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Abstract

Objectives: The study aims to develop a Bayesian multiple regression model with informative
inverse gamma prior and fit the model to malaria symptom dataset.
Place and Duration of Study: The study was carried out in Masinde Muliro University
of Science and Technology (MMUST). The study used 300 malaria related symptom dataset
obtained from Health service records of different patients (students) between the time period of
1st January, 2015 to 20th December, 2015.
Methodology: Multiple linear regression model with Bayesian parameter estimation is used.
The Normal prior distribution for θ parameter and inverse gamma prior distribution for the σ2

parameter is derived. Gibbs sampler and Metropolis Hasting algorithm is used with Markov
Chain Monte Carlo (MCMC) method to produce an iteration of about 102,491 with Burn-in of
2500 and thinning of 10 that resulting to effective sample size of 90000.
Results: The results shows that all the estimated posterior predictive p-values are between 0.05
and 0.95 indicating an adequate fit for the individual observation of the data in the model. The
results also reveals that the data values and the average distance between the data values and
the mean tend to be close to each other and the estimated coefficient of θ′s approximately 95%
draws fall within each of the corresponding highest posterior density intervals.
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Conclusion: Though the Least Squares method is sufficient for estimating the coefficients of
the regression parameters, the Bayesian estimates recorded comparatively very small standard
errors making the Bayesian method more robust in analysing symptom dataset.

Keywords: Bayesian, regression, malaria; mcmc; symptoms; Plasmodium falciparum.
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1 Introduction

Malaria is an ancient disease that has been affecting people since the beginning of recorded time. It
poses serious economic, social and health burdens in tropical and subtropical countries where it is
predominantly found, ([1]). Malaria still remains a huge public health issue regardless of how many
years of research has been conducted on how to combat it. According to WHO report [2], released
in November 2017, the report shows that the number of malaria cases reported in the year 2016 was
216 million up from 211 million cases reported in 2015. The report also shows that malaria death
estimates in 2016 stood at 445,000 compared to 446,000 deaths in 2015. The high burden of malaria
cases in 2016 was in Africa at 90% with 91% cases of deaths reported in children. According to WHO
report on malaria cases in Kenya, malaria is one of the leading causes of morbidity and fatality with
about 3.5 million children at risk of developing severe malaria, out of which an estimated 34,000
children under five years die every year. The disease is also responsible for 30% of out-patient visits
at health centres, economically, it is estimated that 170 million working hours are lost each year
because of malaria illness, [3].

Symptoms are experienced deviations from an individual’s perception of his or her normal healthy
state of being, yet not necessarily an indicator of illness. A symptom can emerge from sensitivity
to certain combinations of biological, social and environmental processes and vary in magnitude,
severity, persistence and character. Symptoms can be subjectively reported or objectively observed.
Depending on the disease, the scope and intensity, the duration of symptoms can vary over time.

The malaria symptoms can be grouped into two; symptoms for uncomplicated malaria (suspected
malaria) and symptoms for complicated malaria (severe malaria). Malaria is considered uncompli-
cated when symptoms are present but there are no clinical or laboratory signs to indicate severity
or vital organ dysfunction. The symptoms for uncomplicated malaria are non-specific i.e. they are
self-reported symptoms that do not indicate a specific disease process, they are initial symptoms and
include fever (high body temperature), chills, cough, headache, pains (joint, muscle, abdominal),
muscle aches, loose stool, tiredness, nausea, high pressure, vomiting and diarrhoea. Infection with
Plasmodium falciparum if not promptly treated can quickly progress to complicated malaria (severe
malaria). The main symptoms for severe malaria include coma, severe breathing difficulties, low
blood sugar, hallucination, prostration, immobility, confusion and incoherent speech, seizure, loss
of consciousness, hyperparasitaemia, black quarter urine and low blood haemoglobin, [4].

2 Literature Review

Numerous mathematical models have been developed and carried out to gain insight into the
transmission dynamics and control of malaria transmission in human population. Different approa-
ches are helpful in guiding different stages of the disease through mathematical models that study
transmission of malaria based on the reproduction number. A number of mathematical models have
been developed and analysed to explain the dynamics of infectious diseases in humans. Many of
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these models are described by systems of ordinary differential equations formulated under reasonable
assumptions and parameters.

Mathematical modelling of malaria has a long history starting with the first models of malaria
transmission dynamics by [5]. Ross introduced the first deterministic differential equation model
of malaria by dividing the human population into susceptible and infected compartments, with the
infected class returning to susceptible class again leading to the SIS structure. The Ross model
outlines the basic features of malaria transmission and puts the main burden of transmission on
mosquito-specific features thereby paving the way for mosquito-based malaria control programmes.
The simple Ross model did not consider the latency period of the parasite in mosquitoes and their
survival during the latent period. This resulted in MacDonald model which considered the latency
period and introduced the Exposed class in the mosquitoes, [6]. In a natural extension to the Ross
and McDonald’s models, Anderson and May considered the 21 days latency period of the parasite
in humans and introduced the Exposed class in human population in their model, [7]. Their model
divided the host population into three compartments i.e susceptible, exposed and infected along
with that in the mosquito population (susceptible, exposed and infected). Therefore, their model
consisted of four differential equations describing the time evolution of both the exposed and infected
classes for humans population and mosquito’s population.

A study by [8] examined the relationship between malaria, environmental and socio-economic
variables in Sudan using health production modified model where regression analysis method was
used to analyse their model, their results showed a significant relationships between malaria, rainfall
and water bodies while other variables such as Human Development Index, temperature, population
density and percent of cultivated areas were not significant. [9] used robust Poisson regression
model in his study to model the daily average number of cases in 10 districts of Ethiopia that was
associated with rainfall, minimum temperature and maximum temperature as explanatory variable
in a polynomial distributed lag model. In order to improve reliability and generalizability within
similar climatic conditions, he grouped the districts into two climatic zones i.e hot zones and cold
zones. The results showed that in hot zones, malaria was associated with rainfall and minimum
temperature at relatively shorter lags whereas in cold districts, rainfall was associated with a delayed
increase in malaria cases. The results also showed that in cold districts, minimum temperature was
associated with malaria cases with a delayed effect while in hot districts, the effect of minimum
temperature was non-significant at most lags, and much of its contribution was relatively immediate.

In many studies of medical treatment, symptoms are measured repeatedly over time in observation
called longitudinal observation. Though we cannot observe directly latent variables, for instance,
state of individual in case of infectious disease, we learn about it by measuring symptom(s). For the
longitudinal models, two latent variables govern disease, one for the probability of experiencing a
particular symptom and another for the severity of the experienced symptom. Thus the probability
of a symptom and the severity of it depends on both latent variables and observed variables, [10].
Latent variable link observable data in the real world to symbolic data in the model. Bayesian
statistics is often used for inferring latent variables, the common method used inferring latent
variables in Bayesian statistics are; Hidden Markov Model (HMM), factor analysis, principal compo-
nent analysis and Expectation Maximization (EM) algorithm, [10]. [11] developed an intra-individual
consistency model using a logistic-type latent variable model. The latent variable in the model
is also used to represent the propensity of symptoms and intensity of episodes as these could
not be observed directly and need to be estimated through observation of symptom episodes
in hypoglycaemia. Their model results showed that their was individual difference in symptom
reporting and adults exhibit distinct intra-individual variability in symptom reporting. [12] extended
the model developed by Zammit by allowing for different forms of symptom experiencing thresholds
between groups variability when symptoms are classified in groups. Bayesian estimation was
performed for all coefficients in the developed model without grouped symptoms and with grouped
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symptoms. Their analysis showed that a multiplicative form of symptom propensity and episode
intensity provides the most suitable symptom experiencing threshold. It also showed that groups
of symptoms distinct propensity had significant impact on the consistency of symptom reporting
especially on gender subjects.

3 Materials and Methods

3.1 The study area

The study was conducted in Masinde Muliro University of Science and Technology (MMUST)
located in Kakamega Town, Kakamega County with an altitude of 1561m above the sea level with
a student population of approximately 30000. The levels of malaria risk and transmission intensity
in MMUST exhibit significant spatial and temporal variability related to variations in amount of
rainfall, temperature, altitude, topography and human settlement pattern around the college. In
this study area, malaria situation is typical of Sub-Saharan Africa making its transmission an all-
year-round affair and seasonal variation. The MMUST Health service records shows that between
300-700 cases of malaria are reported each month which constitutes 75% of all out-patient cases
reported in the health service. The peak period of malaria incidence occurs from April to August
following the long rain season. The malaria cases reported in MMUST is either complicated (severe)
malaria or uncomplicated malaria. For complicated malaria, the following symptoms are commonly
displayed by students; hallucination, prostration, loss of consciousness, hyperparasitaemia, pallor,
convulsions, low and high blood pressure, coma, convulsions, low and high pulse beat/min, anaemia
and dark urine. For uncomplicated malaria, the following non-specific symptoms are commonly
displayed by the students; headache, pains (joint, muscle, abdominal), loose stool, cough, fever,
rigors, nausea and vomiting. For confirmatory test of malaria, blood slide (BS) for malaria parasite
is carried out.

3.2 The model

In this section, malaria statistical model is developed and analyzed. The model subdivides the
human population under study into classes depending on the disease status of the individual and
observed symptoms. In this study, the explanatory variable are observable symptoms recorded by
the health officer for each student who visited the health facility with malaria related symptoms and
the response variable is the transition parameter represented by state of individual after observed
symptoms i.e mild, moderate and severe. The observed symptoms are; X1 - fever (high body
temperature), X2 - rigors, X3 - convulsion, X4 - sweating, X5 - vomiting, X6 - diarrhoea, X7 -
pallor, X8 - cough and X9 - prostration. The observed symptoms are then grouped and recorded
in a scale based on the severity of the disease. For instance 0 implies no symptoms, 1 implies
mild symptoms, 2 implies moderate and 3 implies severe symptoms. To aid our discussion, we first
provide an overall modelling framework. Figure (3.2) provides a transition diagram on how an nth

individual susceptible to malaria evolves.

Figure 1 shows how an nth individual can become infected at time t given that he/she was not
infected at time t − 1. The process in which an individual n becomes infected is denoted by Znt,
thus when in state S at time t− 1, the process is Znt−1. When an individual n transit from S to I,
the process become Znt. Within state I, the process evolves with time to three different categories
namely; mild (I1), moderate (I2) and severe (I3).
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Fig. 1. Malaria transition diagram

3.3 Computation of transition probability

In this section, the transition probabilities shown in Figure (3.2) which are vital to our model are
computed. The transition probabilities are:

a
(t)
SS = P (Znt = S|Znt−1 = S),

a
(t)
SI = P (Znt = I|Znt−1 = S), (3.1)

and

a
(t)
II = P (Znt = I|Znt−1 = I)

To calculate the probabilities of a′s, we require probit models. This model simply use the cumulative
Gaussian normal distribution to calculate the probability of being in one state/category or not. For
instance

a
(t)
SI = P (Znt = I|Znt−1 = S) =

∫ ψnt

−∞

1√
2π

exp−1

2
t2dt = ϕ(ψnt) (3.2)

where ϕ is the cumulative standard normal distribution and the upper bound parameter ψnt is a
transition parameter (i.e., ψnt ∈ ℜ) which defines the transition of nth student from a state of
susceptibility at time t− 1 to a state of illness at time t.

Similarly other probabilities of a′s can be computed in the same manner. For example

a
(t)
SS = P (Znt = S|Znt−1 = S) =

∫ ψc
nt

−∞

1√
2π

exp−1

2
t2dt (3.3)

where ψcnt is the complement of ψnt. Rewriting the compliment, we have

a
(t)
SS = P (Znt = S|Znt−1 = S) =

∫ ℜ

ℜ−ψnt

1√
2π

exp−1

2
t2dt

which implies that

a
(t)
SS = P (Znt = S|Znt−1 = S) =

∫ ℜ

−ℜ

1√
2π

exp−1

2
t2dt−

∫ ψnt

−∞

1√
2π

exp−1

2
t2dt
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upon simplification, we have

a
(t)
SS = P (Znt = S|Znt−1 = S) = 1−

∫ ψnt

−∞

1√
2π

exp−1

2
t2dt

Thus equation (3.3) becomes

a
(t)
SS = P (Znt = S|Znt−1 = S) =

∫ ψc
nt

−∞

1√
2π

exp−1

2
t2dt = 1− ϕ(ψnt) (3.4)

3.4 Computation of ψnt

The transition of nth student from a state of susceptibility at time t− 1 to a state of illness at time
t is due to observable malaria related symptoms. Therefore we suspect the transition to be caused
by the following relationship

ψnt = δn +Xn1θ1 +Xn2θ2 +Xn3θ3 +Xn4θ4 +Xn5θ5 +Xn6θ6 +Xn7θ7 +Xn8θ8 +Xn9θ9 + ϵn.(3.5)

It is convenient to write the model in Equation (3.5) in matrix notation as

Ψnt = δ + [Xn1 +Xn2 + ...+Xnp]


θ1
θ2
.
.
.
θp

+ ϵi (3.6)

Hence

ψnt = δ +Xθ + ϵ (3.7)

where δ = (ξ1, ξ2, ξ3) i.e., ξ1 is the general trend for individual to be infected with malaria, ξ2 is the
climatic condition (Rainfall, relative humidity, temperature) accelerating the spread of malaria to
an individual and ξ3 is the environmental and socio-economic condition that affects an individual.
θ is a p× 1-vector of unknown regression parameters.

ϵnis the unobserved random variable with expected value 0.
X is (n× p) vector of covariates where p is the number of symptoms (p = 9) and X is the observed
symptoms i.e X1 - fever (body temperature), X2 - rigors, X3 - sweating, X4 - vomiting, X5 -
diarrhea, X6 - weakness, X7 - pallor, X8 - cough and X9 - prostration.

In this study, our focus is on the transition parameter ψnt which determines the state of nth

individual. The transition parameter ψnt is a continuous variable that depends on observed
symptoms (vector of covariates) henceforth defined in Equation (3.7). Therefore equation (3.2)
can now be written as

a
(t)
SI = ϕ(δ +Xθ + ϵ) (3.8)

3.5 Estimation of θ

In this study, δn is assumed to be known. Therefore Equation ( 3.7) can be written as

ψnt = Xθ + ϵ (3.9)

where the random error ϵ is assumed to be randomly distributed with mean 0 and unity variance i.e
ϵ ∼ N(0, 1). Assume also that the error term is the source of the randomness in the model which
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implies that ψnt is also random i.e ψnt ∼ N(Xθ, 1).
Therefore the density function for the nth observation is given as

f(ψnt|X, θ) = (2π)
−1
2 exp−1

2
(ψnt −Xθ)/(ψnt −Xθ) (3.10)

using the proportionality sign (∝), the term that does not involve θ is not written. Therefore
Equation (3.10) becomes

f(ψnt|X, θ) ∝ exp−1

2
(ψnt −Xθ)/(ψnt −Xθ) (3.11)

Suppose that g(θ) is assumed to be the conjugate prior of Equation (3.10) i.e g(θ) ∼ N(0, σ2). Then
the distribution of g(θ) is given as

g(θ) = (2πσ2)
−1
2 exp− 1

2σ2
(θ)/(θ) (3.12)

drop the term that does not involve a function of θ

g(θ) ∝ exp− 1

2σ2
(θ)/(θ) (3.13)

therefore, the posterior distribution of P (θ|ψnt,X) is obtained by multiplying Equation (3.11) and
Equation (3.13)

P (θ|ψnt,X) ∝ exp−1

2
(ψnt −Xθ)/(ψnt −Xθ) exp− 1

2σ2
(θ)/(θ) (3.14)

expand the term in the exponent

P (θ|ψnt,X) ∝ exp−1

2
{(ψ/ntψnt − ψ

/
ntXθ − θ/X/ψnt + θ/X/Xθ +

1

σ2
(θ)/(θ)}

drop the term that does not involve a function of θ

P (θ|ψnt, X) ∝ exp−1

2
{(−ψ/ntXθ − θ/X/ψnt + θ/X/Xθ +

1

σ2
(θ)/(θ)} (3.15)

rewrite Equation (3.15) as

P (θ|ψnt,X) ∝ exp−1

2
{(−ψ/ntXθ − θ/X/ψnt + θ/(X/X +

1

σ2
)θ} (3.16)

upon simplification we get

P (θ|ψnt,X) ∝ exp−1

2
{(θ − (X/X +

1

σ2
)−1(X/X +

1

σ2
)(θ − (X/X +

1

σ2
)−1X/ψnt}

which implies that expected value of θ to be

E[θ] = (X/X +
1

σ2
)−1X/ψnt (3.17)

thus, the Bayes estimate of θ̂ is

θ̂ = (X/X +
1

σ2
)−1X/ψnt (3.18)
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3.6 Estimation of σ2

Since ψnt is assumed to be a random variable, let ψnt be randomly distributed with mean 0 and
variance σ2 i.e ψnt ∼ N(0, σ2). Therefore the density function for the nth observation is given as

f(ψnt|2σ2) = (
1

π
)
1
2 (

1

2σ2
)
1
2 exp− 1

2σ2
(ψnt)

2 (3.19)

drop the term that does not involve a function of σ2

f(ψnt|σ2) ∝ (
1

2σ2
)
1
2 exp− 1

2σ2
ψ2
nt (3.20)

Let τ = ( 1
2σ2 ). Then Equation (3.20) becomes

f(ψnt|σ2) ∝ τ
1
2 exp−τψ2

nt (3.21)

let r , 1
2
then Equation (3.21) can be written as

f(ψnt|σ2) ∝ τr exp−τψ2
nt (3.22)

suppose the conjugate prior of τ is the gamma density G(α, β) i.e

p(τ) =
β

Γα
τα−1 exp−τβ (3.23)

therefore the posterior distribution P (τ |ψnt is obtained by multiplying Equation (3.22 and Equation
(3.23)i.e

p(τ |ψnt) ∝ τr exp−τψ2
nt ×

β

Γα
τα−1 exp−τβ (3.24)

drop the term that does not involve a function of τ

p(τ |ψnt) ∝ τr exp−τψ2
nt × τα−1 exp−τβ (3.25)

multiply the like terms together

p(τ |ψnt) ∝ τr + α− 1 exp−τ(ψ2
nt + β) (3.26)

Therefore

p(τ |ψnt) ∝ G(r + α− 1, ψ2
nt + β) (3.27)

which implies that expected value to be

E[τ ] =
r + α− 1

ψ2
nt + β

(3.28)

and variance to be

V ar[τ ] =
r + α− 1

ψ2
nt + β

(3.29)

using the defination of τ

σ2 =
1

2τ

therefore the Bayes estimate of σ2 is

σ2 =
1

2τ
=

ψ2
nt + β

2r + 2α− 2
provided 2r + 2α > 2 (3.30)

This corresponds to the limiting case when α = 0 and β = 0, hence the Bayes estimator of σ̂2 is

σ̂2 =
ψ2
nt

r − 1
provided r > 1 (3.31)
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4 Results and Discussion

4.1 Description of data

For this study, unstructured test data was used for analysis, the symptoms were identified for each
individual student through doctor’s interrogation and student narration. The following symptoms
were identified; fever, rigors, convulsion, prostration, vomiting, cough, diarrhoea, pallor and sweating.
The symptoms were then grouped and recorded on an ordinal scale of 0 to 3 with 0 being no
symptoms and 3 being maximum symptoms. Based on the malaria cases within the institution,
this study used several independent variables (X1, X2, X3, X4, X5, X6, X7, X8 and X9) and one
dependent variable (Y). Here are the variables:
(X1=fever
(X2=rigors
(X3=convulsion
(X4=sweating
(X5=vomiting
(X6=diarrhoea
(X7=pallor
(X8=cough
(X9=prostration
Y= transition parameter

These description is summarized using descriptive statistics shown in Table 1.

Table 1. Descriptive statistics

Variable Obs Mean Std. Dev. Min Max

X1 300 1.806667 .901108 0 3
X2 300 1.716667 1.194912 0 3
X3 300 1.743333 1.250066 0 3
X4 300 0.79 .4079888 0 1
X5 300 1.903333 1.047687 0 3
X6 300 1.23 1.077483 0 3
X7 300 1.8 1.075728 0 3
X8 300 1.533333 1.214002 0 3
X9 300 0.34 0.4951943 0 3
Y 300 1.923333 1.217537 0 3

Table 1 shows data values and average distance between the data values. Generally, the results
shows that the mean tends to be very close to each other. For instance fever (mean=1.806667,
SD=0.901108) implies that 18.1% of the observed symptoms with non missing values displayed
from the data were fever with a variation of 0.901108. Standard deviation results shows how close
the values are from the mean value, for instance, the value of 1.12 (cough) implies that the individual
response on average was a little over 0.3 point away from the mean.

Before carrying out the analysis, the study sought to find out whether there was multicollinearity in
the dataset. Multicollinearity was tested using variance inflation factor (VIF) and results are shown
in Table 2. For instance, a high VIF i.e A VIF > 10 or a 1

V IF
< 0.1 indicates high collinearity

between the associated independent variables with the other variables in the model. The results
also shows that the VIF values less than 10 imply that the data values are free of multicollinearity
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and inference obtained using data values are reliable. For instance, a VIF of 1.74 indicates that the
variance of estimated coefficient is 1.74 times higher due to correlation between the independent
variables. Added-variable plots (avplots) shown in Figure 2 are also used to depict the relationship
between state of individual, observed symptoms and adjusting effects of other symptoms in order
to uncover the observation exerting a disproportionate influence on the regression (outlier). High
leverage observation displayed in Figure 2 shows the symptom that influences the coefficient values
and this symptom can be seen to be horizontally distant from the rest of the other data values.

Table 2. Variance Inflation factor

Variable VIF 1
V IF

X1 3.74 0.267446
X2 2.67 0.374987
X3 2.06 0.484668
X4 1.58 0.632941
X5 1.51 0.661853
X6 1.07 0.932220
X7 1.04 0.960790
X8 1.02 0.978364
X9 1.01 0.993272

Mean VIF 1.74

Before carrying out analysis using regression model, the first step is to carry out correlation test to
determine whether there is a relationship between dependent variable with all independent variables
i.e
H0 : ρ = 0 (There is no correlation between two variables)
H1 : ρ ̸= 0 (There is correlation between two variables)

The correlation test results between independent variables with dependent variable are shown in
Table 3, the results From shows that the independent variables are correlated with the dependent
variable. This is indicated by p-value results which are less than α, where α value is 0.05. This
implies that the correlation value is not equal to zero i.e the variables are correlated to each other.
Therefore there exist a relationship between independent variables with dependent variable and
that the data values can be analysed using regression model.

Table 3. Correlation test

Variable correlation coefficient p-value

X1 0.1419 0.0139
X2 0.6448 0.0000
X3 0.8726 0.0000
X4 -0.0191 0.0424
X5 0.5605 0.0000
X6 0.0874 0.0309
X7 0.8437 0.0000
X8 0.5776 0.0000
X9 0.1710 0.0030
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Fig. 2. avplots plot for symptom dataset

Fig. 3. Bayesgraph Diagnostics
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Table 4. Linear regression model using OLS method

Source SS df MS Number of obs = 300
F(9, 290) = 186.74

Model 378.009585 9 42.001065 Prob > F = 0.0000
Residual 65.2270818 290 0.224920972 R-squared = 0.8528

Adj R-squared = 0.8483
Total 443.236667 299 1.48239688 Root MSE = .47426
Y Coef. Std. Err. t P> |t| [95% CI]
X1 .0503675 .0307718 1.64 0.003 -.0101968 .1109318
X2 .0461125 .0329702 1.40 0.163 -.0187787 .111003
X3 .4605258 .0424257 10.85 0.000 .3770246 .544027
X4 -.0093256 .0674524 -0.14 0.890 -.1420838 .1234327
X5 .0820897 .0321786 2.55 0.011 .0187565 .1454229
X6 -.113615 .0263639 -4.31 0.000 -.1655039 -.0617262
X7 .4526304 .041636 10.87 0.891 .3706834 .5345773
X8 .0642122 .0283974 2.26 0.024 .0083211 .1201033
X9 .007724 .0565053 0.14 0.000 -.1034886 .1189365

intercept .0253763 .1020134 0.25 0.804 -.1754043 .2261569

From the estimate value of the parameter coefficients in Table 4, the regression model results shows
that shows that 7 variables have positive influence and 2 variables have negative influence. The
results also show that Convulsion, prostration, vomiting, diarrhoea, fever and pallor variables have
significantly contributes to the transition of individual from one state to the other state. This is
based on the result (F (9.290) = 186.74, p < .005). Based also on the result of R2(R2 = 0.8528)
value, the five predictor variables are able to explain 85.3% of the variance in the model. The
regression results also shows that for each one-point increase in the transition outcome, sweating
and diarrhoea decreases by -0.0093256 and -0.113615 respectively. The Standard Error results(SE)
indicates the reliability mean whereby small SE results indicates that the sample mean is more
accurate reflection of the actual population mean. The regression result indicate that 7 variables of
the 9 independent variables affect the transition of an individual from one state to the other state.
Therefore, the model in Equation (3.9) can be written as;

Y = 0.0254+0.0.0504X1+0.0461X2+0.04605X3−0.0093X4+0.00821X5−0.1136X6+0.4526X7+
0.0642X8 + 0.0077X9

The assumptions test result on the regression model showed that residual is not normally distributed,
not independent and not identical. Therefore the IID Normal assumptions on the Ordinary least
square(OLS) regression model is not met. The VIF test for the model shows that their is multicolline-
arity in the model. Based on this results, the multiple linear regression model using the OLS
parameter estimation method is not a suitable method for parameter estimation. Therefore in
this study, multiple linear regression model with Bayesian parameter estimation is used to find
parameter estimates as it treats all the model parameters as random quantities and enable one
to make probability statements about the likely values of parameters and assign probabilities of
interest. The prior distribution used in this study is the Normal distribution for θ parameter and the
inverse gamma distribution for the σ2 parameter. Gibbs sampler and Metropolis Hasting algorithm
is used with Markov Chain Monte Carlo (MCMC) method to produce iteration of about 102,491
with Burn-in of 2500 and thinning of 10 resulting to effective sample size of 90000 for inference so
as to eliminate potential problems due to autocorrelation. The convergence of the Markov chain
Monte Carlo chains was monitored using trace plots, autocorrelation function (ACF), and Gelman-
Rubin diagnostics. The Metropolis Hasting (MH) algorithm achieve an overall rate AR of 34% and
an average efficiency of about 99% as shown in Table 5. Therefore the Bayesian normal regression
model in Equation (3.14) was fitted to data so as to obtain the parameter estimates. Based on

Equation (3.18) and Equation (3.31), the estimate of mean vector θ̂ and variance σ̂2 were computed
from the same data as follows respectively. The results obtained is shown in Equation (4.1) and
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Equation (4.2).

θ̂ =



0.0259496
0.0502708
0.0460683
0.4605055
−0.0096916
0.0818986
−0.1135517
0.4526221
0.0643508
0.0077789


(4.1)

similarly , based on Equation (3.31) estimate of variance was computed and result obtained as
follow;

σ̂2 =
[
0.23956

]
(4.2)

The model of linear regression analysis with Bayesian approach is

Y = 0.0254+0.0.0504X1+0.0461X2+0.04605X3−0.0093X4+0.00821X5−0.1136X6+0.4526X7+
0.0642X8 + 0.0077X9

Table 5. Bayesian simulation results

Name value

Number of chains Per MCMC = 3
Iterations = 102,491
Burn-in = 2,500

Sample size = 10, 000
Number of observation = 300
Average acceptance rate = 0.3394

Average efficiency:minimum = .9927
Average efficiency:maximum = .9993
Maximum Gelman-Rubin Rc = 1.176
Average marginal likelihood = -231.54658

From Table 6, it can be seen that estimated coefficient θ̂ are almost the same for the Ordinary
Least Square (OLS) and the Bayesian model but the estimate of Bayesian model are smaller. The
estimated coefficient of θ′s approximately 95% draws fall within each of the corresponding highest
posterior density intervals (HPD). Table 7 shows the efficiency summaries, The closer ESS (effective
sample size) are to the MCMC sample size, the less correlated the MCMC sample is and more precise
our estimates of parameters are. Values below 1% of the MCMC sample size indicate a problem
in efficiency. From the results, the efficiency estimates are more than 99% indicating a good ESS
for parameter estimates. Table 7 also shows the correlation times which are viewed as estimates of
autocorrelation lags in the MCMC samples, for instance, the correlation times of the coefficients is
1 indicating a perfect correlation among MCMC sample size.

For convergence of MCMC, graphical diagnostic plot are plotted for the coefficient as shown in
Figure 3. The displayed diagnostic include a trace plot, an autocorrelation plot, histogram and
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Kernel density estimate overlaid with densities estimated using the first and second halves of the
MCMC sample. A graphical summary for the variance parameter does not show any obvious
problems. The trace plot reveals a good coverage of the domain of the marginal distribution,
while the histogram and kernel density plots resemble the shape of an expected inverse-gamma
distribution.

Table 6. Linear regression model using Bayesian approach

Y Mean Std. Dev. MCSE Median HPD[ 95% Cred.Interval]

X1 .056306 .0317274 .000106 .0503697 -.0110428 .1130387
X2 .0460683 .0339402 .000113 .0459884 -.0193016 .1131818
X3 .4605055 .0437595 .000146 .4605534 .3747775 .5460086
X4 -.0096916 .069681 .000232 -.0094585 -.1461358 .1256172
X5 .0818986 .0331668 .000111 .0820614 .0190056 .1488435
X6 -.1135517 .0271493 .00009 -.1134825 -.1663481 -.0601344
X7 .4526221 .0432297 .000144 .4525424 .3671538 .5370451
X8 .0643508 .0292297 .000097 .0643512 .0052016 .1200136
X9 .0077789 .0584017 .000195 .0078181 -.1069035 .1222403

intercept .0259496 .1051948 .000351 .0260526 -.1858322 .2276062

σ2 .23956 .0198361 .000066 .2384632 .2019022 .278897

Table 7. Efficiency Summaries

Number of chains = 3
MCMC sample size = 90,000

Efficiency: min = .9927
avg = .9993
max = 1

Y ESS Corr. time Efficiency

X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000
X1 89339.73 1.01 0.9927
X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000
X1 90000.00 1.00 1.0000

intercept 90000.00 1.00 1.0000

σ2 90000.00 1.00 1.0000

To determine whether the model fits well and predictions of future observations. Samples are
drawn from the posterior predictive distribution of Y . −ysim1 is specified using bayespredict so
as to simulate the outcome values and use a random-number seed for reproducibility as shown in
Table 8. The first column contains posterior means, MCMC estimates of the expected outcome
observations with respect to the posterior predictive distribution.

To access the goodness of fit of the model, the results of the replicated outcome samples are
compared with observed outcome using posterior predictive p-values as shown in Table 9. The
posterior predictive p-values are typically computed for functions of the data. The results shows
that all the estimated posterior predictive p-values are between 0.05 and 0.95 and thus indicate
adequate fit for the individual observation.
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Table 8. Posterior summary statistics

Number of chains = 3
MCMC sample size = 90,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

−ysim1−1 1.770065 .4952522 .001651 1.771355 .7998321 2.739653
−ysim1−2 .5299451 .4970351 .001657 .5290812 -.443362 1.50753
−ysim1−3 .4200158 .494928 .00165 .4206923 -.5531654 1.388663
−ysim1−4 3.085513 .5006306 .001669 3.084935 2.102757 4.068597
−ysim1−5 3.231541 .495178 .001651 3.234449 2.261567 4.205788
−ysim1−6 .1144848 .4959197 .001653 .1128442 -.8576428 1.082826
−ysim1−7 2.056877 .503976 .00168 2.056064 1.073278 3.048767
−ysim1−8 3.406604 .4959012 .001653 3.405427 2.436004 4.383048
−ysim1−9 -.0786547 .4944269 .001648 -.0785352 -1.05821 .8909879
−ysim1−10 3.327874 .498201 .001661 3.329099 2.34821 4.302601
−ysim1−11 3.152681 .4960874 .001654 3.153086 2.179684 4.118937

Table 9. posterior predictive summary statistics

Number of chains = 3
MCMC sample size = 90,000

T Mean Std. Dev. E(Tobs) P(T>= Tobs)

−ysim1−1 1.770065 .4952522 2 .3203333

−ysim1−2 .5299451 .4970351 0 .8569778

−ysim1−3 .4200158 .494928 1 .1205778

−ysim1−4 3.085513 .5006306 3 .5673889

−ysim1−5 3.231541 .495178 3 .6800556

−ysim1−6 .1144848 .4959197 0 .5918

−ysim1−7 2.056877 .503976 2 .5442222

−ysim1−8 3.406604 .4959012 3 .7950889

−ysim1−9 -.0786547 .4944269 0 .4373778

−ysim1−10 3.327874 .498201 3 .7463778

−ysim1−11 3.152681 .4960874 3 .6222778

5 Conclusions

From Table 4 and Table 6, it can be seen that estimated coefficients of θ are almost the same for the
Least Squares model and the Bayesian model though the Bayesian estimates recorded comparatively
very small errors making the Bayesian method more robust. The study reveals that, though the
Least Squares method is sufficient for estimating the coefficients of the regression parameters, the
Bayesian estimates recorded comparatively very small standard errors making the Bayesian method
more robust. The use of additional information provided by the assumption of univariate normal
prior distribution of the θs accounted for the smaller standard errors of the Bayesian estimates. For
this reason, we recommend the use of Bayesian approach for predicting and estimating parameters
of interest in the context of symptom(s) dataset.
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