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Abstract 
 

This article introduces and studies a new probability distribution called “Transmuted Power Gompertz 
distribution”. It looks at the properties of the transmuted power Gompertz distribution. The article also 
estimates the four parameters of the new model using the method of maximum likelihood estimation. The 
article further evaluates the goodness-of-fit of the proposed distribution compared to other distributions 
by means of applications of the model to two real life datasets and the result show that the proposed 
distribution is more flexible than the fitted existing distributions. 
 

 
Keywords: Transmuted power Gompertz distribution; statistical properties; estimation of parameters; 

application and performance. 
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1 Introduction 
 
The Gompertz distribution is both skewed to the right and to the left. It is a generalization of the exponential 
distribution and is commonly used in many applied problems, particularly in lifetime data analysis [1]. The 
Gompertz distribution has been applied in the analysis of survival, in some sciences such as gerontology [2], 
computer [3], biology [4] and marketing science [5]. The hazard rate function of the Gompertz distribution is 
an increasing function and often applied to describe the distribution of adult life spans by actuaries and 
demographers [6]. 
 
New families of distributions are produced day by day and are useful for adding parameters to all forms of 
probability distributions which makes the resulting distribution more flexible for modeling heavily skewed 
dataset. Some of these families of distributions include the beta generated family (Beta-G) [7], Transmuted 
family of distributions [8], Gamma-G (type 1) [9], the Kumaraswamy-G family [10], McDonald-G family 
[11], Gamma-G (type 2) family [12], Gamma-G (type 3) family [13], Log-gamma-G family [14], 
Exponentiated T-X family [15], Exponentiated-G (EG) family [16], Weibull-X family [17], Weibull-G 
family [18], Logistic-G family [19], Gamma-X family [20], a Lomax-G family [21], a new generalized 
Weibull-G family [22], a Beta Marshall-Olkin family of distributions [23], Logistic-X family [24], a new 
Weibull-G family [25], a Lindley-G family [26], a Gompertz-G family [27] and Odd Lindley-G family             
[28] and so on. 
 
As a result of the introduction of these families of probability distribution and the desire to improve the 
flexibility of classical distributions especially the Gompertz distribution, a number of authors have 
introduced different extensions of the Gompertz distribution and some of the recent and known studies 
include the generalized Gompertz distribution [29] which was based on an idea of [30], the Beta Gompertz 
distribution [31], the odd generalized Exponential-Gompertz distribution [32], the Transmuted Gompertz 
distribution [33], the Lomax-Gompertz distribution [34] and Power Gompertz distribution [35]. 
 
It has been discovered that using the quadratic rank transmutation map by [8] brings about more skewed and 
flexible probability distributions with an additional shape parameter usually known as the transmuted 
parameter and this process has led to many flexible compound distributions such as the Transmuted 
Gompertz distribution [33], the transmuted exponential Lomax distribution by [36], the transmuted odd 
generalized exponential exponential distribution [37], the transmuted Weibull-Exponetial distribution [38], 
the transmuted Lindley-Exponential distribution [39] and the transmuted Weibull-Rayleigh distribution [40]. 
 
Therefore this article aims at modifying the power Gompertz distribution [35] by introducing a new 
extension of the Gompertz distribution (transmuted power Gompertz distribution) using the method of 
quadratic rank transmutation map [8] considered previously by the above listed authors and hope that it will 
result to more better model compared to the power Gompertz distribution and will be useful for analyzing 
real life situations. 
 
According to [35], the cumulative distribution function (cdf) of the Power Gompertz distribution (PGD) with 

parameters  , 


 and   and its probability density function (pdf) are given as: 
 

   11 e
xeF x



  

                                                                                                                     (1) 
 

and 
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                                                                                                      (2) 

 



 
 
 

Eraikhuemen et al.; AJPAS, 7(1): 41-58, 2020; Article no.AJPAS.55385 
 
 
 

43 
 
 

respectively. For 0, 0, 0, 0x        where   and   are scale and shape parameters of the model 

respectively and   is the power parameter. 

 
The remaining parts of this article are presented in sections as follows: the new distribution is defined with 
its graphical analysis in section 2. Section 3 derived some properties of the new distribution. The estimation 
of parameters using maximum likelihood estimation (MLE) is provided in section 4. An application of the 
new model with other existing distributions to two datasets is done in section 5 and a useful summary and 
conclusion is given in section 6. 

 

2 The Transmuted Power Gompertz Distribution (TPGD) 
 
According to [8], the cdf and pdf of the quadratic rank transmutation map are respectively given by: 

 
2( ) (1 ) ( ) [ ( )]F x G x G x                                                                                                    (3) 

 
and 

 

 ( ) ( ) 1 2 ( )f x g x G x   
                                                                                                   (4) 

 

where; x>0, and 1 1    is the transmuted parameter, G(x) and g(x) are the cdf and pdf of the continuous 
distribution to be extended respectively. 

 
Using the above method by [8], the cdf and pdf of the transmuted power Gompertz distribution are defined 
for a random variable X by substituting equation (1) and (2) in (3) and (4) and simplifying as: 

 

        
2

1 11 1 1e e
x xe eF x
   

                                                  
 

       21 11 1 e e
x xe eF x
   

        
                                                                               (5) 

 
and 

 

    1 1 1( ) 1 2 1e e e
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     

           
    

 

   1 1 1e e( ) 1 2e e e
x xxf x x
     

                                                                           (6) 

 

respectively. Where, 0, 0, 0, 1 1x          in which  is the shape parameter respectively and 

  is the exponential parameter while  is called the transmuted parameter. 

 
The pdf and cdf of the TPGD using some parameter values are displayed in Fig. 1 as follows: 
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Fig. 1. PDF and CDF of the TransPGomD for different parameter values 
 

Fig. 1 indicates that the TransPGomD distribution is positively skewed and takes various shapes depending 
on the parameter values. Also, from the above cdf plot, it is clear that the cdf approaches one (1) when X 
tends to infinity and equals zero when X tends to zero as normally expected. 
 

3 Statistical Properties of TPGD 
 
In this section, we derived, study and discuss some properties of the TransPGomD distribution. They are as 
follows: 
 

3.1 Quantile function 
 
Hyndman and Fan [41] defined the quantile function for any distribution in the form 

   1
qQ u X F u 

 where 
 Q u

 is the quantile function of the random variable X for the cdf F(x) 

and u is uniform with the interval 0 1u  . 
 
Taking F(x) to be the cdf of the TransPGomD and inverting it as defined above will give us the quantile 
function as follows: 
 

       21 11 1 e e
x xe eF x u
   

         
                                                                       (7) 

 
Simplifying (7) above and solving for X presents the quantile function of the TransPGomD as: 
 

     
1

11
3

log 1
u

Q u


 


 

                                                                                                        (8) 
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where u is a uniform variate on the unit interval (0,1). This function is used for obtaining some moments like 
skewness and kurtosis as well as the median and for generation of random variables from the distribution in 
question as shown below. 
 
Using (8) above, the median of X from the TransPGomD is simply obtained by setting u=0.5 and this 

substitution of 0.5u  in (8) gives: 
 

   
1

0.51
3log 1Median



  
                                                                                                    (9) 

 

Similarly, random numbers can be simulated from the TransPGomD by setting 
 Q u X

 and this process 

is called simulation using inverse transformation method. This means for any , , 0     and 
 0,1u

: 
 

   
1

11
3log 1

u
X



 


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                                                                                                            (10) 
 

“where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function”. 
 
Again using the function above, the quantile based measures of skewness and kurtosis are obtained as 
follows: 
 
Kennedy and Keeping [42] defined the Bowley’s measure of skewness based on quartiles as: 
 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 



                                                                                               (11) 

 
And Moors [43] presented the Moors’ kurtosis based on octiles by: 
 

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  



                                                                                    (12) 

 

“where 
 .Q

 is calculated by using the quantile function from equation (8). 
 

3.2 Moments 
 
Let X denote a continuous random variable, the nth moment of X is given by; 
 

 '

0

( )nn
n E f x dxxX



  
                                                                                           (13) 

 
where f(x) is the pdf of the TransPGomD given in equation (6) as: 
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 11 1( ) 1 2 e
x

xx eef x x e e
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

  

 
    

 
                                                                           

 
Before substitution in (8), we perform the expansion and simplification of the pdf  as follows: 
 

 
21 11 1( ) 1 2

x x
x xe ef x x xe e e e
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        
                                          (14) 

 
First, by expanding the exponential term in (14) using power series, we obtain: 
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1e e
!
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x x
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
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and 
 

 2 1 e
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2
1e e

!

k k k
x x
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
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Making use of the result in (15) and (16) above, (14) becomes 
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Also, using the generalized binomial theorem, we can write the last term from the above result as: 
 

   
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1 1 ee
k

l l xx

l
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
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                                                                                               (18) 
 

Making use of the result in (18) above in (17) and simplifying, we obtain: 
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Now, using the simplified pdf of the TransPGomD in equation (19), the nth ordinary moment of the 
TransPGomD is derived as follows: 
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(20) 
 
Making use of integration by substitution method in equation (20), we perform the following operations: 
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Substituting for 
,x

 and dx  in equation (20) and simplifying; we have: 
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Using the definition of complete Gamma function, we obtain the nth ordinary moment of X for the 
TransPGomD as: 
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The mean (
'
1 ), variance (

2 ), coefficient of variation (CV), coefficient of skewness (CS), coefficient of 
kurtosis (CK), moment generating function (mgf) and characteristics function (cf) can all be calculated based 
on the ordinary moments in equation (22) using some simple and well-defined relationships (see details in 
[44]). 
 
The moment generating function of a random variable X can be obtained as 
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                                                                                                             (23) 

 
Applying power series expansion and simplifying (23) gives the following: 
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Using the result in (24) and simplifying the integral in (23) therefore we have: 
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            
                  

  
(25) 

The characteristics function of a random variable X is defined by: 
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     
0

e eitx itx
x t E f x dx



  
                                                                                                               (26) 

 
Again, applying power series expansion and simplifying equation (26), we obtained the characteristics 
function of X as: 
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                  

  
 (27) 

 
The Cumulant generating function (CGF) is obtained as: 
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                                  

  
  (28) 

 

3.3 Reliability analysis of the TransPGomD 
 
The Survival function (SF) describes the likelihood that a system or an individual will not fail after a given 
time. Mathematically, the survival function is given by: 
  

   1S x F x 
                                                                                                                             (29) 

 
Applying the cdf of the TPGD in (29) and simplifying, the survival function for the TransPGomD is obtained 
as: 
 

   1 1( ) 1e e
x xe eS x
   

                                                                                        (30) 
 
The hazard function (HF) is the probability that a component will fail or die for an interval of time. The 
hazard function is defined as; 
 

 
 
 

 
 1

f x f x
h x

S x F x
 


                                                                                                                        (31) 

 
Meanwhile, the expression for the hazard rate of the TransPGomD is given by 
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1 1

1

1 2 e
( )

1 e
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x e

e

x
h x
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
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

  

 

  

 

    
                                                                                                (32) 

 
Hence, equation (30) and (32) are the survival and the hazard functions of the transmuted power Gompertz 
distribution (TransPGomD) respectively and their plots are given in the figure below. 
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Fig. 2(a). Survival function (SF) of the TransPGomD for different parameter values 
 

 
 

Fig. 2(b). Hazard function (HF) of the TransPGomD for different parameter values 
 

The plots in Fig. 2(a) show that the probability of survival equals one (1) at initial time or early age and it 
decreases as time increases and equals zero (0) as time approaches infinity. 
 

It is also shown in Fig. 2(b) that the TransPGomD has increasing failure rate which implies that the 
probability of failure for any random variable following a TransPGomD increases as time increases, that is, 
probability of failure or death increases as life ages.  
 

3.4 Order statistics 
 

Suppose 1 2, ,....., nX X X  is a random sample from the TransPGomD (TPGomD) and let 

1: 2: :, ,.....,n n i nX X X  denote the corresponding order statistic obtained from this same sample. The pdf, 

 :i nf x
of the 

thi  order statistic can be obtained by 
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                                                                   (33) 

Using (5) and (6), the pdf of the 
thi  order statistics  :i n

X
, can be expressed from (33) as; 
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                (34) 

 

Hence, the pdf of the minimum order statistic  1
X

 and maximum order statistic  n
X

 of the TransPGomD 
are respectively given by; 
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                (35) 

 
and 
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4 Estimation of Unknown Parameters of the TransPGomD 
 
In this section, the estimation of the parameters of the TransPGomD is done by using the method of 

maximum likelihood estimation (MLE). Let nXXX .,,........., 21  be a sample of size ‘n’ independently and 

identically distributed random variables from the TransPGomD with unknown parameters  , 


,   and   
all defined previously in section one. 
 
The likelihood function of the TransPGomD using the pdf in equation (6) is given by; 
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                                           (37) 

 

Let the natural logarithm of the likelihood function be,
   log | , , ,l L X    

, therefore, taking the 
natural logarithm of the function above gives: 
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Differentiating 
 l 

 partially with respect to parameters  , 


,   and   respectively gives the following 
results; 
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Making equation (39), (40), (41) and (42) equal to zero (0) and solving for the solution of the non-linear 

system of equations produce the maximum likelihood estimates of parameters 
ˆˆ ,  , ̂  and ̂ . However, 

these solutions cannot be obtained manually except numerically with the aid of suitable statistical software 
like R, SAS, MATHEMATICA e.t.c. Hence, some datasets are being considered in the next section to fit the 
new distribution with other related distributions using “maxLik” package in R software. 
 

5 Applications to Three Real Life Datasets 
 
This section presents two real life datasets, their descriptive statistics, graphical summary and some 
distributions fitted to the datasets. The section presents and compares the fits of the transmuted Power 
Gompertz Distribution (TPGD), transmuted Gompertz distribution (TGD), Power Gompertz Distribution 
(PGD) and the Gompertz Distribution (GD) based on the two datasets mentioned above. 
 
To check the fitness and flexibility of the models listed above, the Akaike Information Criterion (AIC) is 
chosen and used for selecting the best model. The formula for this criterion is given as: 
 

2 2AIC k    
 
Where ℓ denotes the value of log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. Meanwhile, when taking our decisions the model with the lowest values 
of AIC would be chosen as the best model to fit the data. 
 
Tables 2 and 4 list the Maximum Likelihood Estimates of the model parameters and the AIC values for the 
fitted models based on the first and second datasets respectively. 
 
Data set I: This data represents the survival times of 121 patients with breast cancer obtained from a large 
hospital in a period from 1929-1938 from [45,46] and [47]. Its summary is given as follows: 
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Table 1. Summary statistics for the dataset I 
 

n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

121  0.30  17.5  40.00  60.0 46.33  154.00  1244.464  1.04318  0.40214  
 
From the descriptive statistics in table 1, it is seen that dataset I is positively skewed and not normally 
distributed. 
 

Table 2. Performance of the distributions using the value of AIC based on dataset I 
 

Distributions Parameter estimates  log-likelihood value AIC Rank of models  
TPGomD ̂ =0.09434 

̂
=0.36095  

̂ =0.42241 

̂ =-0.96519  

-579.3027 1166.605 1st  

PGomD ̂ 0.020775  

̂ 
0.021019  

̂  0.870416  

-581.2547  1168.509  3rd  

TGomD ̂ 0.011294  

̂ 
0.008866  

̂  0.297067  

-580.4765  1166.953  2nd  

GomD ̂ 0.018400 

̂ 
0.007703  

-583.1125  1170.225  4th   

 

 
 

Fig. 3. Histogram and estimated densities (Pdfs) and cdfs of the models fitted to dataset I 



 
 
 

Eraikhuemen et al.; AJPAS, 7(1): 41-58, 2020; Article no.AJPAS.55385 
 
 
 

53 
 
 

 
 

Fig. 4. Probability plots for the fit of the TPGomD, TGomD, PGomD and GomD based on dataset I 
 

Data set II: This dataset represents the survival times (in days) of 72 guinea pigs infected with 
virulenttubercle bacilli reported by [48] and also used by [39]. The summary is presented in Table 3 below. 
 

Table 3. Descriptive statistics for dataset II 
 

n Minimum 
1Q
 

Median 
3Q
 

Mean Maximum Variance Skewness Kurtosis 

72 10.0 108.0 149.5 224.0 176.8 555.0 10705.1 1.34128 1.98852 
 
From the descriptive statistics in Table 3, it can be observed that dataset II is also positively skewed. 
 

Table 4. Performance of the distributions using the value of AIC based on dataset II 
 

Distributions Parameter estimates  log-likelihood value AIC Rank of models  
TPGomD ̂ =0.18958 

̂ =0.37333   

̂ =0.28835  

̂ =-5.80601  

-390.8596 789.7193  1st  

PGomD ̂ 0.006765   
̂  0.902166  

̂  0.319790   

 -433.2963 872.5925  2nd  

TGomD ̂ 0.0032698  
̂  -0.0038057  

̂ 3.1017073   

-433.3389  872.6778 3rd  

GomD ̂ 0.0034090 
̂  0.0039771 

-438.6373 881.2746  4th    
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Fig. 5. Histogram and estimated densities (pdfs) and cdfs of the models fitted to dataset II 
 

 
 

Fig. 6. Probability plots for the fit of the TPGomD, TGomD, PGomD and GomD based on dataset II 
 

Tables 2 and 4 present the parameter estimates and the values of AIC for the four fitted distributions using 
dataset I and dataset II respectively. Based on the values of AIC in Table 2 and those in Table 4, it can be 
seen that AIC values of TPGD are smaller compared to those of TGomD, PGomD and the GomD and these 
results indicate that the transmuted Power Gompertz distribution (TPGomD) fits the two datasets better than 
the other three distributions (TGomD, PGomD and the GomD). This result and performance is confirmed 
from the estimated pdfs and cdfs in Fig. 3 and 5 as well as the probability plots presented in Figs. 4 and 6. 
The result is an affirmation to the fact that the method quadratic rank transmutation map for adding a single 
or transmuted parameter has increased the flexibility of the power Gompertz distribution. Hence, this study is 
in line with the conclusions in [33,36,37,38, 39,40,49,50,51]. 
 



 
 
 

Eraikhuemen et al.; AJPAS, 7(1): 41-58, 2020; Article no.AJPAS.55385 
 
 
 

55 
 
 

6 Summary and Conclusion 
 
In conclusion, the present article has used the method of quadratic rank transmutation map to defined a 
transmuted power Gompertz distribution and study its properties such as quantile function, moments, 
moment generating function, characteristics function, survival function, hazard function, distribution of order 
statistics among others. The research has discussed analytically and in practice the usefulness and 
applications of these properties. The study has also demonstrated earlier in the preceding section with 
applications of the model to real life datasets that the new distribution (TPGomD) has a better fit to the two 
datasets compared to the transmuted Gompertz, Power Gompertz and the conventional Gompertz 
distributions. 
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