Journal of Advances in Mathematics and Computer Science

TITTITUTTII

35(4): 106-114, 2020; Article no.JAMCS.58550 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

On Generalized Opial's Integral Inequalities in q-Calculus

B. Abubakari $^{1^*}$ [,](#page-0-0) M. M. Iddrisu¹ and K. Nantomah¹

 1 Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, P. O. Box 24, Navrongo Campus, Navrongo, Ghana.

Authors' contributions

This work was carried out in collaboration among the authors. All the authors read and approved the final manuscript.

Article Information

Received: 20 April 2020 Accepted: 27 June 2020

DOI: 10.9734/JAMCS/2020/v35i430274 $Editor(s)$. (1) Dr. Raducanu Razvan, Al. I. Cuza University, Romania. Reviewers: (1) Arike Mogbademu, University of Lagos, Nigeria. (2) Mahir Kadakal, Giresun University, Turkey. (3) Huriye Kadakal, Hamdi Bozba˘g Anatolian High School, Turkey. Complete Peer review History: <http://www.sdiarticle4.com/review-history/58550>

Original Research Article Published: 07 July 2020

Abstract

In this paper, we establish results for q-analogues of generalized Opial integral inequalities and also present some extensions of the analogues. Using the concepts of q -differentiability and continuity of functions and the application of the Hölder's integral inequality we establish the results.

Keywords: Generalized Opial Inequality; Hölder's Integral Inequality; q-analogue; q-Calculus.

2010 Mathematics Subject Classification: 26A46, 05A30.

1 Introduction

Opial established an inequality involving integral of a function and its derivative ([\[1\]](#page-8-0)) as

$$
\int_0^h |f(x)f'(x)| dx \le \frac{h}{4} \int_0^h (f'(x))^2 dx,\tag{1.1}
$$

^{*}Corresponding author: E-mail: ambaabu41@yahoo.com;

where $f \in C^1[0, h]$, such that $f(0) = f(h) = 0$, $f'(x) > 0$ and $x \in [0, h]$. The coefficient $h/4$ is the best constant possible.

This inequality, due to its significance, experienced a lot of extensions and generalizations over time in both classical and q -analogues. In $[2]$, generalizations of the classical Opial's inequality were established as

$$
\int_{a}^{b} |f(x)f'(x)| dx \le \frac{(b-a)}{2} \int_{a}^{b} |f'(x)|^{2} dx \tag{1.2}
$$

and

$$
\int_{a}^{b} |f(x)f'(x)| dx \le \frac{(b-a)}{4} \int_{a}^{b} |f'(x)|^{2} dx,
$$
\n(1.3)

where the coefficients $(b - a)/2$ and $(b - a)/4$ are their respective best constants possible.

In [\[3\]](#page-8-2), the authors established a q -analogue of a generalized Opial type inequality as

$$
\int_{a}^{b} |D_q f(x)||f(x)|^p d_q x \le (b-a)^p \int_{a}^{b} |D_q f(x)|^{p+1} d_q x, \tag{1.4}
$$

where $f \in C^1[a, b]$ is a q-decreasing function with $f(bq^0) = 0$ and $p \ge 0$.

See also $(4, 5, 6)$ and (7) for more q-analogues of the Opial's type inequalities. q-Calculus is a mathematical field of study which is analogous to the ordinary calculus. It is used to find qderivatives and q -integrals of functions $([8])$ $([8])$ $([8])$.

The Opial inequality plays essential role in establishing the existence and uniqueness of initial and boundary values problems for both ordinary and partial differential equations as well as in difference equations ([\[4\]](#page-8-3) and [\[8\]](#page-8-7)).

Motivated by q -calculus our objective in this paper is to establish q -analogues of the generalized Opial Integral Inequalities [\(1.2\)](#page-1-0) and [\(1.3\)](#page-1-1).

2 Preliminaries

In this section, the basic concepts and terminologies of q-calculus are presented. The definitions provided can also be seen in ([\[9\]](#page-8-8), [\[10\]](#page-8-9), [\[11\]](#page-8-10), [\[12\]](#page-8-11), [\[13\]](#page-8-12), [\[8\]](#page-8-7), [\[14\]](#page-8-13), [\[15\]](#page-8-14), [\[7\]](#page-8-6) and [\[16\]](#page-8-15)).

Definition 2.1. For any arbitrary function f, the q-derivative $(D_q f)$ is defined as

$$
D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, x \neq 0.
$$
\n(2.1)

Notation 2.1. For any positive real α , the q-number

$$
[\alpha]_q = \frac{1 - q^{\alpha}}{1 - q} = 1 + q + q^2 + \dots + q^{\alpha - 1},
$$

for $0 < q < 1$, $\alpha \in \mathbb{R}^+$.

Definition 2.2. The *q*-Derivative of product of f and *q* is defined as

$$
D_q(f(x)g(x)) = f(x)D_qg(x) + g(qx)D_qf(x)
$$

= $f(qx)D_qg(x) + g(x)D_qf(x)$. (2.2)

Definition 2.3. (Composite Rule) Let f be a function of a power function q, the q-derivative is defined as

$$
D_q f(g(x)) = D_{q^k}(f(g(x))) D_q(g)(x),
$$
\n(2.3)

where k is a real and index of g ([\[8\]](#page-8-7)).

Lemma 2.2. [[17](#page-8-16)] For any positive real α , then we have

$$
D_q(x-a)^\alpha = [\alpha]_q(x-a)^{\alpha-1},\tag{2.4}
$$

for $0 < q < 1, \ \alpha \in \mathbf{R}^+$.

Proof.

$$
D_q(x-a)^{\alpha} = \frac{(x-a)^{\alpha} - ((x-a)q)^{\alpha}}{(1-q)(x-a)}
$$

= $[\alpha]_q(x-a)^{\alpha-1}.$

This completes the proof of the lemma.

Definition 2.4. Let $f: C[0, b] \to \mathbb{R}$ $(b > 0)$. Then the Jackson's definite q-Integral on $[0, b]$ is defined as

$$
\int_0^b f(x)d_qx = (1-q)b\sum_{j=0}^\infty q^j f(bq^j).
$$
 (2.5)

The q-integral on [a, b] is defined as

$$
\int_{a}^{b} f(x)d_{q}x = \int_{0}^{b} f(x)d_{q}x - \int_{0}^{a} f(x)d_{q}x.
$$
 (2.6)

Definition 2.5. The function f defined on $[a, b]$ is called q-increasing (q-decreasing) on $[a, b]$, if $f(qx) \le f(x)$ $(f(qx) \ge f(x))$, for $x, qx \in [a, b]$ ([\[11\]](#page-8-10)).

It is easily observed that if the function f is increasing (decreasing), then it is also q -increasing (q-decreasing).

Definition 2.6. A function $f: I \to \mathbf{R}$ is said to be convex on I if for every $x, y \in I$ and $0 \le \lambda \le 1$ the inequality

$$
f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)
$$
\n(2.7)

holds.

3 Main Results

Lemma 3.1. Let $h : [a, b] \to \mathbf{R}$ be a differentiable function, such that $D_q h \in L_p[a, b]$, $1 \leq p < \infty$ and $0 < q < 1$. Then,

$$
\left(\int_{a}^{b} |D_q h(x)| d_q x\right)^p \le (b-a)^{p-1} \int_{a}^{b} |D_q h(x)|^p d_q x. \tag{3.1}
$$

108

 \Box

Proof. Applying Hölder's inequality with $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$
\left(\int_{a}^{b} |D_q h(x)| d_q x\right)^p = \left(\int_{a}^{b} t^{\frac{1}{p}} |D_q h(x)| t^{-\frac{1}{p}} d_q x\right)^p
$$

\n
$$
\leq \left[\left(\int_{a}^{b} t |D_q h(x)|^p d_q x\right)^{\frac{1}{p}} \left(\int_{a}^{b} (t^{-\frac{1}{p}})^{\frac{p}{p-1}} d_q x\right)^{\frac{p-1}{p}}\right]^p
$$

\n
$$
= \int_{a}^{b} t |D_q h(x)|^p d_q x \left(\int_{a}^{b} t^{-\frac{1}{p-1}} d_q x\right)^{p-1}
$$

\n
$$
= (b-a)^{p-1} \int_{a}^{b} |D_q h(x)|^p d_q x.
$$

This completes the proof of the lemma.

 \Box

Theorem 3.2. Let $h : [a, b] \to \mathbf{R}$ be a differentiable function such that $D_q h \in L_p[a, b]$, $h(a) =$ 0, (or $h(b) = 0$), $0 < q < 1$ and $1 \le p < \infty$. Then

$$
\int_{a}^{b} |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p-1}}{[p]_q} \int_{a}^{b} |D_q h(x)|^p d_q x \tag{3.2}
$$

holds.

Proof. Let ϕ be a convex function on $[0, \infty)$ with $\phi(0) = 0, x \in [a, b], h(a) = 0$ and

$$
y(x) = \int_a^x |D_q h(t)| d_q t.
$$

Also, let

$$
J(x) = \phi(y(x)) = \phi\left(\int_a^x |D_q h(t)| d_q t\right).
$$
\n(3.3)

Since $D_q y(x) = |D_q h(x)|$ and $|h(x)| \leq y(x)$, then

$$
D_q J(x) = D_q \phi(y(x)) |D_q h(x)| \ge D_q \phi(|h(x)|) |D_q h(x)|.
$$
\n(3.4)

Thus

$$
\int_{a}^{b} D_{q}J(x)d_{q}x = \phi(y(b)) - \phi(y(a)) \ge \int_{a}^{b} D_{q}\phi(|h(x)|)|D_{q}h(x)|d_{q}x.
$$
\n(3.5)

Since $\phi(0) = 0$, [\(3.5\)](#page-3-0) becomes

$$
\int_{a}^{b} D_q \phi(|h(x)|)|D_q h(x)|d_q x \le \phi\left(\int_{a}^{b} |D_q h(x)|d_q x\right). \tag{3.6}
$$

Considering $\phi(x) = \frac{x^p}{x^p}$ $\frac{p^p}{p}$ for $1 \leq p < \infty$ in [\(3.6\)](#page-3-1) we obtain

$$
\frac{[p]_q}{p} \int_a^b |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{1}{p} \left(\int_a^b |D_q h(x)| d_q x \right)^p.
$$
\n(3.7)

Applying Lemma [3.1](#page-2-0) to the right-hand side of [\(3.7\)](#page-3-2) yields

$$
\frac{[p]_q}{p} \int_a^b |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p-1}}{p} \int_a^b |D_q h(x)|^p d_q x,\tag{3.8}
$$

which implies that

$$
\int_{a}^{b} |D_q h(x)| |h(x)|^{p-1} d_q x \leq \frac{(b-a)^{p-1}}{[p]_q} \int_{a}^{b} |D_q h(x)|^p d_q x.
$$

 \Box

This completes the proof of the theorem.

Remark 3.1. Taking $p = 2$ in [\(3.2\)](#page-3-3) yields

$$
\int_{a}^{b} |D_q h(x)| |h(x)| d_q x \le \frac{(b-a)}{[2]_q} \int_{a}^{b} |D_q h(x)|^2 d_q x.
$$
 (3.9)

This simplifies to

$$
\int_{a}^{b} |D_q h(x)||h(x)|d_q x \le \frac{(1-q)(b-a)}{(1-q^2)} \int_{a}^{b} |D_q h(x)|^2 d_q x
$$

$$
= \frac{(b-a)}{1+q} \int_{a}^{b} |D_q h(x)|^2 d_q x. \tag{3.10}
$$

which is the q -analogue of (1.2) .

Remark 3.2. By taking the limit as $q \to 1^-$ in [\(3.10\)](#page-4-0) yields [\(1.2\)](#page-1-0).

Theorem 3.3. Let $h \in C^n[a,b]$ be a differentiable function, such that $D_q^{(i)}h(a) = 0$, for $i =$ 1, 2, . . . $n-1$, $1 \le p < \infty$ and $0 < q < 1$. Then

$$
\int_{a}^{b} (x-a)^{n-1} |D_q^n h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{pn-1}}{[p]_q} \int_{a}^{b} |D_q h(x)|^p d_q x \tag{3.11}
$$

holds.

Proof. Let ϕ be a convex function on $[0, \infty)$ with $\phi(0) = 0, x \in [a, b], D_q^{(i)}h(a) = 0$ and

$$
y(x) = \int_{a}^{x} \int_{a}^{x_{n-1}} \dots \int_{a}^{x_1} |D_q h(s)| d_q s d_q t_1 \dots d_q t_{n-1},
$$

so that

 $D_q^{(i)}y(x) \ge 0$, $D_q^{(n)}y(x) = |D_q^{(n)}h(x)|$, and $y(x) \ge |h(x)|$.

By the mean value theorem for integral, it follows that

$$
D_q^{(i)}y(x) \le (x-a)D_q^{(i+1)}y(x), \quad x \in [a, b], \quad 0 \le i \le n-2. \tag{3.12}
$$

It implies that

$$
|h(x)| \le y(x) \le (x - a)D_q y(x) \le \dots \le (x - a)^{n-1} D_q^{n-1} y(x).
$$

Consider

$$
F(x) = \phi((x - a)^{n-1} D_q^{n-1} y(x)).
$$
\n(3.13)

Applying Lemma [2.2,](#page-2-1) then

$$
D_q F(x) = D_q \phi((x-a)^{n-1} D_q^{n-1} y(x))[[n-1]_q (x-a)^{n-2} D_q^{n-1} y(x) + (x-a)^{n-1} D_q^n y(x)].
$$
\n(3.14)

From [\(3.14\)](#page-4-1) we obtain

$$
D_q F(x) \ge D_q \phi(|h(x)|)(x-a)^{n-1} D_q^n y(x)
$$

= $D_q \phi(|h(x)|)(x-a)^{n-1} |D_q^n h(x)|.$ (3.15)

Thus

$$
\int_{a}^{b} D_{q}F(x)d_{q}x = \phi((b-a)^{n-1}D_{q}^{n-1}y(b)) - \phi(0)
$$

$$
\geq \int_{a}^{b} D_{q}\phi(|h(x)|)(x-a)^{n-1}|D_{q}^{n}h(x)|d_{q}x.
$$
(3.16)

Since $\phi(0) = 0$, [\(3.16\)](#page-4-2) becomes

$$
\int_{a}^{b} D_{q}\phi(|h(x)|)(x-a)^{n-1}|D_{q}^{n}h(x)|d_{q}x \leq \phi\left((b-a)^{n-1}\int_{a}^{b} D_{q}^{n}y(x)d_{q}x\right),\tag{3.17}
$$

which implies that

$$
\int_{a}^{b} D_{q}\phi(|h(x)|)(x-a)^{n-1}|D_{q}^{n}h(x)|d_{q}x \leq \phi\left((b-a)^{n-1}\int_{a}^{b}|D_{q}^{n}h(x)|d_{q}x\right). \tag{3.18}
$$

Considering $\phi(x) = \frac{x^p}{x^p}$ $\frac{p^p}{p}$ for $1 \leq p < \infty$ in [\(3.18\)](#page-5-0) we obtain

$$
\frac{[p]_q}{p} \int_a^b (x-a)^{n-1} |D_q^n h(x)| |h(x)|^{p-1} d_q x \le \frac{1}{p} \left((b-a)^{n-1} \int_a^b |D_q^n h(x)| d_q x \right)^p. \tag{3.19}
$$

This simplifies to

$$
\frac{[p]_q}{p} \int_a^b (x-a)^{n-1} |D_q^n h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p(n-1)}}{p} \left(\int_a^b |D_q^n h(x)| d_q x \right)^p. \tag{3.20}
$$

Applying Lemma [3.1](#page-2-0) into the right-hand side of [\(3.20\)](#page-5-1) yields

$$
\frac{[p]_q}{p} \int_a^b (x-a)^{n-1} |D_q^n h(x)| |h(x)|^{p-1} d_q x
$$

$$
\leq \frac{(b-a)^{p(n-1)} (b-a)^{p-1}}{p} \int_a^b |D_q^n h(x)|^p d_q x,
$$
 (3.21)

which implies that

$$
\int_a^b (x-a)^{n-1} |D_q^n h(x)| |h(x)|^{p-1} d_q x \leq \frac{(b-a)^{pn-1}}{[p]_q} \int_a^b |D_q h(x)|^p d_q x.
$$

This completes the proof of the theorem.

Remark 3.3. Taking $p = 2$ in [\(3.11\)](#page-4-3) yields

$$
\int_{a}^{b} (x-a)^{n-1} |D_q^n h(x)| |h(x)| d_q x \leq \frac{(b-a)^{2n-1}}{[2]_q} \int_{a}^{b} |D_q h(x)|^2 d_q x. \tag{3.22}
$$

This simplifies to

$$
\int_{a}^{b} (x-a)^{n-1} |D_q^n h(x)| |h(x)| d_q x \leq \frac{(1-q)(b-a)^{2n-1}}{(1-q^2)} \int_{a}^{b} |D_q h(x)|^2 d_q x
$$

$$
= \frac{(b-a)^{2n-1}}{1+q} \int_{a}^{b} |D_q h(x)|^2 d_q x, \tag{3.23}
$$

for $n \geq 1$.

Remark 3.4. For $n = 1$ and by taking the limit as $q \to 1^-$ in [\(3.23\)](#page-5-2) yields [\(1.2\)](#page-1-0).

Theorem 3.4. Let $h : [a, b] \rightarrow \mathbb{R}$ be a differentiable function such that $D_q h \in L_p[a, b]$, $h(a) =$ $h(b) = 0, 1 \leq p < \infty$, and $0 < q < 1$. Then

$$
\int_{a}^{b} |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p-1}}{2^{p-1} [p]_q} \int_{a}^{b} |D_q h(x)|^p d_q x \tag{3.24}
$$

holds.

111

 \Box

Proof. Let ϕ be a convex function on $[0, \infty)$ with $\phi(0) = 0, x \in [a, b], h(a) = 0$ and

$$
y(x) = \int_{a}^{x} |D_q h(t)| d_q t,
$$

so that

$$
J(x) = \phi(y(x)) = \phi\left(\int_a^x |D_q h(t)| d_q t\right). \tag{3.25}
$$

Since $D_q y(x) = |D_q h(x)|$ and $|h(x)| \leq y(x)$, then

$$
D_q J(x) = D_q \phi(y(x)) |D_q h(x)| \ge D_q \phi(|h(x)|) |D_q h(x)|.
$$
\n(3.26)

Also, let

$$
z(x) = \int_{x}^{b} |D_q h(t)| d_q t \tag{3.27}
$$

for $h(b) = 0$, then

$$
T(x) = -\phi(z(x)) = -\phi\left(\int_x^b |D_q h(t)| d_q t\right). \tag{3.28}
$$

Since $D_qz(x) = -|D_qh(x)|$ and $|h(x)| \le z(x)$, then

$$
D_q T(x) = D_q \phi(z(x)) |D_q h(x)| \ge D_q \phi(|h(x)|) |D_q h(x)|.
$$
\n(3.29)

Let $[a, \frac{a+b}{2}]$ and $\left[\frac{a+b}{2}, b\right]$ be subintervals of $[a, b]$. By [\(3.26\)](#page-6-0) we obtain

$$
\int_{a}^{\frac{a+b}{2}} D_q J(x) d_q x = \phi \left(y \left(\frac{a+b}{2} \right) \right) - \phi(y(a))
$$

$$
\geq \int_{a}^{\frac{a+b}{2}} D_q \phi(|h(x)|) |D_q h(x)| d_q x.
$$
 (3.30)

Since $\phi(0) = 0$, thus

$$
\phi\left(\int_{a}^{\frac{a+b}{2}} |D_q h(x)| d_q x\right) \ge \int_{a}^{\frac{a+b}{2}} D_q \phi(|h(x)|) |D_q h(x)| d_q x. \tag{3.31}
$$

Also, by [\(3.29\)](#page-6-1) we obtain

$$
\int_{\frac{a+b}{2}}^{b} D_q T(x) d_q x = \phi(z(b)) - \phi\left(z\left(\frac{a+b}{2}\right)\right)
$$

$$
\ge \int_{\frac{a+b}{2}}^{b} D_q \phi(|h(x)|) |D_q h(x)| d_q x.
$$
(3.32)

Since $\phi(0) = 0$, [\(3.32\)](#page-6-2) becomes

$$
\phi\left(\int_{\frac{a+b}{2}}^b |D_q h(x)| d_q x\right) \ge \int_{\frac{a+b}{2}}^b D_q \phi(|h(x)|) |D_q h(x)| d_q x. \tag{3.33}
$$

By (3.31) and (3.33) we obtain

$$
\int_{a}^{b} D_q \phi(|h(x)|)|D_q h(x)|d_q x
$$
\n
$$
\leq \phi \left(\int_{a}^{\frac{a+b}{2}} |D_q h(x)|d_q x \right) + \phi \left(\int_{\frac{a+b}{2}}^{b} |D_q h(x)|d_q x \right). \tag{3.34}
$$

Now, for $\phi(x) = \frac{x^p}{x^p}$ $\frac{p}{p}$, $1 \leq p < \infty$ in [\(3.34\)](#page-7-0) we have

$$
\frac{[p]_q}{p} \int_a^b |D_q h(x)| |h(x)|^{p-1} d_q x
$$
\n
$$
\leq \frac{1}{p} \left(\int_a^{\frac{a+b}{2}} |D_q h(x)| d_q x \right)^p + \frac{1}{p} \left(\int_{\frac{a+b}{2}}^b |D_q h(x)| d_q x \right)^p. \tag{3.35}
$$

By Lemma [3.1,](#page-2-0) we obtain

$$
\frac{[p]_q}{p} \int_a^b |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p-1}}{2^{p-1} p} \int_a^{\frac{a+b}{2}} |D_q h(x)|^p d_q x \n+ \frac{(b-a)^{p-1}}{2^{p-1} p} \int_{\frac{a+b}{2}}^b |D_q h(x)|^p d_q x,
$$
\n(3.36)

which simplifies to

$$
\int_{a}^{b} |D_q h(x)| |h(x)|^{p-1} d_q x \le \frac{(b-a)^{p-1}}{2^{p-1} [p]_q} \int_{a}^{b} |D_q h(x)|^p d_q x.
$$

proof of the theorem.

This completes the p

Remark 3.5. The constant $\frac{(b-a)^{p-1}}{2p-1}$ $\frac{(b-a)^{p-1}}{2^{p-1}[p]_q}$ is sharper than the constant $\frac{(b-a)^{p-1}}{[p]_q}$ $\frac{(-a)^r}{[p]_q}$.

Remark 3.6. Taking $p = 2$ in [\(3.24\)](#page-5-3) yields

$$
\int_{a}^{b} |D_q h(x)| |h(x)| d_q x \le \frac{(b-a)}{2[2]_q} \int_{a}^{b} |D_q h(x)|^2 d_q x. \tag{3.37}
$$

This simplifies to

$$
\int_{a}^{b} |D_q h(x)| |h(x)| d_q x \le \frac{(1-q)(b-a)}{2(1-q^2)} \int_{a}^{b} |D_q h(x)|^2 d_q x
$$

$$
= \frac{(b-a)}{2(1+q)} \int_{a}^{b} |D_q h(x)|^2 d_q x, \tag{3.38}
$$

as the q -analogue of (1.3) .

Remark 3.7. By taking the limit as $q \to 1^-$ in [\(3.38\)](#page-7-1) yields [\(1.3\)](#page-1-1).

4 Conclusion

In this paper, interesting results on q-analogues of generalized Opial's inequalities were established and also presented some extensions of the analogues. The basic concepts of q-calculus, convexity properties of functions and the application of the Hölder's integral inequality were employed to obtain these results.

Acknowledgment

The authors are thankful to the anonymous reviewers for their valuable comments and suggestions.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

- [1] Opial Z. Sur une inegaliti. J. de Ann Polon. Math. 1960;8(1):29-32.
- [2] Sarikaya MZ. On the generalization of Opial type inequality for convex function. Konuralp J. Math. 2018;7(2):456-461.
- [3] Mirković TZ, Tričković SB, Stanković MS, Opial inequality in q-calculus. J. Inequal. Appl. 2018;2018:347:8.
- [4] Alp N, Bilisik CC, Sarikaya MZ. On q-Opial type inequality for quantum Integral. Filomat. 2019;33(13):4175-4184.
- [5] Gov E, Tasbozan O. Some quantum estimates of Opial inequality and some of its generalizations. NTMSCI, BISKA. 2018;6(1):76-84.
- [6] Rajković P, Stanković M, Marinković S, Kirane M. On q-steffensen's inequality. Electron. J. Differential Equations. 2018;2018;1-11. Article 112
- [7] Sudsutad W, Ntouyas SK, Tariboon J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015;9(3):781-793.
- [8] Kac V, Cheung P. Quantum calculus. Springer, New York; 2002.
- [9] Brahim K, Taf S, Nefzi B. New integral inequalities in quantum calculus. Int. J. Anal. Appl. $2015;7(1):50-58.$
- [10] Brahim K. On some q-integral inequalities. J. Inequal. Pure and Appl. Math. 2008;9(4):6. Article 106
- [11] Gauchman H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004;47(2-3):281-300.
- [12] Iddrisu MM. q-Steffensen's inequality for convex functions. Internat. J. Math. Appl. 2018;6(2- A):157-162.
- [13] Jackson FH. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910;41(16):193-203.
- [14] Nantomah K. Generalized Hólders and Minkowskis inequalities for Jacksons -integral and some applications to the incomplete -gamma function. Abstr. Appl. Anal., Hindawi. 2017;2017:6. Article ID 9796873
- [15] Noor MA, Awan MU, Noor KI. Some new q-estimates for certain integral inequalities. FACTA UNIVERSITATIS (NIŠ), Ser. Math. Inform. $2016;31(4):801-813$.
- [16] Tariboon J, Ntouyas SK. Quantum integral inequalities on finite Intervals. J. Inequal. Appl., Springer. 2014;2014:13. Article 121
- [17] Alp N, Sarikaya MZ. A new definition and properties of quantum integral which calls q -integral. Konuralp J. Math. 2017;5(2):146-159. $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of $\mathcal{L}=\{1,2,3,4\}$

 c 2020 Abubakari et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://www.sdiarticle4.com/review-history/58550