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Abstract 
 

Our aim of this paper is to prove a new general common fixed point theorem for two pair of mappings 
under a different set of conditions using the idea of weakly compatible mappings satisfying a general 
class of contractions defined by an implicit relation in the frame work of parametric metric space, which 
unify, extend and generalize most of the existing relevant common fixed point theorems from the 
literature. Some related results and illustrative an example to highlight the realized improvements is also 
furnished. 
 

 

Keywords: Parametric metric space; common fixed point; implicit relation; weakly compatible mappings; 
contractions. 

 

1 Introduction and Preliminaries 
 
Fixed point theory has attracted many researchers since 1922 with the admired Banach fixed point theorem 
(see [1]). Banach’s contraction principle is one of the pivotal results of analysis. Its significance lies in its 
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vast applicability to a great number of branches of mathematics and other sciences, for example, theory of 
existence of solutions for nonlinear differential, integral, and functional equations, variational inequalities, 
and optimization and approximation theory. A huge literature on this subject exists and this is a very active 
area of research at present. Metric spaces are very important in mathematics and applied sciences. So, some 
authors have tried to give generalizations of metric spaces in several ways. The notion of parametric metric 
spaces being a natural generalization of metric spaces was recently introduced and studied by Hussain et al. 
[2]. 
 
The following definitions are required in the sequel which can be found in [2]. 
 
Definition 1.1: Let � be a nonempty set and � ∶  � × � × (0, +∞)  → [0, +∞) be a function. We say � is a 
parametric metric on � if, 
 

1) �(�, �, �) =  0, ∀� > 0 if and only if � =  �; 
2) �(�, �, �) = �(�, �, �)  ∀ �, � ∈ � and � > 0; 
3) �(�, �, �) ≤ �(�, �, �) + �(�, �, �) ∀ �, �, � ∈ � and � > 0: 

 
and one says the pair (�, �) is a parametric metric space. 
 
The following definitions are required in the sequel which can be found in [2]. 
 
Definition 1.2: Let {��}���

∞  be a sequence in a parametric metric space (X, �). 
 

1. {��}���
∞  is said to be convergent to � ∈ � , written as lim�→∞ �� = �,  for all � > 0,  if 

lim�→∞ �(��, �, �) = 0. 
2. {��}���

∞  is said to be a Cauchy sequence in � if for all � > 0, if lim�,� →∞ �(��, �� , �) = 0. 
3. (X, �) is said to be complete if every Cauchy sequence is a convergent sequence. 

 
Definition 1.3: Let (X, �)  be a parametric metric space and �:� → � be a mapping. We say � is a 
continuous mapping at � in � , if for any sequence {��}���

∞  in X such that lim�→∞ �� = �, then 
lim�→∞ ��� = ��. 
 
Example1.4: Let �  denote the set of all functions  � ∶ (0, +∞) → ℝ . Define � ∶  � × � × (0, +∞)  →
[0, +∞) by �(�, �, �) = |�(�) − �(�)| ∀ �, � ∈ � and all � > 0. Then � is a parametric metric on � and the 
pair (�, �) is a parametric metric space. 
 
The following definitions will be needed in the sequel. 
 
Definition 1.5: (see [3]) Let � and �  be two self-mappings on a nonempty set �. Then � and �  are said to be 
weakly compatible if they commute at all their coincidence points; that is, �� =  ��  for some � ∈  � and 
then  ���  =  ��� . 
 
Definition 1.6: (see [4]) Two finite families of self-mappings {��}���

�  and {��}���
�  of a non-empty set � are 

said to be pairwise commuting if 
 

1. ���� = ����, ∀ �, �∈ {1,2, … , � } 

2. �� �� =  ����, ∀ �, �∈ {1,2, … , �} 
3. ���� =  ����, ∀ �∈ {1,2, … , � } and � ∈ {1,2, … , �}. 

 
Lemma 1.7: (see [5]) Let �, � , and � be self-mappings on a nonempty set � with �, � , and � having a 
unique point of coincidence in � . If (�, �) and (� , �)  are weakly compatible. Then  �, �  and  �  have a 
unique common fixed point. 
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Implicit relations: Simple and natural way to unify and prove in a simple manner several metrical fixed-
point theorems are to consider an implicit contraction type condition instead of the usual explicit contractive 
conditions. Popa [6,7] proved several fixed-point theorems satisfying suitable implicit relations. For proving 
such results, Popa [6,7] considered  Ψ to be the set of all continuous functions  
 

� (��, ��, ��, ��, ��, ��):ℝ �
� → ℝ  

 
satisfying the following conditions: 
 

(ψ �). ψ is non-increasing in variables �� and ��. 
(ψ �).  there exists � ∈ (0,1) such that for  �, � ≥ 0 with 
(ψ ��). � (�, �, �, �, � + �, 0) ≤ 0 or 
(ψ ��). � (�, �, �, �, 0, � + �) ≤ 0 ⇒ � ≤ ��, 
(ψ �). � (�, �, 0,0, �, �) > 0. 

 
Some of the following examples of such functions �  satisfying (ψ �), (ψ �) and (ψ �) are taken from Popa 
[7], Imdad and Ali [8] and Berinde [9]. 
 
Example 1.8: Define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ  as: 
 

(1) � (��, ��, ��, ��, ��, ��) = �� − � max ���, ��, ��,
�

�
(�� + ��)� 

 
where � ∈ (0,1). 
 
(2) � (��, ��, ��, ��, ��, ��) = ��

� − ��(��� + ��� + ���) − �����    
 
where  � > 0, �, �, � ≥ 0, � + � + � < 1, � + � < 1. 
 
(3) � (��, ��, ��, ��, ��, ��) = ��

� − ���
��� − ������� + ���

��� − �����
�  

 
where � > 0, �, �, � ≥ 0, � + � < 1, � + � + � < 1. 
 

(4)  � (��, ��, ��, ��, ��, ��)  = ��
� − � �

��
���

�� ��
���

�

��� ��� ��� �
� 

 
where  � ∈ (0,1). 
 

(5)  � (��, ��, ��, ��, ��, ��) = ��
� − ���

� − � �
����

��
�� ��

�� �
�  

 
Where  � > 0, � ≥ 0, � + � < 1. 
 
(6)  � (��, ��, ��, ��, ��, ��) = ��

� − � max {��
���

���
�} − � max{����, ����} − ����� 

 
where � > 0, �, � ≥ 0, � + 2� < 1, � + � < 1. 
 

(7)  � (��, ��, ��, ��, ��, ��) = �� − � max ���, ��, ��,
�

�
��,

�

�
��� 

 
where � ∈ (0,1). 
 

(8)  � (��, ��, ��, ��, ��, ��) = �� − � max ���,
��� ��

�
,

��� ��

�
� 

 
Where � ∈ (0,1). 
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(9) � (��, ��, ��, ��, ��, ��) = �� − (��� + ��� + ��� + ��� + ���) 
 
where �, � ≥ 0, � + � + � + � + � < 1. 
 

(10) � (��, ��, ��, ��, ��, ��) = �� −
�

�
max{��, ��, ��, ��, ��} 

 
where � ∈ (0,1). 
 
(11) � (��, ��, ��, ��, ��, ��) = �� − [��� + ��� + ��� + �(�� + ��)]  
 
where � ≥ 0, � + � + � + 2� < 1. 
 
Since verifications of requirements (ψ �), (ψ �) and (ψ �) for Examples (1)-(11) are straightforward, hence 
details are omitted. Here one may further notice that some other well-known contraction conditions 
[10,11,12] can also be deduced as particular cases of implicit relation of Popa [7]. In order to strengthen this 
viewpoint, we add some more examples to this effect and utilize them to demonstrate how this implicit 
relation can cover several other known contractive conditions and is also good enough to yield further 
unknown natural contractive conditions as well. 
 
Example 1.9: Define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ   as: 
 

(12)   � (��, ��, ��, ��, ��, ��) = �
�� − ��

��
�� ��

�

��� ��
− ���� − ��(�� + ��), �� �� + �� ≠ 0,

��,                                               �� �� + �� = 0.

� 

 
where �� ≥ 0 (�= 1,2,3) with at least one �� non-zero and �� + �� + 2�� < 1. (ψ �). Obviously, �  is non-
increasing in variables �� and ��. (ψ ��).  Let � > 0. Then 
 

� (�, �, �, �, � + �, 0) = � − ��

�� + ��

� + �
− ��� − ��(� + �) ≤ 0. 

 
If � ≥ �, then 
 

� ≤ (�� + �� + 2��)� < � 
 
which is contradiction. Hence � < � and � ≤ �� where � ∈  (0,1). (ψ ��). Similar argument as in  (ψ ��). 
(ψ �).  � (�, �, 0,0, �, �) = � > 0 for all � > 0. 
 
Example 1.10: Define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ   as: 
 

(13)     � (��, ��, ��, ��, ��, ��) = �
�� − ���� −

������� ������

��� ��
, �� �� + �� ≠ 0,

��,                                               �� �� + �� = 0.

� 

 
where  ��, ��, �� ≥ 0 such that 1 < 2�� + �� < 2. 
 
Example 1.11: Define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ   as: 
 

(14)   � (��, ��, ��, ��, ��, ��) = �� − �� ��� max ���, ��, ��,
�

�
(�� + ��)��  

                      �                              +(1 − ��) �max ���
�, ����, ����,

����

�
,

����

�
��

�

�
� 

 
where  �� ∈ (0,1) and 0 ≤ �� ≤ 1. 
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Example 1.12: Define � (��, ��, ��, ��, ��, ��):ℝ �
� → ℝ   as: 

 

(15)            � (��, ��, ��, ��, ��, ��) = ��
� − �� max{��

�, ��
�, ��

�} − �� ��� �
����

�
,

����

�
�− �� ����           

 
where  ��, ��, �� ≥ 0 and �� + �� + �� < 1. 
 
Very recently, Popa et al. [13] proved several fixed point theorems satisfying suitable implicit relations in 
which Husain and Sehgal [14] type contraction conditions [15,16,17,18] can be deduced from similar 
implicit relations in addition to all earlier ones if there is a slight modification in condition (ψ �) as follows: 
 

(Ψ �)�Obviously, �  is decreasing in variables ��, … .., ��. 
 
Hereafter, let � (��, ��, ��, ��, ��, ��)  ∶  ℝ �

�  →  ℝ  be a continuous function which satisfies the conditions 
(ψ �)�, (ψ �) and (ψ �) and ℱ  be the family of such functions. In this paper, we employ such implicit relation 
to prove our results. But before we proceed further, let us furnish some examples to highlight the utility of 
the modifications instrumented herein. 
 
Example 1.13: Define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ  as: 
 

(16)    � (��, ��, ��, ��, ��, ��) = �� − � �max ���, ��, ��,
�

�
(�� + ��)��  

 
where � :ℝ � → ℝ �  is an increasing upper semi-continuous function with � (0) = 0 and � (�) < � for each 
� > 0. 
 
(ψ �)′ Obviously, �  is decreasing in variables ��, … .., ��. 
 
(ψ ��).  Let � > 0. Then 
 

� (�, �, �, �, � + �, 0) = � − � �max ��, �, �,
1

2
(� + �)�� < 0. 

 
If � ≥ �, then  
 

� ≤ � (�) < � 
 
which is contradiction. Hence � < � and � ≤ �� where � ∈ (0,1). 
 
(Ψ ��).  Similar argument as in (ψ ��). 
 

(Ψ �).    � (�, �, 0,0, �, �)  = � − � �max ��, 0,0,
�

�
(� + �)�� = � − � (�) > 0 for all � > 0. 

 
Example 1.14: Define � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ  as: 
 
(17)    � (��, ��, ��, ��, ��, ��) = �� − � (��, ��, ��, ��, ��) 
 
where � :ℝ �

� → ℝ �  is an upper semi-continuous and non-decreasing function in each coordinate variable 
such that � (�, �, ��, ��, ��) < � for each � > 0 and �, �, � ≥ 0 with � + � + � ≤ 3. 
 
Example 1.15: Define � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ  as: 
 
(18)    � (��, ��, ��, ��, ��, ��) = ��

� − � (��
�, ����, ����, ����, ����),  
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where � :ℝ �
� → ℝ �  is an upper semi-continuous and non-decreasing function in each coordinate variable 

such that � (�, �, ��, ��, ��) < � for each � > 0 and �, �, � ≥ 0 with � + � + � ≤ 3. 
 
Jungck [3] proved the interesting generalization of celebrated Banach contraction principle. While proving 
his result, Jungck [3] replaced identity map with a continuous mapping. In [17], Imdad and Ali established a 
general common fixed-point theorem for a pair of mappings using a suitable implicit function without the 
requirement of the containment of ranges. 
 
In this paper, we establish a new general common fixed point theorem for two pair of mappings under a 
different set of conditions using the idea of weakly compatible mappings satisfying a general class of 
contractions defined by an implicit relation in the frame work of parametric metric space, which unify, 
extend and generalize most of the existing relevant common fixed point theorems from the literature. Some 
related results and illustrative an example to highlight the realized improvements is also furnished. 
 

2 Main Results 
 
The following theorem is our main result. 
 

Theorem 2.1: Let �, �, � and �  be four self-maps of a parametric metric space (�, �) with �(�)������� ⊆ �(�) 

and  �(�)������� ⊆ �(�) and for all �, � ∈ �, � > 0 and some � ∈ � , 
 

� ��(��, ��, �), �(��, ��, �), �(��, ��, �), �(��, ��, �), �(��, ��, �), �(��, ��, �)� ≤ 0         (2.1) 
 

If one of   �(�)������� and �(�)������� is a complete subspace of  �,  then (�, �)  and (� , �)  have a unique point of 
coincidence inX. Moreover, if (�, �) and (� , �) are weakly compatible, then �, �, � and �  have a unique 
common fixed point in �.  
 

Proof Let �� ∈ � be arbitrary point. Because �(�) ⊆ �(�)������� and �(�) ⊆ �(�)�������, we have �(�) ⊆ �(�) and 
(�) ⊆ �(�). Hence one can inductively define the sequences  {��} ⊂ � and {��} ⊂ � in the following way: 
 

���� � =  ����� � = ����, 
     

��� = ���� = ����� �, ∀ � ∈ ℕ .                                                                                                   (2.2) 
 
From (2.1) with � = ���� � and  � = ���� �, we get for all � > 0   and all � ∈ ℕ , 
 

� (�(����� �, ����� �, �), �(����� �, ����� �, �),��(����� �, ����� �, �), 
 

�(����� �, ����� �, �), ��(����� �, ����� �, �), �(����� �, ����� �, �)� ≤ 0                                   (2.3) 
 
we have 
 

� (�(���� �, ���� �, �), �(���, ���� �, �),��(���, ���� �, �), 
 

�(���� �, ���� �, �), ��(���, ���� �, �), �(���� �, ���� �, �)� ≤ 0, 
 
That is, 
 

� (�(���� �, ���� �, �), �(���, ���� �, �),��(���, ���� �, �), 
 

�(���� �, ���� �, �), ��(���, ���� �, �), 0) ≤ 0,                                                                                 (2.4) 
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Using the fact that  �  is non-increasing in variable �� and  ��, we have  
 

�(���, ���� �, �)  ≤ �(���, ���� �, �) + �(���� �, ���� �, �)                                                           (2.5) 
 
From (2.4), we derive that 
 

� (�(���� �, ���� �, �), �(���, ���� �, �),��(���, ���� �, �), 
 

��(���� �, ���� �, �), �(���, ���� �, �) + �(���� �, ���� �, �), 0) ≤ 0,                                               (2.6) 
 

Now, using property �ψ
��

�, we have 

 
�(���� �, ���� �, �)  ≤ ��(���, ���� �, �).                                                                                       (2.7) 

 
Again, using (2.1), with � = ��� and � = ���� �, we get for all � > 0 and all � ∈ ℕ , 
 

� (�(����, ����� �, �), �(����, ����� �, �),��(����, ����, �), 
 

�(����� �, ����� �, �), ��(����, ����� �, �), �(����, ����� �, �)� ≤ 0,                                          (2.8) 
 
That is, 
 

� (�(���, ���� �, �), �(���� �, ���, �),��(���� �, ���, �), 
 

�(���, ���� �, �), ��(���� �, ���� �, �), 0) ≤ 0,                                                                                 (2.9) 
 
Keeping in mind that �  is non-increasing in variable �� and  ��, we have 
 

�(���� �, ���� �, �) ≤ �(���� �, ���, �) + �(���, ���� �, �)                                                          (2.10) 
 
From (2.9), we obtain 
 

� (�(���, ���� �, �), �(���� �, ���, �),� �(���� �, ���, �), 
 

�(���, ���� �, �), ��(���� �, ���, �) + �(���, ���� �, �), 0) ≤ 0,                                                    (2.11) 
 

yielding thereby �due to (ψ ��)�,  
 

�(���, ���� �, �) ≤ ��(���� �, ���, �).                                                                                          (2.12) 
 
Combining (2.7) and (2.12), we have 
 

�(���� �, ���� �, �) ≤ ���(���� �, ���, �)                                                                                     (2.13) 
 

Now by induction, we obtain for each � =  0, 1, 2, …  
 

�(���� �, ���� �, �) ≤ ��(���, ���� �, �) 
 

                               ≤ ⋯ ≤ ���� ��(��, ��, �).                                                                             (2.14) 
 

and by a routine calculation, we have, 
 

�(��� �, ��� �, �) ≤ ��(��, ��� �, �) 
 

                           ≤ ⋯ ≤ ��� ��(��, ��, �).                                                                                   (2.15) 
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Hence for each � > � , we obtain 
 

�(��, �� , �) ≤ �(��, ��� �, �) + �(��� �, ��� �, �) + ⋯ + �(�� � �, �� , �) 
 
                                   ≤ (��� � + ��� � + ⋯ + �� )�(��, ��, �) 
 

                                   ≤
��

�� �
�(��, ��, �)                                                                                                     (2.16) 

 

Therefore, {��} is a Cauchy sequence. Assume that �(�)������� is complete. Observe that the subsequence {���} is 

a Cauchy sequence which is contained in �(�)������� must a limit � ∗ in �(�), that is,  
 

���
�→�

��� = ���
�→�

���� = ���
�→�

����� � ∈ �(�)������� ⊆ �(�) ⊂ �, 

 
���
�→�

��� = ���
�→�

���� = ���
�→�

����� � = � ∗ ∈ �(�).                                                                      (2.17) 

 
It is easy to see 
 

� ∗ = ���
�→�

�� = ���
�→�

���� = ���
�→�

�x��� � = ���
�→�

���� 

 
     = ���

�→�
����� � = ���

�→�
����� � = ���

�→�
����                                                                              (2.18) 

 
Consequently, we can find � ∈ �  such that  �� = � ∗ . We assert that  �� = �� = � ∗ . If not, then 
�(�� , � ∗, �) > 0 . Using (2.1), with � = �  and  � = ���, we have 
 

� (�(�� , � ���, �), �(�� , ����, �),��(�� , �� , �), 
 

�(����, ����, �), ��(�� , ����, �), �(S� , ����, �)� ≤ 0 
 

⇒        � (�(�� , ���, �), �(�� , ���� �, �),��(�� , �� , �), 
 

�(���� �, ���, �), ��(�� , ���, �), �(�� , ���� �, �)� ≤ 0,                                                               (2.19) 
 
Letting  � → +∞  in the above inequality, using (2.18) and the continuity of � , we have 
 

� (�(�� , � ∗, �), 0, �(� ∗, �� , �),��0,0, �(�� , � ∗, �)� ≤ 0,                                                           (2.20) 
 

yielding thereby �due to (� ��)�, �(�� , � ∗, �) ≤ 0, that is �(�� , � ∗, �) = 0, which is a contradiction. Then 

we have �� = �� = � ∗, which shows that �  is a coincidence point of �  and �, that is � ∗ is a point of 

coincidence of � and �. Since � ∗ = �� ∈ �(�) ⊆  �(�)������� ⊆ �(�), there exists � � ∈ � such that �� � = � ∗ . 
We claim that �� � = � ∗. If not, then  �(� � �, � ∗, �) > 0 . Using (2.1), with � = �  and � = � �, we have 
 

� (�(�� , � � �, �), �(�� , �� �, �), �(�� , �� , �),� 
 

��(�� �, �� �, �), �(�� , �� �, �), �(�� , �� �, �)� ≤ 0, 
 
That is, 
 

� (�(� ∗, �� �, �), 0,0,�� �(� ∗, �� �, �), �(� ∗, �� �, �), 0) ≤ 0,                                                       (2.21) 
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yielding thereby�due to (� �� )�, �(� ∗, �� �, �) ≤ 0 , then �(� ∗, �� �, �) = 0 . Thus, our supposition that 

�(�� �, � ∗, �) > 0  was wrong. Therefore �� � = �� � = � ∗, which shows that � � is a coincidence point of 
�  and � , that is � ∗ is a point of coincidence of  �  and � . Now, suppose that � ∗ is another point of 
coincidence of � and �, that is � ∗ = ��� = ���  for some �� ∈ �. Using (2.1), we have 
 

� (�(���, �� �, �), �(���, �� ′, �), �(���, ���, �),� 
 

��(�� �, �� �, �), �(���, �� �, �), �(���, �� �, �)� ≤ 0,                                                                  (2.22) 
 
This implies that 
 

� ��(� ∗, � ∗, �), �(� ∗, � ∗, �), �(� ∗, � ∗, �), �(� ∗, � ∗, �), �(� ∗, � ∗, �), �(� ∗, � ∗, �)� ≤ 0 
 
That is, 
 

� ��(� ∗, � ∗, �), �(� ∗, � ∗, �), 0,0, �(� ∗, � ∗, �), �(� ∗, � ∗, �)� ≤ 0                                              (2.23) 
 
Due to (� �), we get a contradiction, if  � ∗ ≠ � ∗. Hence point of coincidence of � and � is unique. Now, 
suppose that � �

∗ is another point of coincidence of �  and � , that is � �
∗ = �� � = �� �  for some � � ∈ � . 

Using (2.1), we have 
 

� (�(�� , � � �, �), �(�� , �� �, �), �(�� , �� , �),� 
 

��(�� �, �� �, �), �(�� , �� �, �), �(�� , �� �, �)� ≤ 0, 
 
Thus, 
 

� (�(� ∗, � �
∗, �), �(� ∗, � �

∗, �), �(� ∗, � ∗, �),� 
 

��(� �
∗, � �

∗, �), �(� ∗, � �
∗, �), �(� ∗, � �

∗, �)� ≤ 0, 
 
That is, 
 

� (�(� ∗, � �
∗, �), �(� ∗, � �

∗, �), 0,��0, �(� ∗, � �
∗, �), �(� ∗, � �

∗, �)� ≤ 0,                                            (2.24) 
 
which contradicts (� �), if � ∗ ≠ � ∗. Hence point of coincidence of �  and � is unique. Then, we proved that 
� ∗ is the unique point of coincidence of (�, �) and (� , �). Now, if (�, �) and (� , �) are weakly compatible, 
from �� = �� = � ∗and �� � = �� � = � ∗, we have �� ∗ = �(�� ) = �(�� ) = �� ∗ and �� ∗ = �(�� �) =
�(�� �) = �� ∗. Now, we prove that �� ∗ = �� ∗ = �� ∗ = �� ∗. If not, then �� ∗ ≠ �� ∗ and from (2.1), we 
have 
 

� (�(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �),� 
 

��(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �)� ≤ 0, 
 
That is, 
 

� (�(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �), 0,��0, �(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �)� ≤ 0                        (2.25) 
 
By property (� �), we deduce that �(�� ∗, �� ∗, �) ≤ 0 that is �(�� ∗, �� ∗, �) = 0 and then our assumption 
that �� ∗ ≠ �� ∗ was wrong. Hence �� ∗ = �� ∗ = �� ∗ = �� ∗. Finally, we show that �� ∗ = �� ∗ = �� ∗ =
�� ∗ = � ∗. Again, from (2.1) and using  �� ∗ = �� ∗ = �� ∗ = �� ∗, we obtain that 
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� (�(�� , � � ∗, �), �(�� , �� ∗, �), �(�� , �� , �),� 
 

��(�� ∗, �� ∗, �), �(�� , �� ∗, �), �(�� , �� ∗, �)� ≤ 0, 
 
That is, 
 

� (�(� ∗, �� ∗, �), �(� ∗, �� ∗, �), 0,��0, �(� ∗, �� ∗, �), �(� ∗, �� ∗, �)� ≤ 0,                                (2.26) 
 

yielding thereby �due to (� �)�, �(� ∗, �� ∗, �) ≤ 0 and so �(� ∗, �� ∗, �) = 0, a contradiction if � ∗ ≠ �� ∗. 
Hence �� ∗ = �� ∗ = �� ∗ = �� ∗ = � ∗. Then � ∗ is the unique common fixed point of �, �, � and � . The 

proof for the case in which �(�)������� is complete is similar and is therefore omitted. This completes the proof. 
 
For mapping �:� → �, we denote �(�) = {� ∈ �:� = ��}. 
 
Theorem 2.2: Let �, �, �  and �  be four self-maps of a parametric metric space (�, �)  satisfying the 
conditions (2.1) for all �, � ∈ � and � > 0, then 
 

�(�) ∩ �(�) ∩ �(�) = �(�) ∩ �(�) ∩ �(�)                                                                            (2.27) 
 
Proof:  Let � ∗ ∈ ℱ (�) ∩ ℱ (�) ∩ ℱ (�). Then using (2.1), we have    
 

� (�(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �),� 
 

��(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �), �(�� ∗, �� ∗, �)� ≤ 0, 
 
That is, 
 

� (�(� ∗, �� ∗, �), 0,0�, �(� ∗, �� ∗, �), ��(� ∗, �� ∗, �), 0) ≤ 0, 
 
By property  (� �� ) , we deduce that �(� ∗, �� ∗, �) ≤ 0 and so �(� ∗, �� ∗, �) = 0 , a contradiction if  
�(� ∗, �� ∗, �) > �.  This means that  
 

� ∗ ∈ �(�) ∩ �(�) ∩ �(�) 
 
Thus, 
 

�(�) ∩ �(�) ∩ �(J) ⊂ �(�) ∩ �(�) ∩ �(�). 
 
Similarly, we can show that  
 

�(�) ∩ �(�) ∩ �(�) ⊂ �(�) ∩ �(�) ∩ �(�). 
 
Thus, it follows that 
 

�(�) ∩ �(�) ∩ �(�) = �(�) ∩ �(�) ∩ �(�). 
 
From Theorem 2.1, we can deduce a host of corollaries which are embodied in the following: 
 
Corollary 2.3: The conclusions of Theorem 2.1 remain true if for all �, � ∈ �;(� ≠ �) and � > 0,  the 
implicit relation (2.1) is replaced by one of the following: 
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(1) �(��, ��, �) ≤ � ��� ��(��, ��, �), �(��, ��, �), �(��, ��, �),
�

�
[�(��, ��, �) + �(��, ��, �)]�  

 
where  � ∈ (0,1). 
 

(2) �(��, ��, �) ≤ � ��� ��(��, ��, �), �(��, ��, �), �(��, ��, �),
�

�
�(��, ��, �),

�

�
�(��, ��, �)� 

 
where  � ∈ (0,1). 
 

(3) �(��, ��, �) ≤ � max ��(��, ��, �),
�

�
[�(��, ��, �) + �(��, ��, �)],

�

�
[�(��, ��, �) + �(��, ��, �)]� 

 
where � ∈ (0,1) 
 

(4)  �(��, ��, �) ≤ ��(��, ��, �) + ��(��, ��, �) + ��(��, ��, �) + ��(��, ��, �) + ��(��, ��, �) 
 

where � + � + � + � + � < 1, �, � ≥ 0. 
 

(5)  �(��, ��, �) ≤
�

�
 ��� {�(��, ��, �), �(��, ��, �),��(��, ��, �), �(��, ��, �), ��(��, ��, �)} 

 
where  � ∈ (0,1). 
 
   (6) �(��, ��, �) ≤ ��(��, ��, �) + ��(��, ��, �) +��(��, ��, �) + �[�(��, ��, �) + �(��, ��, �)] 
 
where � + � + � + 2� < 1, � ≥ 0. 
 

   (7) �(��, ��, �) ≤ � �max ��(��, ��, �), �(��, ��, �), �(��, ��, �),
�

�
[�(��, ��, �) + �(��, ��, �)]�� 

 
where � :ℝ � → ℝ �  is an increasing upper semi-continuous function with � (0)  =  0  and � (�)  < �  for 
each � >  0. 
 

   (8) �(��, ��, �) ≤ � (�(��, ��, �), �(��, ��, �),��(��, ��, �), ��(��, ��, �), �(��, ��, �)� 
 
where � :ℝ � → ℝ �  is an upper semi-continuous and non-decreasing function in each coordinate variable 
such that with � (�, �, ��, ��, ��)  < � for each � >  0 and �, �, � ≥ 0 with � + � + � ≤ 3. 
 
Setting � = �  and � = � in Theorem 2.1, we get the following corresponding fixed-point theorem. 
 

Corollary 2.4: Let � and �  be two self-maps of a parametric metric space (�, �) with �(�)������� ⊆ �(�) and 
for all �, � ∈ �, � > 0 and some � ∈ � , 
 

� (�(��, ��, �), �(��, ��, �), �(��, ��, �),� 
 

��(��, ��, �), �(��, ��, �), �(��, ��, �)� ≤ 0,                                                                            (2.28) 
 

If �(�)�������  is a complete subspace of �, then (�, �) has a unique point of coincidence in �. Moreover, if (�, �) 
is weakly compatible, then (�, �)  has a unique common fixed point in  �. 
 
Remark 2.5: A corollary like Corollary 2.4 can be outlined in respect of Corollary 2.3 yielding thereby a 
host of fixed-point theorems. 
 

Setting � = ��  (the identity mapping on �) in Corollary 2.1, we get the following corresponding fixed-point 
theorem. 
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Corollary 2.6: Let � be a self-map of a parametric metric space (�, �) such that for all �, � ∈ �, � > 0 and 
some � ∈ � , 
 

� (�(��, ��, �), �(�, �, �), �(�, ��, �),� 
 

��(�, ��, �), �(�, ��, �), �(��, �, �)� ≤ 0,                                                                                   (2.29) 
 

If �(�)�������  is a complete subspace of  �, then S has a unique common fixed point in �. 
 
Remark 2.7: A corollary like Corollary 2.6 can be outlined in respect of Corollary 2.3 yielding thereby a 
host of fixed-point theorems. 
 

3 Application 
 
As an application of Theorem 2.1, we prove a common fixed-point theorem for four finite families of 
mappings which runs as follows: 
 

Theorem 3.1: Let {��, ��, … , �� }, ���, ��, … , �� �,  ���, ��, … , ��� and {��, ��, … , ��}  be four finite families 

of self-mappings of a parametric metric space (�, �) with  
 

                � = ∏ ��
�
���  , � = ∏ ��

�
��� , 

 

                � = ∏ ��
�
��� ,  � = ∏ ��

�
��� .  

 

satisfying condition (2.1) of Theorem 2.1. Suppose that  �(�) ������� ⊆  �(�) and  �(�) ������� ⊆  �(�), wherein one of  

�(�)������� and �(�)�������  is a complete subspace of  �, then (�, �) and (�, �) have a point of coincidence in �. 
 
Moreover, if  
 

���� = ����,   �� �� = ���� , 
 
���� = ����, ���� = �� ��, 
 
���� = ����, ���� = ���� 

 
for all �, � ∈ {1,2, … , � }, �, � ∈ {1,2, … , �}, �, � ∈ {1,2, … , �},  and �, ℎ ∈ {1,2, … , �},  then for all � ∈
{1,2, … , � }, � ∈ {1,2, … , �}, � ∈ {1,2, … , �}  and e ∈ {1,2, … , �}  , ��, ��, ��  and ��  have a common fixed 
point. 
 
Proof: The conclusions “ (�, �) and (�, �) have a point of coincidence in  � ” are immediate as �, �, � and 
� satisfy all the conditions of theorem 2.1. In view of pairwise commutativity of various pairs of the families 
(�, �) and (� , �), the weak compatibility of pairs (�, �) and (�, �) are immediate. Thus, all the conditions 
of theorem 2.1 (for mappings �, �, � and �) are satisfied ensuring the existence of a unique common fixed 
point, say � ∗. Now, one needs to show that � ∗ remains the fixed point of all the component maps. For this 
consider 
 

�(��� ∗ ) = �� ��

�

���

� (��� ∗) 

 

= �� ��

� � �

���

� (�� ��)� ∗ 
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= �� ��

� � �

���

� (�� ��� ∗) 

 

=  (∏ ��
� � �
��� )��� � ���(�� � ∗)� 

 

=  (∏ ��
� � �
��� )����� � �(�� � ∗)� 

 
= ⋯  

 

= ���� �� ��

�

���

� ∗� 

 

= ���� �� ��(� ∗)

�

���

� 

 

= �� � � ��

�

���

(� ∗)�  

 
= ��(�� ∗) = ��� ∗                                                                                                           (3.1) 

 
Similarly, one can show that, 
 

�(�� � ∗) = �� (�� ∗) = �� � ∗, 
 

�(�� � ∗) = �� (�� ∗) = �� � ∗, 
 
�(��� ∗) = ��(�� ∗) = ��� ∗, 
 
�(��� ∗) = ��(�� ∗) = ��� ∗, 
 
�(��� ∗) = ��(�� ∗) = ��� ∗, 
 
�(��� ∗) = ��(�� ∗) = ��� ∗, 
 
�(��� ∗) = ��(�� ∗) = ��� ∗.                                                                                                       (3.2) 

 
which show that (for all o ∈ {1,2,3, … , � }, � ∈ {1,2, … , �}, � ∈ {1,2, …  , �} and � ∈ {1,2, … , �}) ��� ∗ and 
�� � ∗  are other fixed points of the pair (�, �) whereas ��� ∗  and ��� ∗  are other fixed points of the 
pair (� , �). 
 
Now in view of uniqueness of the fixed point �, �, �  and �  (for all � ∈ {1,2, … , � }, � ∈ {1,2, … , �}, � ∈
{1,2, … , �} and � ∈ {1,2, … , �}), one can write ��� ∗ = ��� ∗ = ��� ∗ = ��� ∗ = � ∗. 
 
This means that the point � ∗ is a common fixed point of ��, �� , �� and ��. for all � ∈ {1,2, … , � }, � ∈
{1,2, … , �}, � ∈ {1,2, … , �} and � ∈ {1,2, … , �}. By setting 
 

�� = �� = ⋯ = �� = �, 
 

�� = �� = ⋯ = �� = �, 
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�� = �� = ⋯ = �� = �, 
 

�� = �� = ⋯ = �� = �.                                                                                                                (3.3) 
 
One deduces the following corollary for various iterates of �, �, � and �, which can also be viewed as partial 
generalization of theorem 2.1. 
 
Corollary 3.2: Let (�, �) and (�, �) be two commuting pairs of self-mappings of a parametric metric space 
(�, �) with  � � (�)�������� ⊆ ��(�) and  �� (�)��������� ⊆ ��(�) and for all �, � ∈ �, � > 0 and some � ∈ � , 
 

� (�(�� �, � � �, �), �(���, ���, �), �(���, �� �, �),� 
 

��(���, � � �, �), �(���, � � �, �), �(�� �, ���, �)� ≤ 0,                                                                 (3.4) 
 

If one of  � � (�)�������� and �� (�)��������� is a complete subspace of  �, then (�, �) and (�, �) have a unique point of 
coincidence in �. Moreover, if (�, �) and (�, �) are weakly compatible, then �, �, � and � have a unique 
common fixed point in �.  
 
Theorem 3.3: Let {��, ��, … , �� } and {��, ��, … , ��}  be two finite families of self-mappings of a parametric 
metric space (�, �) with � = ∏ ��

�
���  , � = ∏ ��

�
���   satisfying condition (2.28) of Corollary 2.4. Suppose 

that  �(�)������� ⊆ �(�) , wherein �(�)�������  is a complete subspace of   � , then (�, �)  have a unique point of 
coincidence.  
 
Moreover, if  ���� = ����,  ���� = J���  and ���� = �� �� for all �, � ∈ {1,2, … , � }  and  �, �∈ {1,2, … , �} , 

then (� ∈ {1,2, … , � } and � ∈ {1,2, … , �}) ��  and �� have a common fixed point in  �. 
 
Proof: The conclusion “ (�, �)  has a point of coincidence” is immediate as �  and �  satisfies all the 
conditions of Corollary 2.4. Now appealing to component wise commutativity of various pairs, one can 
immediately assert that �� =  ��  and hence, obviously the pair (�, �)  is weakly compatible. Note that all 
the conditions (2.28) of Corollary 2.4 (for mappings � and �) are satisfied ensuring the existence of unique 
common fixed point, say � ∗. Now one need to show that � ∗ remains the fixed point of all the component 
mappings. For this consider 
 

               ���� � ∗ � = (∏ ��
�
��� )���� ∗� 

 

                               = (∏ ��
� � �
��� )(�� ��)� ∗ 

 

                               = (∏ ��
� � �
��� )��� ��� ∗� 

 

                               = (∏ ��
� � �
��� ) ��� � ��� (�� � ∗)� 

 

                               = (∏ ��
� � �
��� ) ��� �� � �(�� � ∗)� 

 

                               = ⋯  
 

                               = ���� (∏ ��
�
��� � ∗) 

 

                               = �� ��(∏ ��(� ∗)�
��� ) 

 

                               = �� �∏ ��
�
��� (� ∗)� 

 

                               = �� (�� ∗) = �� � ∗                                                                                                        (3.5) 
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Similarly, one can show that, 
 

�(��� ∗) = �� (�� ∗) = ��� ∗, 
 

�(�� � ∗) = ��(�� ∗) = �� � ∗, 
 

����� ∗� = �� (�� ∗) = �� � ∗,                                                                                                        (3.6) 
 
which show that (for all � ∈ {1,2, … , � }, � ∈ {1,2, … , �}) �� � ∗ and ��� ∗ are other fixed points of the pair 

(�, �). 
 
Now in view of uniqueness of the fixed point �, �, � and � (for all � ∈ {1,2, … , � }, � ∈ {1,2, … , �}), one 
can write  ��� ∗ = �� � ∗ = � ∗. 

 
This means that the point � ∗ is a common fixed point of  ��  and �� . for all � ∈ {1,2, … , � }, � ∈ {1,2, … , �}. 

By setting 
 

�� = �� = ⋯ = �� = �, 
 

�� = �� = ⋯ = �� = �.                                                                                                                (3.7) 
 
One deduces the following corollary for various iterates of � and �, which can also be viewed as partial 
generalization of Corollary 2.1. 
 
Corollary 3.4: Let (�, �) be two commuting pairs of self-mappings of a parametric metric space (�, �) 

with  �� (�)��������� ⊆ ��(�) and for all �, � ∈ �, � > 0 and some � ∈ � , 
 

� (�(�� �, �� �, �), �(���, ���, �), �(���, �� �, �),� 
 

��(��y, �� �, �), �(���, �� �, �), �(�� �, ���, �)� ≤ 0,                                                                (3.8) 
 

Assume that  �� (�)��������� is a complete subspace of  �, then (�, �) has a unique point of coincidence in X. 
Moreover, if (�, �) is weakly compatible, then (�, �) has a unique common fixed point in �. 
 

4 Example 
 
Now we furnish an example to demonstrate the validity of the hypotheses of generality of our result.  
 
Example 4.1: Let � = {0,1,3,4} be endowed with parametric metric �(�, �, �) = �|� − �| for all �, � ∈ � 
and all � > 0. Then (�, �) is a parametric metric space. 
 
Also define the mappings �, �, �, �:� → � by 
 

�� =  1, ∀ � ∈ �, 
 

�� = �
0,           � ∈ {3}

1,    � ∈ {0,1,2}.
� 

 
and 
 

�� = �� = �, ∀ � ∈ � 
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that is,  � = � = ��  (the identity mapping on � ). We can see that the mappings (�, �)  and (� , J)  are 
commute at 1 which is their coincidence point. Obviously, (�, �) and (� , �) are weakly compatible.  
 

Also �(�) = {1}, �(�) = {0,1}  and  �(�) = �(�) = {0,1,3,4} . Clearly, �(�)������� = {1} ⊂ {0,1,3,4} = �(�) 

and �(�)������� = {0,1} ⊂ {0,1,3,4} = �(�) are complete subspace of �.  
 
Now, we define  � (��, ��, ��, ��, ��, ��):ℝ �

� → ℝ  as: 
 

� (��, ��, ��, ��, ��, ��) = �� − �� �
��

� + ��
�

�� + ��

� − ���� − ��(�� + ��) 

 

where �� ≥ 0 with at least one �� non-zero and �� + �� + 2��  <  1. Now taking �� =
�

�
, �� = �� =

�

�
 , we 

consider the following cases.  
 

(1).  Let � = 0, � = 1 and for all t> 0. Then 
 

               � (�(�0, �1, �), �(�1, �0, �), �(�0, �0, �),���(�1, �1, �), �(�0, �1, �), �(�0, �1, �)� 
 

                        = � (�(1,1, �), �(1, 0, �), �(0, 1, �),���(1,1, �), �(0,1, �), �(1,1, �)� 
 
                        = � (0, t, t, 0, t, t) 
 

                        = 0 − �� �
�� �

�� �
� − ��t− ��(t+ t) 

 

                        = −
�

�
+

� �

�
t< 0. 

 
(2).  Let � = 0, � = 3 and for all t> 0. Then 
 

              � (�(�0, �3, �), �(�0, �3, �), �(�0, �0, �),���(�3, �3, �), �(�0, �3, �), �(�0, �3, �)� 
 

                         = � (�(1,0, �), �(0, 3, �), �(0, 1, �),���(3,0, �), �(0,0, �), �(1,3, �)� 
 
                         = � (t, 3t, t, 3t, 0,2t) 
 

                         = t− �� �
�� ���

�� �
� − 3�� − ��(0 + 2t) 

 

                         = t−
�

�
�

�� ���

�� �
� −

��

�
−

�

�
(0 + 2t) 

 

                         = −
�

�
t−

�

�
�

�� ���

�� �
� < 0 

 

                         = −
�

�
t−

�

�
�

�� ���

�� �
� < 0 

 
(3).  Let � = 0, � = 4 and for all t> 0. Then 

 

� (�(�0, �4, �), �(�0, �4, �), �(�0, �0, �),���(�4, �4, �), �(�0, �4, �), �(�0, �4, �)� 
 

                        = � (�(1,1, �), �(0, 4, �), �(0, 1, �),���(4,1, �), �(0,1, �), �(1,4, �)� 
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                        = � (0,4t, t, 3t, t, 3t) 
 

                        = 0 − �� �
�� ���

�� �
� − 4t�� − ��(t+ 3t) 

                                       

                        = 0 −
�

�
�

�� ���

�� �
� − t− t 

 

                        = − 2t−
�

�
�

�� ���

�� �
� < 0. 

 
(4).  Let � = 1, � = 3 and for all t> 0. Then, 

 

                � (�(�1, �3, �), �(�1, �3, �), �(�1, �1, �),� ��(�3, �3, �), �(�1, �3, �), �(�1, �3, �)� 
 

                         = � (�(1,0, �), �(1, 3, �), �(1, 1, �),���(3,0, �), �(1,0, �), �(1,3, �)� 
 

                         = � (t, 2t, 0,3t, t, 2) 
 

                         = t− �� �
�� ���

�� ��
� − ��2t− ��(t+ 2t) 

    

                         = t−
�

�
t−

�

�
t−

�

�
t 

       

                         =
� ��

��
t< 0. 

 
(5).  Let � = 1, � = 4 and for all t> 0. Then, 

 

                � (�(�1, �4, �), �(�1, �4, �), �(�1, �1, �),���(�4, �4, �), �(�1�4, �), �(�1, �4, �)� 
 

                         = � (�(1,1, �), �(1, 4, �), �(1, 1, �),���(4,1, �), �(1,1, �), �(1,4, �)� 
 

                         = � (0,3t, 0,3t, 0,3t) 
 

                         = 0 − �� �
�� ���

�� ��
� − 3t�� − ��(0 + 3t) 

 

                         = −
�

�
t−

�

�
t−

�

�
t 

 

                         =
� ��

��
t< 0. 

 

(6).  Let � = 3, � = 4 and for all t> 0. Then, 
 

                � (�(�3, �4, �), �(�3, �4, �), �(�3, �3, �),���(�4, �4, �), �(�3, �4, �), �(�3, �4, �)� 
 

                         = � (�(1,1, �), �(3,4, �), �(3, 1, �),���(4,1, �), �(3,1, �), �(3,4, �)� 
 

                         = � (0, t, 3t, 4t, 3t, t) 
 

                         = 0 − �� �
���� ����

��� ��
� − ��� − a�(3t+ t) 

                                        

                         = −
�

�
t−

�

�
t− t 

 

                         =
� ��

��
t< 0. 
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Therefore, all condition of Theorem 2.1 hold and �, � , � and � have a unique common fixed point (ω∗ = 1). 
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