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Abstract 
 

In this article, we investigate the exact and solitary wave solutions for the shallow water wave equations 

and the generalized Klein-Gordon equation using the exp �−�(�)� -expansion method. A wave 
transformation is applied to convert the problem into the form of an ordinary differential equation. By 
using this method, we found the explicit solitary wave solutions in terms of the hyperbolic functions, 
trigonometric functions, exponential functions and rational functions. The extracted solution plays a 
significant role in many physical phenomena such as electromagnetic waves, nonlinear lattice waves, ion 
sound waves in plasma, nuclear physics, shallow water waves and so on. It is noted that the method is 
reliable, straightforward and an effective mathematical tool for analytic treatment of nonlinear systems of 
partial differential equation in mathematical physics and engineering. 
 

 

Keywords: The exp�−�(�)�-expansion method; shallow water wave equation; Klein-Gordon equation; 
solitary wave solution; traveling wave solutions. 

Original Research Article 



 
 
 

Rashid and Khatun; JAMCS, 35(4): 72-86, 2020; Article no.JAMCS.58258 
 
 
 

73 
 
 

2010 Mathematics Subject Classification: 35C08, 35L05, 35L75, 35N05. 
 

1 Introduction 
 
Solitary wave solutions of nonlinear partial differential equations (PDEs) play an important role in the study 
of nonlinear physical phenomena in industry and nature. The solitary wave phenomena are observed in 
various fields, such as in plasma physics, fluid dynamics, optical fibres, the Bose-Einstein condensates, 
biological systems, propagation of shallow water waves, etc. [1,2]. The shallow water waves describe the 
motion of water bodies that are seen in various places like sea beaches, lakes and rivers, and governed by 
Boussinesq equation [2-4]. The Boussinesq-like equations appear in many physical applications, such as 
nonlinear lattice wave, solitons in plasma, shallow water waves, and nuclear physics all are governed by 
nonlinear waves equation [4,5]. The Korteweg-de Varies (KdV) equation, Boussinesq equation, Klein-
Gordon equation, regularized long wave (RLW), Benjamin-Bona-Mahoney (BBM) equation, and Kadomtsev 
Petviashvili (KP) are well known models of shallow water waves [5-7]. These equations are used to model in 
many physical phenomena, such as the hydrodynamics of lakes, storm surges, tidal flats, coastal regions and 
tsunami waves, as well as deep ocean tides. Nevertheless, the Boussinesq equation and generalized Klein-
Gordon (KG) equations gives much better approximation to such waves. Among the nonlinear wave 
equations, the Bussinesq equation describes the small amplitude with uniform depth regime for long waves 
transmitting on the surface of shallow water [6,7]. Biswas et al. [8] studied the soliton solution to the KG 
equation with the effect of power law nonlinearities is considered for this equation. These solutions will be 
useful in carrying out further analysis of shallow water waves that arises in the context of oceanography and 
atmospheric science as a paradigm for geophysical fluid motions. 
 
There are various mathematical models have been employed for obtaining exact and solitary wave solutions 
of nonlinear engineering problems. Some of these well-known models are, as examples,  the exp-functions 
method [9,10], the modified simple equation method [11], the Jacobi elliptic function expansion method 
[12,13], the Adomian decomposition method [14], the F-expansion method [15], the homogenous balance 

method [16], the ( / )G G  -expansion method [17,18], the novel ( / )G G -expansion method [19-21], the 

new generalized ( / )G G -expansion method [22,23] and so on has been used to solve different types of 

nonlinear systems of partial differential equations (PDEs). Recently, the exp�−�(�)�-expansion method has 
become widely applied to construct for traveling wave solutions of nonlinear equations in science and 
engineering [24-27]. For example, this method has been utilized to construct traveling wave solutions of the 
Pochhammer-Chree equation by Nematollah et al. [28] and Rashid et al. [29] also have used this method for 
constructing traveling wave solutions of nonlinear evolution equations. Therefore, in this article, the 

exp�−�(�)�-expansion method will be applied for obtaining exact and soliton solutions of shallow water 
wave equations and the generalized Klein-Gordon equation. 
 

The rest of this article is organized as follows. In section 2, the basic ideas of the exp�−�(�)�-expansion 

	method are expressed. In section 3, the method is employed of obtaining the exact and soliton solutions of 
the system of shallow water wave equations and the nonlinear generalized Klein-Gordon equations. In 
section, 4, physical explanations and graphical representations of the solutions are presented. Finally, 
conclusions are summarized in the last section. 
 

2 Outline of the ����−�(�)�-Expansion Method 
 
In this section, we illustrate the basic idea of the exp 	�−�(�)�-expansion method for obtaining exact 
solutions of shallow water wave equation and the generalized Klein-Gordon equation. 
 
Consider a general nonlinear partial differential equation with independent variables x and t of the form 
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���(�,�,��,��,��,���,���,���,… … … … … ) = 0

��(�,�,��,��,��,���,���,���,… … … … … ) = 0
�                                                     (1) 

 
where � = �(�,�) and � = �(�,� is an unknown function, ��	and	�� are polynomials of the variables �	and 
� and its partial derivatives in which highest order derivatives and nonlinear terms are involved. The main 
steps of this method are given in the following: 
 
Step 1: Consider the traveling wave transformation variables 
 

�(�,�) = �(�),�(�,�) = �(�),					� = � − ��,                                                          (2) 
 
where �(�), and �(�) represents the wave solutions and ‘�’ is the wave speed. We obtain the following 
relations: 
 

�

��
(.) = −�

�

��
(.),    

�

��
(.) =

�

��
(.),  

��

��� (.) =
��

���
(.).                (3) 

 
Substituting Eq. (3) along with Eq. (2) in Eq. (1), we reduce Eq. (1) to the following ordinary differential 
equation (ODE) for � = �(�): 
 

�ℜ �	(�,�	�
�,��,���,���,����,����,… … … … … ) = 0

ℜ �	(�,�	�
�,��,���,���,����,����,… … … … … ) = 0

�,                 (4) 

 
where ℜ �	���	ℜ � being another polynomials form of their argument. Here prime denotes the derivative with 
respect to �. Integrating Eq. (4), as long as all terms contain derivatives, the integration constants are 
considered to be zeros in view of the localized solutions. 
 
Step 2: Assume the traveling wave solution for the Eq. (4) can be articulated as a finite series in �(�)  as 
follows: 
 

1
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( , ) ( ) exp( ( ))
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
   



  





                                                                                         (5) 

 
where the parameters � , and �  can be found by balancing the highest-order linear term with the nonlinear 
terms in Eq. (4) and ��	(� ≤ �≤ � ,�)  are constants to be determined, such that �� ≠ �,�� ≠ �  and 
� = � (�) satisfies the following auxiliary equation: 
 

��(�) = ����−�(�)� + �	�����(�)� + �.                   (6) 
 
Depending on the parameters involved, Eq. (6) has the following subsequent solutions: 
 
Family 1: Hyperbolic function solution, when � ≠ 0,�� − 4� > 0, 
 

�(�) = ���
�� (�����) �����

�

�
� (��� ��)	(���)���

��
�.                                (7) 

 
Family 2: Trigonometric function solutions, when  � ≠ 0,�� − 4� < 0, 
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�(�) = ���
� (�����) 		����

�

�
� (�����)		(�� �)���

��
�.                                             (8) 

 
Family 3: Exponential function solutions, when � = 0,� ≠ 0,			�� − 4� > 0, 
 

�(�) = −���
�

�����(���)���
�.                                                                                                (9) 

 
Family 4: Rational function solutions, when  � ≠ 0,� ≠ 0,			�� − 4� = 0, 
 

�(�) = ���−
�(�(���)� �)

��(�� �)
�.                  (10) 

 
Family 5: when � = 0,� = 0,			�� − 4� = 0, 
 

�(�) = ��	(� + �).                                              (11) 
 
Here � is an integrating constant and �� ,�,�,� are constants to be determined latter, �� ≠ 0. 
 
Step 3: The positive integer �  and �	can be determined by considering the homogeneous balance between 
the highest order derivatives and the nonlinear terms of the highest order appearing in Eq. (4). 
 
Step 4: We substitute Eq. (5) with Eq. (6) in Eq. (4) and then we take into consideration the function the 
exp	(−�(�)). In consequence of this substitution, we obtain a polynomial in exp	(−�(�)). We collect all the 
coefficients of identical power of exp	(−�(�)) and equalize to zero delivers a system of algebraic equations 
whichever can be solved to find �� ,… ..�,�,�. The values of �� ,… … ..�,�,� along with the general 
solutions of Eq. (6), we obtain traveling wave solutions �(�,�) of the nonlinear evolution of Eq. (1). The 
exp	(−�(�))-expansion method seems to be a powerful tool in dealing with nonlinear physical models. 
 

3 Application of Exp�−� (�)�-Expansion Method to Nonlinear PDEs 

 
In this section, we apply the of exp�−�(�)�-expansion method to construct the exact and solitary wave 
solutions for the shallow water wave equations and the generalized Klein-Gordon equation. 
 

3.1 The shallow water wave equations 
 
A well-known model of nonlinear dispersive shall water waves, which was first introduced by Joseph 
Vlentin Boussinesq is formulated as [3,30-34] 
 

�
�� + (��)� + ���� = 0
�� + �� + ��� = 0

�,                                              (12) 

 
where, �(�,�)  is the elevation of the water wave above a horizontal bottom and �(�,�)  is the surface 
velocity of water along the x-direction that deviate from equilibrium position of water. Eq. (12) is also 
known modified Boussinesq equation [35,36] that describe the evolutions of the water-surface elevation and 
of the depth-averaged velocity of small amplitude waves with long wavelengths. Boussinesq-like equations 
also appear in many physical phenomena, such as electromagnetic waves in nonlinear dielectrics, one-
dimensional nonlinear lattice waves, ion sound waves in plasma, and oscillations in a nonlinear string. Yan 
and Zhang [37] studied this equation and obtained solitary wave solutions via different transformation. 
 
We introduce the transformation � = � − �� where � is constant, �(�,�) = �(�)  and 	�(�,�) = �(�) , the 
nonlinear partial differential equation (PDE) Eq. (12) is transformed to the ODE: 
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�−���+ ���+ ��′+ �′′′= 0
��− ���+ ��′= 0

�.                                            (13) 

 
Integrating once the second equation of Eq. (13) and setting the integration constant to zero yields: 
 

� = ��−
��

�
.                                                                               (14) 

 
Substituting Eq. (14) into the first equation of the system of Eq. (13) we obtain 
 

����+ �3��−
���

�
− ����� = 0.                                                                        (15) 

 
Integrating Eq. (15) and neglecting the constant of integration, we obtain 
 

���+
�

�
��� −

�

�
�� − ��� = 0,                                                                                      (16) 

 
To determine the index �, we balance the linear term of the highest order derivative with the highest order 
nonlinear terms. Therefore, taking Eq. (5) in Eq. (16) we balance �′′ and ��, so that 3� = � + 2,	and this 
gives us � = 1.	 
 

Therefore, the solution of Eq. (16) can be expressed by a polynomial in ����−�(�)�  as follows: 
 

�(�) = �� + ��(����−�(�)�,                                     (17) 
 
whereas �(�) is a solution of Eq. (16) and  �� and �� are constants to be determined later such that �� ≠ 0, 
while �,� are arbitrary constants. It is easy to see that  
 

 ��(�) = −�� ����−2�(�)� − ��� ����−�(�)� − ��� , 
 

���(�) = 2�� ����−3�(�)� +3���	����−2�(�)� + ���
�����−�(�)� + 2��� ����−�(�)� + ����,  

 

��(�) = ��
� + 3��

�������−�(�)� + 3����
�����−2�(�)� + ��

� ����−3�(�)�,  
 
Inserting �,�′�,�� into Eq. (16) and then equating the coefficients of like power of these polynomials to zero, 
we obtain the following nonlinear system of algebraic equations:  
 

�

																																																										2�� −
�

�
��
� = 0

																																					3��� +
�

�
���

� −
�

�
����

� = 0	

	2��� + ���
� + 3�	���� −

�

�
	��

��� − ���� = 0

																													���� −
�

�
��
� +

�

�
���

� − ���� = 0⎭
⎪
⎬

⎪
⎫

.                                                        (18) 

 
Solving system (18), we have the following results: 
 
Case 1. 
 

� = −��� − 4�,   �� = ±� − ��� − 4�  and �� = ±2, 
 
where 	�	 and � are arbitrary constants. 
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Case 2.  
 

� = � �� − 4�,   �� = ± � + � �� − 4� and �� = ±2, 
 
where 	�	 and � are arbitrary constants. 
 
Case I: Now substituting the values of �,	��,�� into Eq. (17) 
 

�(�) = ± (� + 2����−�(�)�) − ��� − 4� ,                                              (19) 
 

where  � = � + � (�� − 4�)�,  �	 and �  are arbitrary constants. 
 
Therefore, substituting Eqs. (6) to (11) into Eq. (19) respectively, we obtain the traveling wave solutions of 
the shallow water wave equation as follows: 
 
when � ≠ 0,�� − 4� > 0, we obtain the solution, 
 

��,�	(�) = ± 	�� +
��

� (��� ��) �����
�

�
� (��� ��)(���)���

� − ��� − 4� ,                          (20) 

 

where � = � + � (�� − 4�)� and � is an arbitrary constant. 
 
when � = 0,� ≠ 0,			�� − 4� > 0, we obtain the solution, 
 

��,�(�) = ± 	� �1 +
�

�����(���)���
�− ��� − 4�,                                                              (21) 

 

where � = � + � (�� − 4�)� and � is an arbitrary constant. 
 
when � ≠ 0,� ≠ 0,			�� − 4� = 0, we obtain the solution, 
 

��,�(�) = �� −
���(���)

��(���)���
�− ��� − 4� ,                                                        (22) 

 

where � = � + � (�� − 4�)� and � is an arbitrary constant. 
 
when � = 0,� = 0,			�� − 4� = 0, we obtain the solution  
 

��,�	(�) = ± (� +
�

(���)
),                                                                        (23) 

 

where � = � + � (�� − 4�)� and � is an arbitrary constant. 
 
Case II: Now substituting the values of �,	��,�� into Eq. (17) 
 

�(�) = ± �� + 2����−�(�)�� + � �� − 4�,                                             (24) 
 

where � = � − � (�� − 4�)�, and 		�,�  and � are arbitrary constants. 
 
Therefore, substituting Eqs. (6) to (11) into Eq. (24) respectively, we obtain three types of following 
traveling wave solutions of shallow water wave equation as follows: 
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when � ≠ 0,�� − 4� > 0, we obtain the solution, 
 

��,��	(�) = ± 	�� +
��

� (�����) �����
�

�
� (��� ��)(���)���

� + ��� − 4�,                                                (25) 

 

where � = � − � (�� − 4�)� and � is an arbitrary constant. 
 

when � = 0,� ≠ 0,			�� − 4� > 0, we obtain the solution, 
 

���,��(�) = ± 	� �1 +
�

�����(���)���
�+ � �� − 4�,                                                                    (26) 

 

where � = � − � (�� − 4�)� and � is an arbitrary constant. 
 

when � ≠ 0,� ≠ 0,			�� − 4� = 0, we obtain the solution, 
 

���,��(�) = ± 	�� −
���(���)

��(���)���
�+  ��� − 4�,                                                                     (27) 

 

where � = � − � (�� − 4�)� and � is an arbitrary constant. 
 

when � = 0,� = 0,			�� − 4� = 0, we obtain the solution  
 

���,��	(�) = ± (� +
�

(���)
),                                                                                                                (28) 

 

where � = � − � (�� − 4�)� and � is an arbitrary constant. 
 

3.2 The generalized Klein-Gordon equation 
 
In this section, we apply the of exp�−�(�)�-expansion method to construct the exact traveling wave 
solutions of the generalized Klein-Gordon equation. 
 
Consider the generalized Klein-Gordon equation [38-41], 
 

��� + �	��� + �� + ��� = 0,                               (29) 
 
here, �(�,�) represents the particle wave profile at any varied instances, and  �,�	���	� are nonzero real 
arbitrary constants. Eq. (30) is also known reaction-diffusion equation and describe the solitary wave 
equation [42]. 
 
To look for new traveling wave solution of Eq. (11), we use �(�,�) = �(�),� = � − ��. Then Eq. (11) is 
reduced to the following nonlinear ordinary differential equation: 
 

(�� + �)���+ �� + ��� = 0.                   (30) 
 
Taking Eq. (5) in Eq. (30) and balancing the higher order derivative for the linear term �′′ with the nonlinear 
term of the highest order ��, we have 3� = � + 2. Therefore, we get � = 1. 
 

Therefore, the solution of Eq. (30) can be expressed by a polynomial in ����−�(�)�  as follows: 
 

�(�) = �� + ��(����−�(�)�,                                       (31) 
 
whereas �(�) is a solution of Eq. (29) and  �� and �� are constants to be determined later such that �� ≠ 0, 
while �,� are arbitrary constants. It is easy to see that  
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��(�) = −�� ����−2�(�)� − ��� ����−�(�)� − ���.      
 

���(�) = 	2�� ����−3�(�)� +3���	����−2�(�)� + ���
�����−�(�)� + 2��� ����−�(�)� + ����,   

 

��(�) = ��
� + 3��

�������−�(�)� + 3����
�����−2�(�)� + ��

� ����−3�(�)�.  
 
Inserting �,�′�,�� into Eq. (30) and then equating the coefficients of like power of these polynomials to zero, 
we obtain the following a set of algebraic equations:  
 

�

																																																																																			2��	� + 2���
� + ���

� = 0

																																																																								3���
�� + 3���� + 3�����

� = 0	

����
� + 3����

��� + 2���
�� + ���

�� + ���
��� + ��� + 2���� = 0

																																																																			���
� + ���

��� + ����� + ��� = 0		⎭
⎪
⎬

⎪
⎫

.                              (32) 

 
Solving the above equations, we obtain 
 

� = ±�
����������

�����
,   �� = ± ��

�

(�����)	�
   and     �� = ± 2�

�

(�����)	�
, 

 
where �,�,�,� and � are arbitrary constants. 
 
Now substituting the values of �,	��,�� into Eq. (31) yields 
 

�(�) = ±�
�

(�����)�
(� + 2 × ����−�(�)�,                                            (33) 

 

where  � = � ± �
����������

�����
�, and �,�,�,� and � are arbitrary constants. 

 
Therefore, substituting Eqs. (6) to (11) into Eq. (33) respectively, we get the following traveling wave 
solutions of the generalized Klein-Gordon equation as follows: 
 
when � ≠ 0,�� − 4� > 0, we obtain the solution  
 

���,��(�) = ±�
�

(�����)�
	�� −

��

� (�����) �����
�

�
� (�����)(���)���

�                                  (34) 

 

where  � = � ± �
����������

�����
�, and �,�,�,� and � are arbitrary constants. 

 
when � ≠ 0,�� − 4� < 0, we obtain the trigonometric solutions 
 

���,��(�) = ±�
�

(�����)	�
�� +

��

� (�����) ����
�

�
� (�����)(���)���

�                                                      (35) 

 

where  � = � ± �
����������

�����
�, and �,�,�,� and � are arbitrary constants. 

 
When � = 0,� ≠ 0,			�� − 4� > 0, 
 



���,��(�) = ±�
��

�
�1 +

����

 

where  � = � ± �
����������

�����
�, and �

 

4 Graphical Representation 
 
In this section, we will discuss the physical explanation and graphical representation of the obtained 
solutions by nonlinear shallow water wave equation and the generalized Klein
analytical technique, the ���	) − �(�
the following subsequent section. 
 

4.1 The shallow water wave equation
 
In this sub-section, we examine the nature of some obtained solutions of the shallow water wave equation 
(12) by selecting particular values of the parameters to visualize the exact solution to the physical 
phenomena. The obtained solutions of the shallow water wave equation incorporate of explicit solitary wave 
solutions namely hyperbolic function, exponential function and rational f
some graphical representation including 
singular kink soliton solutions by substituting the specific values of the unknown constants. From these 
explicit results we observe that solutions 
Figs. 1-4, respectively. For some special values of the physical parameters, the traveling wave solutions 
originated from the obtained exact explicit solutions as follows:
 
Solution (20) and (25) corresponding to the fixed values 
−10 ≤ �,� ≤ 10 represented the exact solitary wave solution of kink type which shown in Fig.
(21) and (26) corresponding to the fixed values 
�,� ≤ 10 represented the exact solit
Solution (22) and (27) corresponding to the fixed values 
−10 ≤ �,� ≤ 10 represented the exact solitary wave solution of single soliton type whic
in Fig. 3. Solution (23) and (28) corresponding to the fixed values 
interval −10 ≤ �,� ≤ 10 represented the exact solitary wave solution of single soliton type which shown 
graphically in Fig. 4. 
 

a. 3D graph                                      b. 2D graph                                 c. Contour Plot

Fig. 1. Graphical representation of the solution in  
parameters 		� = �,

Rashid and Khatun; JAMCS, 35(4): 72-86, 2020; Article no.

�
�

��(���)���
�,                                                                        

�,�,�,� and � are arbitrary constants. 

Representation and Physical Explanations 

In this section, we will discuss the physical explanation and graphical representation of the obtained 
solutions by nonlinear shallow water wave equation and the generalized Klein-Gordon equation via an 

�)) -expansion method. The findings ae summarized and discussed in 

4.1 The shallow water wave equation 

section, we examine the nature of some obtained solutions of the shallow water wave equation 
ar values of the parameters to visualize the exact solution to the physical 

phenomena. The obtained solutions of the shallow water wave equation incorporate of explicit solitary wave 
solutions namely hyperbolic function, exponential function and rational function solutions. We have depicted 
some graphical representation including 2�, 3�, and contour plot graph of the kink soliton solutions and 
singular kink soliton solutions by substituting the specific values of the unknown constants. From these 

results we observe that solutions ��(�), ��(�), ��(�)	 and ��(�)	are soliton solutions are shown in 
4, respectively. For some special values of the physical parameters, the traveling wave solutions 

originated from the obtained exact explicit solutions as follows: 

Solution (20) and (25) corresponding to the fixed values � = 3, � = 2,� = 1 and � = 1,	with
represented the exact solitary wave solution of kink type which shown in Fig.

(21) and (26) corresponding to the fixed values � = 2, � = 0,� = 1 and � = 1,	within the interval 
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The solitary wave solution might be useful in analyzing the propagation of long waves
sound waves in plasma, and vibrations in a nonlinear string.
 

5 Conclusion 
 
In this paper, the exp �−�(�)�-expansion method has been successfully implemented to solve the system of 
shall water wave equations and the generalized Klein
problems of modern mathematical physics. The method is quite efficient, st
practically well suited for use in finding nonlinear partial differential equations. It is noted that we found 
traveling wave solution in terms of hyperbolic, trigonometric, exponential and rational functions. The 
solutions can be useful in many circumstances, such as analyze the propagation of gravity waves in ocean, 
liquid flow, fluid flow in elastic tubes, waves in rivers and lakes in a smaller domain, etc. Due to the good 

performance of the exp �−�(�)�-expansion method, it can b
proposes a variety of exact solutions of nonlinear evolution equations in the field in theoretical physics, 
mathematical physics and other branches of nonlinear sciences.
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