterior load (obese persons) (Figure 19), that the distributions of
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Figure 19. Histogram of the Von Mises stress and strains in the IVD for a Different loads.
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Von Mises stresses are the highest in intervertebral discs and are concentrated in the disk D1, in contact with the
L5 vertebra and the sacrum; Figure 20(a) clearly shows that the level of deformation of Von Mises is maximal
in the disc D1, valued at 7.5063 mm/mm. This shows that the distance between the load application point and
the axis of the spine has an important role in the increase of solicitation of this one and therefore of its deforma-
tion (Figure 20(b)).
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