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Abstract 
 

Boundary elements have emerged as a powerful alternative to finite elements particularly in cases where 
better accuracy is required. The most important features of boundary elements however is that it only 
requires descretization of the surface rather than the volume. Here, A general algorithm of the boundary 
integral method has been formulated for solving elliptic partial differential equations. The broad 
applicability of the approach is illustrated with a problem of practical interest giving the solution of the 
Laplace equation for potential flow with mixed boundary problems. The results and patterns are shown in 
tables and figures and compared well with Brebbia [1] are found in good agreement. 
 

 
Keywords: Boundary elements; boundary integral method; laplace equation. 
 

1 Introduction 
 
Finite element technique has been proved inadequate or inefficient in many engineering and physical 
sciences applications and in some cases very cumbersome to use. Finite element analysis is still a 
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comparatively slow process due to the need to define or redefine meshes in the piece or domain under study. 
This was the motive behind development of boundary element technique which has proved as an alternative 
to finite element [2,3]. 
 
Boundary elements have emerged as a powerful alternative to finite elements particularly in cases where 
better accuracy is required due to problems such as stress concentration or where the domain extends to 
infinity. The most important features of boundary elements however is that it only requires descretization of 
the surface rather than the volume. Hence boundary element methods are easier to use.  
 
Basic boundary integral equations required by this method can be deduced on the consideration of weighted 
residuals. It can also be deduced with Green’s third identity principle. During 1980’s, boundary element 
methods have attracted attention of scientists and engineers. Brebbia [4] has compared this technique with 
finite difference and finite element techniques in detail and described its usefulness vis-à-vis with others. 
 

2 Review of Litrature 
 
The credit for the development of Boundary Elements Methods goes to Brebbia and his collaborators. It was 
the work of Brebbia and Dominguez (see [1]) and [5]) where the name ‘Boundary Elements Methods’ was 
used for the first time. In these papers, they compared Boundary Elements Methods verses Finite Elements 
Methods. They also provided techniques as how to apply Boundary Elements Methods to potential 
problems. Potential flow problems have wide applicability in Mathematics, Engineering Sciences and 
Aerodynamics. Generally , they are governed by Laplace’s equation which one of the important elliptic 
partial differential equations. Although previously also, some papers appeared regarding application of 
‘Integral equation methods’ specially in solid mechanics like ‘Torsion problem’. But they could not draw 
much attention due to their limited applicability. It was the work of Brebbia and Ferrante [6] which brought 
this technique into the forefront. A detail study is also given by Brebbia and Wandland [7]. 
 
Herein, the technique is applied on a Laplace’s boundary value problem with mixed boundary conditions i.e. 
having Dirichlet and Neumann both types of boundary conditions. However, the technique can be 
generalized to tackle Poisson and other type of elliptic partial differential equations. 
 

3 Algorithms for BEM 
 
An algorithm has been developed for computing the results by minimizing the residuals and introducing all 
important factors as per the following standard procedure using fundamental equations. An overview has 
been given by Xianyun Qin et. al. [8] for singular integrals on 3D boundary elements. 
 

3.1 Basic integral equation 
 
Laplace equation in a domain  (two or three dimensional domain) is  
 
2u=o            in                                                                                                                                             (1) 
 
with following conditions on the  boundary 
 

(i) ‘essential’ Conditions of the type u= u  on 1 
(ii) ‘Natural’ Conditions such as q = u/n = q on 2                                                                                (2) 

 
Where n is the normal to the boundary   = 1 + 2 and the bar indicates that these values are known. 
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In principle, the error introduced in the above equation if the exact (but unknown) values of u and q are 
replaced by an approximate solution can be minimized by orthogonalizing them with respect to a weighted 
function u* , with derivatives on the boundary q* = u*/n. 
 
In other words if R are the residuals, one can write in general that  
 
R =  2u o 
R1=  u-  u    0                                                                                                                                                (3) 
R2=  q- q  o 
 
 
Where u and q are approximate values. (the fact that one or more of the residuals may be identically zero 
does not detract from the generality of the argument.) 
 
The weighting can now be carried out as shown below 
 

 Or, 
 

 
Integrating by parts the left hand side of this equation gives. 
 

 
Where k= 1,2,3 and the so called Einstein’s summation for repeated indexes has been used. Integrating by 
parts again the term on the left hand side one obtains, 
 

 
The singular function boundary Integral method for elliptic problems have been elaborated by Xenophontos 
[9] and Christodoulou et. al. [10]. 
 

3.2 Fundamental solution 
 
The fundamental solution u* satisfies Laplace’s equation and represents the field generated by a 
concentrated unit charge acting at a point ‘i’. The effect of this charge is propagated from i to infinity 
without any consideration of boundary conditions. Because of this the solution can be written 
 
2 u* + i =0                                                                                                                                                  (8) 
 
where i represents a Dirac Delta function which tends to infinity at the point x=xi  and is equal to zero 
anywhere  else. The integral of i however is equal to one.  
 
The integral of Dirac delta function multiplied by any other function is equal to the value of the latter at the 
point xi. Hence 
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Equation (7) can now be written as, 
 

 
 For an isotropic three dimensional medium the fundamental solution of equation (8) is  
 
u*=1/4r                                                                                                                                                      (11) 
 
and for a two dimensional  isotropic domain ,it is  
 
u* = 1/2 In (1/r)                                                                                                                                          (12) 
 
Where r is the distance from the point xi of application of the delta function to any point under consideration. 
 

3.3 Boundary integral equation 
 
We have now deduced an equation (10) which is valid for any point within the  domain. In boundary 
elements it is usually preferable for computational reasons to apply equation (10) on the boundary and hence 
we need to find out what happens when the point xi is on . A simple way to do this is to consider that the 
point i is on the boundary but the domain itself is augmented by a hemisphere of radius  (in 3D) as shown 
in Fig. 1 (for two D the same applies but we will consider a semicircle instead). The point xi is considered to 
be at the centre and then the radius  is taken to zero. The point will then become a boundary point and the 
resulting expression the specialization of (10) for a point on . 
 

 
 

Fig. 1. Boundary points for two and three dimensional case 
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Fig. 2. Different types of boundary elements 
 
It is important at this stage to differentiate between two types of boundary integrals in (10) as the 
fundamental solution and its derivative behave differently. Consider for the sake of simplicity equation (10) 
before any boundary conditions have been applied, i.e.  
 

 
Here   = 1 + 2 and satisfaction of the boundary conditions will be left for the latter on. Integrals of the 
type shown on the right hand side of (13) are easy to deal with as they present a lower order singularity, i.e. 
for three dimensional cases the integral around  gives: 
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In other words nothing occurs to the right hand side integral when  (10) or (13) are taken to the boundary .  
The left hand side integral however behaves in a different  manner . Here we have around   the following 
result, 
 

They produce what is called a free term. It is easy to check that the same will occur for two dimensional 
problems in which case the right hand side integral around  is also identically equal to zero and the left 
hand side integral becomes, 
 

 
From (14) to  (16) one can write the following expression for two or three dimensional problems 
 

 
where the integrals are in the sense of cauchy principal value. This is the boundary integral equation 
generally used as a starting point for boundary elements.  
 

3.4 The boundary element methods 
 
Let us now consider how expression (17) can be discretized to find the system of equations from which the 
boundary values can be found. Assume for simplicity that the body is two dimensional and its boundary is 
divided into N segments or elements as shown in Fig. 2. The points where the unknown values are 
considered are called ‘nodes’ and taken to be in the middle of the elements. The numerical solution of 
diffusion problem in two dimension with variable coefficients is well described by AL-Jawary [11]. 
 
3.4.1 BEM for constant elements 
 
For the constant elements considered here the boundary is assumed to be divided into N elements. The 
values of u and q are assumed to be constant over each element and equal to the value at the mid-element 
node. Equation (17) can be discretized for a given point ‘i’ before applying any boundary conditions, as 
follows,  
 

 
The point ‘i’ is one of the boundary nodes. Note that for this type of element (i.e. constant) the boundary is 
always smooth as the node is at the centre of the element, hence the multiplier of ui is ½. j is the boundary 
of ‘j’ element. 
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The u and q values can be taken out of the integrals  as they are constant over each element. They will be 
called uj and qj for element ‘j’. hence 

 
 
Notice that there are two types of integrals to be carried out over the elements, those of the following types, 
 

 
These integrals relates the ‘i’ node where the fundamental solution is acting to any other ‘j’ node .Because of 
this their resulting values are sometimes called influence coefficients. We will call them Hij and Gij, i.e.  
 

 
Notice that we are assuming throughout that the fundamental solution is applied at a particular ‘i’ node , 
although this is not explicitly indicated in u*, q* notation to avoid proliferation of indexes. Hence for a 
particular ‘i’ point we can write, 
 

 
If we now assume that the position of i can also vary from 1 to N, i.e. we assume that the fundamental 
solution is applied at each node successively one obtains a system of equations resulting from applying (21) 
to each boundary point in turn. 
 
Let us now call 
 
            Hij           when ij    
Hij =                                                                                                                                                                (22) 
            Hij+1/2    when i=j 
 
Hence equation  (21)can now be written as 
 

 
This set of matrix equation can be expressed in matrix form as 
 
HU=GQ                                                                                                                                                          (24) 
 
Where H and G are NxN matrices and U, Q are vectors of length N. 
 
Notice that N1 values of u and N2 values of q are known on 1 and 2 respectively (1+2 = ), hence there 
are only N unknowns in system of equations (24). To introduce these boundary conditions into (24) one has 
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to rearrange the system by moving columns of H and G from one side to the other. Once all the unknowns 
are passed to the left hand side one can write, 
 
AX = F                                                                                                                                                           (25) 
 
Where X is a vector of unknowns u’s and q’s boundary values. F is found by multiplying the corresponding 
columns by the known values of u’s or q’s. It is interesting to point out that the unknowns are now a mixture 
of the potential and its derivative, rather than the potential only as in finite elements. This is a consequence 
of the boundary element being a ‘mixed’ formulation and gives an important advantage to the method over 
finite elements. 
 
Equation (25) can now be solved and all the boundary values are then known. Once this is done it is possible 
to calculate any internal value of u or its derivatives. The values of u’s are calculated at any internal point ‘i’ 
using formula (10) which can be written as, 

 
Notice that now the fundamental solution is considered to be acting on an internal point ‘i’ and that all 
values of ‘u’ and ‘q’ are already known. The process is then one of integration (usually numerically). The 
same descretization is used for the boundary integrals, i.e. 
 

 
The coefficients Gij and Hij have been calculated a new for each different internal point. The values of 
internal fluxes in the two directions, say x1 and x2, qx1 =u/ x1 and q x2 =u/x2 are calculated by carrying 
out derivatives on (26), i.e. 
 

 

 
 
Notice that the derivatives are carried out only on the fundamental solution functions u* and q* as we are 
computing the variations of the flux around the ‘i’ point. 
 
Computation of integrals for internal points in (27), (28) and (29) are usually carried out numerically. 
 

3.4.2 BEM for linear elements 
 

Here we consider linear elements instead of constant elements. We consider a linear variation of u and q for 
which case the nodes are considered to to be at the ends of the elements as shown in Fig. 3. 
 

The integral equation (13) for linear elements is written as  
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After discretizing the boundary into a series of N elements equation (7.30) can be written 
 

 

The integrals in this equation are more difficult to evaluate than those for the constant element as u’s and q’s 
are vary linearly over each j and hence it is not possible to take them out of the integrals. 
 

The values of u and q at any point on the element can be defined in terms of their nodal values and two 
linear interpolation functions 1 and 2, which are given in terms of the homogeneous coordinate  as shown 
in Fig. 3 , i.e. 
 

 is the dimensionless coordinate varying from –1 to +1 and the interpolation function are  
 
1 = ½(1-)    :   2 = ½(1+).                                                                                                                       (33) 
 
let us consider the integrals over an element ‘j’. Those on left hand side can be written as, 
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And the whole set in matrix form becomes 
  
H U = G Q                                                                                                                                                    (41) 
 
Solving exactly as in the case of constant elements, we get values of unknowns. 
 

 
 

Fig. 3. Linear elements basic definitions and corner treatment 
 

4 The Problem: 
 
Consider the Laplace’s equation 
 
2 u =0                                                                                                                                                          (42) 
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in a domain  which is a square with each side unity as shown in Fig. 4 
 

 
 

Fig. 4. Domain  
 
Boundary conditions are mixed type as follows 
 
u = 300 along OC  
u = 0 along AB                                                                                                                                             (43) 
q = 0 along OA and BC 
 

5 Results and Discussion 
 
The numerical results are obtained using the given algorithm for constant elements by modern computing 
device and techniques. We discretize the domain into boundary elements and internal nodes as follows: 
 

 
 

Fig. 5. X Internal points 
 

Here the domain is descretized into 8 boundary elements and 5 internal nodes. Computational results are 
depicted in Table 1 for boundary nodes and in Table 2 internal nodes. Pattern of results in Table 1 is in good 
agreement with given boundary conditions. Moreover, values of potential at internal nodes from Table 2 are 
shown in Fig. 6 
 



 
 
 

Pal et al.; ARJOM, 17(1): 71-85, 2021; Article no.ARJOM.65456 
 
 
 

82 
 
 

 
 

Fig. 6. Values of potential at 5 internal nodes 
 

Above computational results also validate the given boundary conditions, since value of u is zero along AB 
and 300 along OC. 
 
The same problem is recomputed by taking 16 boundary elements and nine internal nodes as follows: 
 

 
 

Fig. 7. X Internal nodes 
 
Computational results are given in Table 3 for boundary nodes and in Table 4 for internal nodes. Values of 
potential u at internal nodes are shown in Fig. 8 here. 
 

 
 

Fig. 8. Values of potential at 9 internal nodes 
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Results are in excellent agreement with given boundary conditions as well as with results obtained by 8 
elements and 5 internal nodes. 
 
From Tables 1-4, it is apparent that results using constant elements have same pattern and features. The same 
conclusion was expected by Brebbia [1]. Pattern of computational results at lower boundary OA is shown in 
Fig. 9 for constant elements. 
 

 
 

Fig. 9. 
 

Table 1. Value of potential and potential derivatives taking 8 Bounday nodes 
 

Boundary nodes X Y Potential Potential derivative 

1 0.25 0.00 224.62 0.000 

2 0.75 0.00 69.284 0.000 

3 1.00 0.25 0.000 -303.36 

4 1.00 0.75 0.000 -129.40 

5 0.75 1.00 0.000 -275.76 

6 0.25 1.00 210.67 0.000 

7 0.00 0.75 300.00 373.80 

8 0.00 0.25 300.00 334.93 
 

Table 2. Values of potential taking 5 internal nodes 
 

Internal nodes X Y Potential 

1 0.25 0.25 221.41 

2 0.75 0.25 70.02 

3 0.50 0.50 138.08 

4 0.25 0.75 212.72 

5 0.75 0.75 47.79 
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Table 3. Value of potential and potential derivatives taking 16 boundary nodes 
 

Boundary nodes X Y Potential Potential derivative 
1 0.125 0.000 262.53 0.00 
2 0.375 0.000 183.50 0.00 
3 0.625 0.000 107.66 0.00 
4 0.875 0.000 340.36 0.00 
5 1.000 0.125 0.00 -301.48 
6 1.000 0.375 0.00 -271.77 
7 1.000 0.625 0.00 -254.92 
8 1.000 0.875 0.00 -114.41 
9 0.875 1.000 0.00 -231.65 
10 0.625 1.000 86.68 0.00 
11 0.375 1.000 155.93 0.00 
12 0.125 1.000 205.42 0.00 
13 0.000 0.875 220.48 0.00 
14 0.000 0.625 300.00 506.37 
15 0.000 0.375 300.00 322.48 
16 0.000 0.125 300.00 334.92 

 
Table 4. Values of potential taking 9 internal nodes 

 
Internal nodes X Y Potential 
1 0.25 0.25 220.28 
2 0.50 0.25 143.53 
3 0.75 0.25 70.41 
4 0.25 0.50 213.71 
5 0.50 0.50 138.06 
6 0.75 0.50 67.35 
7 0.25 0.75 196.35 
8 0.50 0.75 128.94 
9 0.75 0.75 60.04 

 

6 Conclusions 
 
Above potential problem governed by Laplace’s equation clearly demonstrates the applicability of Boundary 
Element Methods. It is also clear that Boundary Element Methods are easy to apply and flexible in approach. 
It is also obvious that by increasing number of elements and nodes give better results according to 
expectation. The same concept can also be extended for other types of elliptic partial differential equations. 
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