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Abstract

In this paper, we establish results for g-analogues of generalized Opial integral inequalities and
also present some extensions of the analogues. Using the concepts of ¢-differentiability and
continuity of functions and the application of the Holder’s integral inequality we establish the
results.
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1 Introduction

Opial established an inequality involving integral of a function and its derivative ([1]) as

[ i@ @ide< g [ @y (1)
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where f € C[0, h], such that f(0) = f(h) =0, f'(z) > 0 and = € [0, h]. The coefficient h/4 is the
best constant possible.

This inequality, due to its significance, experienced a lot of extensions and generalizations over time
in both classical and g-analogues. In [2], generalizations of the classical Opial’s inequality were
established as

b —a b , 5
[ r@r@lar< P20 [ @) d (12)

and

[ @@l < P20 [ r@f a. (13)

where the coefficients (b — a)/2 and (b — a)/4 are their respective best constants possible.

In [3], the authors established a g-analogue of a generalized Opial type inequality as

b b
[ 1D @I < 0o / Dy f ()P dy, (1.4)

where f € C'[a,b] is a g-decreasing function with f(bq") = 0 and p > 0.

See also ([4], [5], [6] and [7]) for more g-analogues of the Opial’s type inequalities. g-Calculus is
a mathematical field of study which is analogous to the ordinary calculus. It is used to find ¢-
derivatives and g¢-integrals of functions ([8]).

The Opial inequality plays essential role in establishing the existence and uniqueness of initial and
boundary values problems for both ordinary and partial differential equations as well as in difference
equations ([4] and [8]).

Motivated by g-calculus our objective in this paper is to establish g-analogues of the generalized
Opial Integral Inequalities (1.2) and (1.3).

2 Preliminaries

In this section, the basic concepts and terminologies of g-calculus are presented. The definitions
provided can also be seen in ([9], [10], [11], [12], [13], [8], [14], [15], [7] and [16]).

Definition 2.1. For any arbitrary function f, the ¢g-derivative (Dgyf) is defined as

f(x) = flgx)
(1-q)z

Notation 2.1. For any positive real o, the g-number

D, f(z) = ,x #0. (2.1)

1—qa_ 2 a—1
=g =l+q+q +--+q 7,

[a]q =
for0<g<1,acR".

Definition 2.2. The g-Derivative of product of f and g is defined as

Dy(f(x)g(x)) = f(2)Dag(x) + g(qz) Do f (x)
= f(qz)Dqg(x) 4+ g(x) Dy f (). (2.2)
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Definition 2.3. (Composite Rule) Let f be a function of a power function g, the g-derivative is
defined as

Dqf(g(x)) = Dy (f (9(2))) Dq(9)(x), (2.3)

where k is a real and index of g ([8]).
Lemma 2.2. [17] For any positive real o, then we have
Dy(w - a)* = [a]y(z — a)° ", (2.4)

for0<g<1,acR".

Proof.
a_ (@=0a)" = ((z —a)g)®
Dy(x —a)” =
=) 0o a
— [aly(e - a)°~
This completes the proof of the lemma. O

Definition 2.4. Let f : C[0,b] — R (b > 0). Then the Jackson’s definite g-Integral on [0, ] is
defined as

b i . .
| @ = 1= ap Y a1, (2.5)
7=0
The g-integral on [a, b] is defined as
b b a
dgx = dqx — dqx. 2.6
| @ = [ @~ [ p@ydes (2.6

Definition 2.5. The function f defined on [a,d] is called g-increasing (g-decreasing) on [a,b], if
flagz) < f(z) (f(gz) = f(x)), for z, gz € [a, 0] ([11]).

It is easily observed that if the function f is increasing (decreasing), then it is also g-increasing
(g-decreasing).

Definition 2.6. A function f : I — R is said to be convex on I if for every z, y € Tand 0 < A <1
the inequality

fOz+ (1= Ny) <Af(z) + (1= A)f(y) (2.7)

holds.

3 Main Results

Lemma 3.1. Let h: [a,b] = R be a differentiable function, such that Dgh € Lyla,b], 1 < p < o0
and 0 < g < 1. Then,

</ab Ith(m)\dq:r)p <(b—a)! /ab |Dyh(x)[Pdg. (3.1)
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Proof. Applying Hélder’s inequality with % + % =1 we have

([ 1waniae)” = ([ o i) L
[(/:”thu)wdqgg)‘“ ( /ab“‘i)ﬁldqx)pp
[th|th(x)|qux (/abtpildqx)“

b
e / |Dyh(z)|dyz.

This completes the proof of the lemma. O

IN Il
[
s

Theorem 3.2. Let h : [a,b] — R be a differentiable function such that Dgh € Lya,b], h(a) =
0,(or h(b)=0),0<g<1landl<p<oo. Then

b p—1 (b*a)p71 b p
/a Duh(@)Ih(o) g < C / |Dyh(a) Pdyz (3.2)

holds.

Proof. Let ¢ be a convex function on [0, 00) with ¢(0) =0, z € [a,b], h(a) = 0 and

- / D yh(1)]dyt.

Also, let
30) = o(ut) = o ([ D01t ) (33)
Since Dyy(z) = |Dyh(z)] and  |h(z)| < y(z), then
DyJ(2) = Dyd(y(@)|Deh(@)] > Dyd(h(2)))| Dyh(z). (3.0
Thus .
/ Do)y = 6 (4 (8) = 6(u(@) = [ Du(Ih(@))|Dyh(a)ld (3.5)
Since ¢(0) = 0, (3.5) becomes
[ DistbDDp@Itr < o ([ 1Dbw)dr). (36)

Considering ¢(z) = % for 1 < p < oo in (3.6) we obtain

[pla b p—1 1 ’ :

Be [ ipa@line)rdee < 3 ([ 1Dn@)de) (3.7)
Applying Lemma 3.1 to the right-hand side of (3.7) yields

/|Dh z)||h(z)|P~ 1dﬂc< o)’ /|Dh VPdye, (3.8)

which implies that

pl
/|Dh 2)||h@) P dgw < L=D /|Dh Pdye.

This completes the proof of the theorem. O
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Remark 3.1. Taking p = 2 in (3.2) yields

’ 7(1)701) ' xT 2 x
[ ipn@in@dge < E22 [ ae. (39)

This simplifies to

[ ipan@ln@dze <SPS [ b b e

b—a) [°
= (1Tq/a |Dyh(z)|?dyz. (3.10)
which is the g-analogue of (1.2).
Remark 3.2. By taking the limit as ¢ — 1~ in (3.10) yields (1.2).

Theorem 3.3. Let h € C"[a,b] be a differentiable function, such that Déi)h(a) =0, fori =
1,2,..n—1,1<p<ooand 0 < q<1. Then

(b—a)Pm!

b
o / |Dgh(z)|Pdy (3.11)

b
/ (& — )"~ DER(@)||h(@)" gz <
holds.

Proof. Let ¢ be a convex function on [0, 00) with ¢(0) =0, z € [a, b], Dgi)h(a) =0 and

T [ Tp—1 T
y(z) = / / . / |Dgh(s)|dgsdgti .. .dgtn—1,
so that

Dy(x) 20, D{Vy(x) = |DVh(z)], and  y(x) 2 ()]
By the mean value theorem for integral, it follows that
fo)y(x) < (z-— a)DC(Iile)y(:lc)7 z €la,b], 0<i<n-—2 (3.12)

It implies that
|h(z)| < y(x) < (¢ — a)Dgy(x) < --- < (x —a)" "' Dy~ y().
Consider
F(2) = ¢((z — a)" ' D}y (a)). (3.13)
Applying Lemma 2.2, then
DyF(z) = Dy¢((z — )" " Dy~ y(x))[[n — gz — a)" 72Dy~ y(x)
+ (z — a)" ' Dyy(x)]. (3.14)
From (3.14) we obtain
DyF(z) > Deo(|h(@)|)(z — a)" ™" Dyy()
= Dy¢(|h(z)])(z — a)" | Dy h()|. (3.15)
Thus

b
/ D F(@)dgz = &((b — a)" DIy (b)) — $(0)

> / Dy (1h(@))(x — a)" | Dy h(x)|dga (3.16)
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Since ¢(0) = 0, (3.16) becomes

[ Pt - o Dilde < o (0-0 [ Djvwa).  @an

which implies that
b
/ Dyo(Jh(x)])(z — a)”71|Df;h(x)|dqx <o ( (b—a) / | Dy h(z)|dq x) . (3.18)

Considering ¢(z) = % for 1 < p < oo in (3.18) we obtain

b
%/ (x —a)" | Dy ()| |h(z)|P  dgx < = ( / |Dh(a |dqx) . (3.19)
This simplifies to
b _ p(n—1) b P
W [Yw oy pn@inr e < C0Z ([ppwia) - G20
Applying Lemma 3.1 into the right-hand side of (3.20) yields

[Ply bm—a"71 ch(x z)|P gz
p/a< )" D) |h()[P d

_ \p(n—=1)p _ _\p—1 b
<=9 p(" a) / D2 h() [Pdy, (3.21)

which implies that

/ <w—a)"*l\DSh(m)Hh(m)VquwS%/ [Dah(@)]" dya.

This completes the proof of the theorem. O

Remark 3.3. Taking p = 2 in (3.11) yields

b 2n 1
/ (@ — a)" DI (@) [h(@) |dgw < L= / \Dyh(z)2dya. (3.22)

This simplifies to

[ @-ar i@l < S0 [P

b —a 2n—1 b
=059 [N D), (3.23)

for n > 1.

Remark 3.4. For n = 1 and by taking the limit as ¢ — 17 in (3.23) yields (1.2).

Theorem 3.4. Let h : [a,b] — R be a differentiable function such that Dgh € Lya,b], h(a) =
h(b)=0,1<p< oo, and 0 < q<1. Then

b p=1lg (b_a)p71 b 2)Pd.x
[ i@ due < G [N Db, (3:24)

holds.
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Proof. Let ¢ be a convex function on [0, 00) with ¢(0) =0, z € [a,b], h(a) = 0 and

vo) = [ IDah(old,t,
so that
5@) = otuta) = o [ 10an0at).
Since Dqy(x) = |Dgh(z)| and |h(z)| < y(x), then
DyJ(x) = Doo(y(x))|Dgh(x)| = Dya¢(|h(z)[)| Dgh(z)].
Also, let
@) = [ IDh(Old,e
for h(b) = 0, then
7() = ~o(e(a) =~ ([ ID(Oldut )
Since Dyz(z) = —|Dgh(z)] and |h(z)| < z(zx), then
DyT(x) = Dy¢(2(x))|Dyh(x)| = Ded(|h(2)])| Dyh(z)|.

Let [a, “—er] and [aT*b,b} be subintervals of [a, b].

LwﬁmeF (+(%52)) - etota)

+b

)
z/Tmemmmmmw

By (3.26) we obtain

Since ¢(0) = 0, thus

¢</ﬂazb

Also, by (3.29) we obtain

a+b

b
> [, Dibh@)DIDh() dy

Since ¢(0) = 0, (3.32) becomes

b b
¢ (/;+b |th(1’)dqw> > /m Dyp(|h(z)])| Dyh(z)|dqgz.

2

Ith(x)dql’> 2/ © Dyd(|h(@)))| Dah(x)|dge

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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By (3.31) and (3.33) we obtain

/ Dy (h(2)]) | Dyh(x)|dyx

s¢</ﬂ

Now, for ¢(x) = %, 1 <p< oo in (3.34) we have

|th(x)|dqx> +é ([Hb |th(x)dqm> . (3.34)

2

@ ’ p—1
: / |Doha(a) [ ()"~ g

1 LLT% P 1 b p
<5 (/a |th(:v)|dqx> + (/ \ |th(x)dqx) : (3.35)

2

By Lemma 3.1, we obtain

a+b

O [ Dty

Bla " () i)ty <O
p Jo ! Tl

b—a p—1 b
+ %/Hrb |th($)‘pdq$, (336)

2

which simplifies to

b p1 (b _ a)p—l b v
g [Dgh(x)||h(2)|" " dgr < i, . [Dgh(x)|Pdqx.
This completes the proof of the theorem. O
Remark 3.5. The constant % is sharper than the constant (b=a)P71
2p [plq [P]q
Remark 3.6. Taking p = 2 in (3.24) yields
’ (b—a) ’ 2
|Dgh(z)||h(x)|dgz < 20] |Dgh(z)|"dgzz. (3.37)
a q a

This simplifies to
b b
1—q)(b—a
[ ipa@lin@ldse < S 2ES [ Dby
b—a b
= 2((17+q)) / |Dgh(z)[*dyz, (3.38)
as the g-analogue of (1.3).

Remark 3.7. By taking the limit as ¢ — 17 in (3.38) yields (1.3).

4 Conclusion

In this paper, interesting results on g-analogues of generalized Opial’s inequalities were established
and also presented some extensions of the analogues. The basic concepts of g-calculus, convexity
properties of functions and the application of the Hélder’s integral inequality were employed to
obtain these results.
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